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Abstract

Detection and segmentation of ovarian cancer metastases have great clinical impacts on women’s 

health. However, the random distribution and weak boundaries of metastases significantly 

complicate this task. This paper presents a variational framework that combines region 

competition based level set propagation and image matching flow computation to jointly detect 

and segment metastases. Image matching flow not only detects metastases, but also creates shape 

priors to reduce over-segmentation. Accordingly, accurate segmentation helps to improve the 

detection accuracy by separating flow computation in metastasis and non-metastasis regions. 

Since all components in the image processing pipeline benefit from each other, our joint 

framework can achieve accurate metastasis detection and segmentation. Validation on 50 patient 

datasets demonstrated that our joint approach was superior to a sequential method with sensitivity 

89.2% vs. 81.4% (Fisher exact test p = 0.046) and false positive per patient 1.04 vs. 2.04. The 

Dice coefficient of metastasis segmentation was 92 ± 5.2% vs. 72 ± 8% (paired t-test p = 0.022), 

and the average surface distance was 1.9±1.5mm vs. 4.5±2.2mm (paired t-test p = 0.004).
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1 Introduction

Detection and segmentation of ovarian cancer metastases contribute to the prognosis and 

treatment of women with ovarian cancer because 75% of them already have metastases 

spreading to the upper abdomen[6]. This task suffers many challenges. Metastases randomly 

touch liver or spleen in Fig. 1a; they have weak boundaries with surrounding fluids in Fig. 

1b; they also present wide ranges of shapes, such as spherical structures in Fig. 1a and 

elongated shapes in Fig. 1c. Because of these challenges, there is very limited previous work 

on this important topic. Liu[4] developed a tumor sensitive matching flow to detect 

metastases by searching for metastasis-caused shape variance. However, this method yields 

metastasis over-segmentation caused by weak metastasis boundaries and unconstrained level 

set propagation.
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Joint detection and segmentation is a potential solution because metastasis detection gives 

tumor location indications while segmentation improves the accuracy of feature descriptors 

to identify tumors. Due to benefits from both sides, joint detection and segmentation of 

objects receive high interests in the computer vision field. Conditional random field (CRF)

[3] was often exploited because CRF can predict a label for sequences of input samples, 

such as detected objects. Singaraju[8] introduced bag of features as the global feature 

descriptor and integrated them into CRF. Sliding window detectors were employed in 

Ladicky’s work[2] to perform global object recognition. Shotton[7] combined multiple 

visual cues to detect objects. In contrast to ovarian cancer metastasis, the objects detected in 

these methods have clear boundaries from backgrounds. Yezzi[10] developed a variational 

framework to evolve active contours to simultaneously carry out segmentation and 

registration on brain images. Joint segmentation and registration on MRI images was also 

studied in Wyatt’s work[9], except that Markov random field was chosen to establish the 

framework. Lu[5] equipped Wyatt’s framework with the capability of tumor detection by 

introducing tumor shape priors. However, varying metastasis shapes hinder this method to 

deal with our problems.

In this paper, we propose a novel joint detection and segmentation approach by integrating 

level set propagation and image matching flow computation within a variational framework. 

The main contribution is three-fold. First, the joint framework performs a tumor sensitive 

image matching process to steer the matching flow towards the metastasis regions, and 

metastases are detected by searching for large flow vectors. Second, the joint framework is 

also a level set segmentation process by using image regions with large matching flow 

vectors as shape priors to guide metastasis segmentation. Third, metastasis segmentation 

improves the accuracy of image matching flow by separating its computation in metastasis 

and non-metastasis regions. The validation on 50 patient datasets demonstrated that our joint 

framework outperforms the sequential approach[4] with more accurate metastasis detection 

and segmentation.

2 Variational Framework

This section describes a variational framework for joint detection and segmentation of 

ovarian cancer metastases. The framework not only integrates tumor sensitive matching 

flow computation[4] and region competition based level set segmentation[1], but also allow 

them to benefit from each other to yield accurate metastasis detection and segmentation.

One rule of our joint framework is to embed a metastasis-likelihood function C(p) into the 

image matching process to identify metastasis-caused deformation in the abdomen, where p 
= (x, y, z). C(p) is defined in [4] based on the assumptions that the organ surface is locally 

presented as a cup shape and metastasis intensity values obey mixture Gaussian model 

trained from six patient datasets. Image matching flow u(p) = (ux(p), uy(p), uz(p)) is 

computed by comparing the patient image Ip(p) (Fig. 2a) and the reference image Ir(p) (Fig. 

2b) as well as distance maps Dp(p) (Fig. 2c) and Dr(p) (Fig. 2d) representing the shapes of 

the patient organ and the probabilistic atlas. Here, Ir(p) is created from a random CT image 

of a healthy subject. Additionally, we seek two sets of level set functions ψi(p), i = 1, 2, that 

partitions the patient image domain Ω into metastasis regions Ω1 and non-metastasis regions 
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Ω2. To allow image matching to benefit from image segmentation, we estimate two flow 

fields u1 and u2 for metastasis and non-metastasis regions. Our joint framework is thus 

formulated by integrating image matching and segmentation into a variational functional.

(1)

where H(ψi) is a Heaviside function[1] and  is a modified L1 norm 

that allows for handling outliers. α = 550; β = 1000; κ = 1:5, and γ = 5500, where are given 

by Brox[1]. η = 2000 and υ = 1 are experimentally determined. A statistical model is used to 

compose the image term and the flow term, which is given by 

with the mean value μi and standard deviation σi in region i.

Image matching flow is computed by intensity, gradient and distance constancy models as 

well as the flow smoothness assumption in Eq. 1. Adjusting the weights of gradient and 

distance constancy terms by C(p) can force flow vectors only to be magnified in the 

metastases regions. Fig. 2e illustrates a metastasis touching the liver, and Fig. 2f shows that 

this metastasis can be detected by searching for image matching flow vectors with their 

lengths larger than 10mm as clinically relevant. Different from [4], our approach separates 

the matching flow computation in metastasis and non-metastasis regions by H(ψi). This 

partition strategy can leverage the accuracy of metastasis detection by C(p).

Eq. 1 can also be treated as a region competition based segmentation scheme[1] where the 

data term includes statistical models of intensity and flow magnitude in the second integral 

as well as the tumor sensitive matching flow computation in the first integral. We can note 

that the metastasis is roughly represented by image regions in red with large flow vectors in 

Fig. 2g. This is a desirable property to address the over-segmentation issue, as it 

dynamically provides shape priors adaptable to the current patient. The level set driven by 

the flow vector competition will be balanced approximately at metastasis boundaries. 

Competing intensity statistical model at metastasis and non-metastasis regions can refine the 

level set propagation constrained by the shape prior and ensure the level sets to stop at the 

metastasis boundaries. In addition, the area of the region contours is also penalized by κ in 
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the third integral. Fig. 2h gives the final metastasis segmentation, which is similar to the 

metastasis groundtruth in Fig. 2a.

Therefore, minimizing Eq. 1 with respect to u and ψ can jointly detect (Fig. 2f) and segment 

(Fig. 2h) ovarian cancer metastases, and the final metastasis segmentation is inside the 

contour ψ1.

3 Optimization

Eq. 1 is non-trivial to solve because it is a non-linear and non-convex energy functional, 

which might have several local optima. Multi-scale image representation[1, 4] is an efficient 

means to deal with this issue as multiple optima are rare in the coarse scale.

3.1 Initialization of the Joint Framework at the Coarsest Scale

The robust initialization of unknown variables u and ψ in Eq. 1 is critical to avoid local 

optimal as well as improve the accuracy of the metastasis detection by C(p). In this work, u 
is initialized by performing tumor sensitive matching flow computation[4] at coarse scale.

ψ can be initialized by segmenting the matching flow u. Since metastasis and non-metastasis 

regions are distinguished in terms of the vector magnitudes, we can employ the two-region 

segmentation strategy described in [1] to perform the flow segmentation.

(2)

Here, P (∥u∥) follows the definition in Eq. ??. Finally, ψ in Eq. 1 can be assigned by the 

results of Eq. 2.

3.2 Minimization

Let’s first define some abbreviations to simplify the description.

(3)

The abbreviations for y and z components and distance map D can be similarly derived 

according to the rules defined in Eq. 3. The Euler-Lagrange equation to minimize (ux)i in 

Eq. 1 is given by

(4)

Similar equations can be derived for (uy)i and (uz)i components. The nested iteration 

approach[1] is applied to remove non-linearity and non-convexity in Eq. 4. Note that image 

matching flow ui is computed only within the image regions confined by the Heaviside 

function H(ψi). This is a beneficial attribute because non-metastasis regions cannot affect 

image matching flow computation in the metastasis regions, which yields more accurate 

matching flow to detect metastases in comparison with [4].
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The Euler-Lagrange equation regarding to i is formulated as

(5)

We employ the region competition strategy developed in [1] to derive a gradient descent 

form of level set propagation.

(6)

Here, ψi is propagated by metastasis (ei) and non-metastasis (ej) region competition 

according to image matching flow computation, statistical models of intensity and flow 

magnitude, and the curvature term restricted to the narrow band given by H′(ψi) > 0.3. As 

discussed before, the image matching flow competition creates a dynamic shape prior 

because image regions with large flow vectors roughly represent the metastasis shapes. The 

competition between intensity models contributes to achieving accurate metastasis 

segmentation.

4 Experimental Data and Results

Our joint framework was validated on abdominal contrast-enhanced CT images from 50 

patients (excluding six patients used for C(p) in Eq. 1). Slice thickness varies from 1.0mm to 

2.0mm. Retrospective analysis of all images was approved by our IRB. 25 patients had at 

least one ovarian cancer metastasis. 102 metastases in these images were annotated by an 

experienced radiologist and used as the ground-truth. 92 metastases were attached to the 

liver, and the remaining 10 to the spleen. The size range of all metastases was 2.3-52.3mm 

(average: 21.1±12.8mm).

Eight metrics used in [4] were chosen to evaluate the accuracy of metastasis detection and 

segmentation. Sensitivity (Sen.) and false positive rate per patient (FP/Pat.) were used to 

evaluate detection results. FP was defined as independently segmented regions with which 

less than 50% of expert annotations overlap. The segmentation accuracy was appraised by 

volume overlap (VO), Dice coefficient (DC), relative absolute volume difference (RV), 

average symmetric absolute surface distance (AD), symmetric RMS surface distance (SD), 

and maximum symmetric absolute surface distance (MD). Table 1 indicates that the 

sensitivity of the joint framework increased substantially compared to the sequential 

method[4](Fisher exact test p = 0.046) with half the number of FP/Pat because metastasis 

segmentation separates image matching flow computation in metastasis and non-metastasis 

regions. The segmentation accuracy is also significantly improved due to the dynamical 

shape prior constructed by the joint framework (p = 0.004, paired t-test on DC). Fig. 3 

compares metastasis detection and segmentation using sequential and joint approaches on 

four patients. Each column represents one patient. In Fig. 3a, part of liver is removed in the 
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‘A’ region and the abdomen also contains fluids. Without shape constraints, the metastasis 

was significantly over-segmented by the sequential method[4] in Fig. 3e. In contrast, our 

joint approach successfully addressed over-segmentation in Fig. 3i. The second column 

shows a patient with metastasis clusters warping around the liver. Although both sequential 

and joint methods can detect these metastases, metastases in area ‘B’ in Fig. 3f are missed 

by the sequential method while they are recovered by our joint approach. In the third patient, 

our joint approach can detect a small metastasis in area ‘C’ in Fig. 3k while it is missed by 

the sequential method. The fourth patient reveals that our joint method can also reduce false 

positives, such as one at ‘D’ in Fig. 3h. As illustrated, these four examples support our 

findings in Table. 1.

5 Conclusion and Future Work

In this paper, we developed a variational framework to jointly detect and segment ovarian 

cancer metastases. Our framework unifies image matching flow computation and region 

competition based level set propagation, and allows them to benefit from each other. Image 

matching flow not only detect metastases, but also provides metastasis shape priors to avoid 

over-segmentation. Metastasis segmentation also improves the accuracy of image matching 

flow because flow computation is separated in metastasis and non-metastasis regions. The 

validation demonstrated that our joint framework generates more accurate metastasis 

detection and segmentation than sequential method[4] with sensitivity 89.2% vs. 81.4% 

(Fisher exact test p = 0.046) and the Dice coefficient 92±5.2% vs. 72±8% (paired t-test p = 

0.004). In the future, we will investigate metastasis texture features to enhance the detection 

accuracy.
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Fig. 1. 
Challenges in detecting and segmenting ovarian cancer metastases, where red arrows 

indicate metastases and the yellow arrow points to fluids.
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Fig. 2. 
Our joint framework for metastasis detection and segmentation. (a) A patient image with 

metastases (inside the red contour) attaching to the liver, (b) the reference image, (c) the 

distance map of the segmented liver, (d) the distance map of the liver atlas, (e) the 

metastases in 3D, (f) the image matching flow results, (g) the shape prior constructed by the 

image regions in red with large flow vector magnitudes to assist the metastasis 

segmentation, (h) the final metastasis segmentation.
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Fig. 3. 
Comparison of metastasis detection and segmentation using sequential and joint approaches. 

Top row: ground-truth metastases are in red, liver in green and spleen in brown. Center row: 

results using sequential approach, where true detections in red and false positives in yellow. 

Bottom row: joint method.
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Table 1

Accuracy evaluation of metastasis detection and segmentation.

Method Sen.(%) FP/Pat. VO(%) DC(%) RV(%) AD(mm) SD (mm) MD (mm)

Sequential 81.4 2.04 57±10 72 ± 8 33 ± 22 4.5 ± 2.2 7.8 ± 3.2 42 ± 9.4

Joint 89.2 1.04 82±7.1 92 ± 5.2 14 ± 10 1.9 ± 1.5 3.8 ± 2.4 18 ± 7.2
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