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Abstract

Accurate automated segmentation and detection of ovarian cancer metastases may improve the 

diagnosis and prognosis of women with ovarian cancer. In this paper, we focus on an important 

subset of ovarian cancer metastases that spread to the surface of the liver and spleen. Automated 

ovarian cancer metastasis detection and segmentation are very challenging problems to solve. 

These metastases have a wide variety of shapes and intensity values similar to that of the liver, 

spleen and adjacent soft tissues. To address these challenges, this paper presents a variational 

approach, called tumor sensitive matching flow (TSMF), to detect and segment perihepatic and 

perisplenic ovarian cancer metastases. TSMF is an image motion field that only highlights 

metastasis-caused deformation on the surface of liver and spleen while dampening all other image 

motion between the patient image and the atlas image. It provides several benefits: 1) juxtaposing 

the roles of image matching and metastasis classification within a variational framework; 2) only 

requiring a small set of features from a few patient images to train a metastasis-likelihood function 

for classification; and 3) dynamically creating shape priors for geodesic active contour (GAC) to 

prevent inaccurate metastasis segmentation. We compared the TSMF to an organ surface partition 

(OSP) baseline approach. At a false positive rate of 2 per patient, the sensitivities of TSMF and 

OSP were 87% and 17% (p < 0.001), respectively. In a comparison of the segmentations 

conducted using TSMF-constrained GAC and conventional GAC, the volume overlap rates were 

73±9% and 46±26% (p < 0.001) and average surface distances were 2.4±1.2mm and 7.0±6.0mm 
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(p < 0.001), respectively. These encouraging results demonstrate that TSMF could accurately 

detect and segment ovarian cancer metastases.
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1. Introduction

Approximately 22,240 new cases and 14,030 deaths are predicted to occur from ovarian 

cancer in the United States in 2013 (NCI, 2013). Ovarian cancer has a high mortality rate 

and 69% of women with ovarian cancer will succumb to the disease (Lengyel, 2010). The 

high mortality is mainly caused by a genetically unstable carcinoma that metastasizes 

rapidly (Cancer-Genome-Atlas-Research-Network, 2011). The high death-rate is also 

explained by the fact that as many as 75% of patients already have metastases to the pelvis 

and upper abdomen at the time of initial diagnosis because patients are often asymptomatic 

until the cancer has already spread widely (Lengyel, 2010; Memarzadeh and Berek, 2001). 

Accurate detection and segmentation of ovarian cancer metastases thus have potentially 

great clinical impact on improving the prognosis and treatment of women with ovarian 

cancer.

Computer-aided diagnosis and medical image analysis unfortunately place little emphasis on 

ovarian cancer imaging despite urgent clinical demands. Existing research (Chen et al., 

2009; Krivanek and Sonka, 1998) on ovarian imaging has focused on segmenting ovarian 

follicles from ultrasound images for infertility treatment. Microarray images are primary 

data sources for early detection and segmentation of ovarian-cancer related epithelial cells, 

stroma, or vascular markers from ovary tissue samples (Janowczyk et al., 2009; Signolle et 

al., 2008). In this paper, we focus on detecting and segmenting perihepatic and perisplenic 

ovarian cancer metastases (outside and adjacent to liver and spleen) on contrast-enhanced 

CT images, two common locations of ovarian cancer metastases in the peritoneum and 

presenting in approximately 70% of patients at the time of initial diagnosis (Nougaret et al., 

2012).

However, detection and segmentation of ovarian cancer metastases pose substantial 

challenges (Fig. 1). Most computer-aided diagnosis methods (Doi, 2007; Hong et al., 2000; 

Linguraru et al., 2012b) are developed for the detection of tumors growing inside the organs. 

On the contrary, ovarian cancer metastases can spread randomly throughout the peritoneum, 

a potential space in the abdomen and pelvis. Two common locations of spread are to the 

liver and spleen (Fig. 1a). The metastases can have a wide variety of shapes, e.g., elongated 

(Fig. 1b) and spherical (Fig. 1a), which prevents discriminative shape descriptors (Sundaram 

et al., 2007) from reliably detecting and segmenting them. Accurate metastasis segmentation 

is also nontrivial due to weak boundaries of low contrast between metastases and 

surrounding tissues (Fig. 1c). Image artifacts further complicate the metastasis segmentation 

(Fig. 1d).
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In our earlier work (Liu et al., 2012), we first presented a tumor sensitive matching flow 

(TSMF) method to detect and segment ovarian cancer metastases (Fig. 2). To search for 

randomly distributed metastases, TSMF computation juxtaposes the roles of metastasis 

classification/image matching between patient images and atlas images within a variational 

framework. TSMF vectors have the greatest magnitudes in metastasis regions and are 

suppressed in all other areas (Fig. 2c). Metastases are thus detected and segmented by 

searching for large TSMF vectors.

In this paper, we extend our earlier work in three ways. First, we augment the metastasis-

likelihood function by using a Gaussian mixture model to describe metastasis intensity 

distribution and applying shape index to measure local shape variance. The enhanced 

metastasis-likelihood function leads to better TSMF computation and yields more accurate 

metastasis detection. Moreover, our metastasis-likelihood function only requires a small set 

of features from a few patient images due to our versatile framework that jointly performs 

image matching and metastasis classification. Second, we embed TSMF shape priors into 

the geodesic active contour (GAC) (Caselles et al., 1997), a level set framework, to segment 

metastases based on the observation that image regions with large TSMF vectors 

approximately represent metastasis shapes. Different from the conventional shape-

constrained level set segmentation (Chan, 2005; Cremers et al., 2006), TSMF shape priors 

are dynamically constructed during the image matching process. TSMF shape priors are 

robust to the wide variety of metastasis shapes because they are always adaptable to the 

current patient. Therefore, TSMF-constrained GAC can generate accurate metastasis 

segmentation. Third, we extensively validate our algorithm on a test dataset with 108 patient 

images. We analyze the choice of key parameters in TSMF computation, the detection 

accuracy with respect to the metastasis size, the detection accuracy of perihepatic and 

perisplenic ovarian cancer metastases, the comparison between the TSMF method and a 

baseline organ surface partition (OSP) approach, as well as the segmentation accuracy 

comparison between the GAC and our TSMF-constrained GAC. All results demonstrated 

that TSMF method is an accurate approach to detect and segment ovarian cancer metastases.

2. Related Work

The purpose of TSMF computation is to identify metastasis-caused shape variance. Shape 

variance is measured in terms of image motion between the patient image and the atlas 

image, which is similar to optical flow computation except that TSMF only highlights 

metastasis-caused image motion. Large TSMF vectors indicate potential locations of 

perihepatic or perisplenic ovarian cancer metastasis candidates and facilitate detecting them. 

Hepatic tumor detection and segmentation are another important topic related to our work 

because we intend to detect perihepatic ovarian cancer metastases in this paper. However, 

hepatic tumor image analysis has in the past concentrated on finding tumors arising from 

within the liver itself, while our TSMF method detects ovarian cancer metastases growing 

along the liver surface. We also develop a TSMF-constrained GAC approach to segment 

metastases, which belongs to the domain of level set image segmentation. Thus, in this 

section, we review relevant work on optical flow computation, hepatic tumor analysis, and 

level set segmentation.
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2.1. Optical Flow Computation

This section introduces the concept of optical flow and its recent development and 

application to medical image analysis. Optical flow (Lucas and Kanade, 1981; Horn and 

Schunck, 1981) is the distribution of moving velocities of intensity patterns. One 

fundamental assumption of optical flow computation is that the intensities of corresponding 

points are constant in two images. However, the intensity constancy model alone fails to 

estimate optical flow because a single equation established upon the intensity model cannot 

estimate multiple flow vector components. This issue is called the aperture problem (Horn 

and Schunck, 1981). Smoothness constraint is therefore introduced into optical flow 

computation, which assumes that flow vectors vary smoothly except at motion 

discontinuities. Optical flow is thus estimated by combining intensity constancy model and 

flow smoothness assumptions. Early optical flow methods (Black and Jepson, 1996; Lucas 

and Kanade, 1981; Singh, 1990) subdivided the image plane into several blocks and 

performed block-to-block image matching between two images assuming that optical flow 

vectors remain constant within an image block. However, the flow field is prone to 

inconsistency as well as over-smoothing at motion boundaries because the size of an image 

block is difficult to determine.

To avoid the size determination, Horn (Horn and Schunck, 1981) explicitly placed an 

intensity constancy model and a smoothness constraint into a variational functional. 

Minimizing the functional yields an optical flow field. Variational approaches not only 

allow the user to freely combine optical flow models within a functional, but also provide a 

solid mathematical theory, the so-called Euler-Lagrange equation, to minimize the 

functional. Thus, variational approaches have received great attention in optical flow 

computation. Brox (Brox et al., 2004) introduced a gradient constancy model into the 

variational framework and applied image warping techniques to generate accurate optical 

flow. Papenberg (Papenberg et al., 2006) compared different optical flow models in optical 

flow estimation, such as Laplacian constancy, Hessian norm constancy, and Hessian 

determinant constancy. Recently, Zimmer (Zimmer et al., 2011) developed a tensor 

representation to generally define the variational optical flow computation. Thorough 

surveys related to optical flow computation can be found in (Fleet and Weiss, 2005; 

Weickert et al., 2006).

Because optical flow can accurately represent image motion between two images, it has 

been widely applied to medical image registration (Dawood et al., 2008; Keeling and Ring, 

2005), tracking (Linguraru et al., 2008; Liu et al., 2008), and colorectal polyp detection 

(Acar et al., 2001). Our TSMF method also exploited this beneficial property to identify 

metastasis-caused shape variance.

2.2. Hepatic Tumor Analysis

The liver is one of the most common sites of ovarian cancer metastases in the peritoneum. 

Many such metastases implant and grow on the liver surface (“perihepatic” metastases) 

(Figs. 1a and 1b). Hepatic tumors have the similar appearance to ovarian cancer metastases 

except that most of hepatic tumors are inside the liver. In this section, we describe hepatic 
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tumor detection and segmentation, and point out the similarity and difference between these 

approaches and our TSMF method.

There is limited previous work on hepatic tumor detection (Doi, 2007) because hepatic 

tumors have low contrast intensity values with the normal liver tissue. Chen (Chen et al., 

1998) used a deformable model to segment the liver on CT images, and employed neural 

network and texture features on the liver segmentation to identify tumors. Hong (Hong et al., 

2000) employed adaptive thresholding to segment the liver and a Bayes classifier to detect 

spherical tumors at liver boundaries. Joshi (Joshi and Londhe, 2013) extended adaptive 

thresholding strategy to detect hepatic tumors inside the liver by performing region splitting 

and merging operations on the CT images. Multi-scale wavelet transform was used as 

texture features in (Mala et al., 2006), and experimental results indicated better detection 

accuracy due to the multi-scale property of texture features. Wu (Wu et al., 2013) developed 

a cascade learning method to detect hypodense and hyperdense liver lesions by 

concatenating multiple classifiers. Their method collected all information from the output 

from a given classifier as additional information for the subsequent classifier in the cascade 

to sequentially reduce false positives. A more sophisticated strategy was found in (Bilello et 

al., 2004), in which an adaptive thresholding algorithm was again used to identify interior 

hepatic lesion candidates followed by a sliding tangent circle algorithm to search for 

peripheral lesions. A quadratic fitting algorithm was then exploited to segment hepatic 

lesions which were further classified into cysts, metastases, and hemangiomas based on 

texture and shape information. Recent progress on liver tumor detection has shifted to taking 

advantage of high-quality CT imaging technologies, such as multiphase CT (Tateyama et al., 

2011; Xu et al., 2011; Zhang et al., 2011).

Hepatic tumor segmentation is another important topic because accurate tumor segmentation 

is critical for the evaluation of tumor treatment (Tuma, 2006). In 2008, a competition of 

hepatic tumor segmentation was held in conjunction with the International Conference on 

Medical Image Computing and Computer Assisted Intervention (MICCAI) to encourage 

researchers to focus on hepatic tumor segmentation (Deng and Du, 2008). All CT images in 

the competition were collected with contrast enhancement, which aids in distinguishing 

tumors from healthy liver parenchyma. They were divided into training and testing datasets, 

and each of them was also provided with ground-truth for the titative evaluation. The 

quantitative evaluation. The workshop also gave five metrics to score the participated 

algorithms, including volume overlap, volume difference, absolute surface distance, squared 

surface distance, and maximum surface distance. One interactive, five semi-automatic and 

four automatic segmentation algorithms attended this competition. The highest score was 

achieved by the interactive segmentation algorithm, which employed graph cuts and 

watershed approaches (Stawiaski et al., 2008). Comparable scores were achieved by several 

semi-automatic segmentation algorithms, including a level set with fuzzy pixel classification 

(Smeets et al., 2008), adaptive thresholding and morphological processing (Moitz et al., 

2008), and voxel classification and propagational learning (Zhou et al., 2008). The most 

successful automated segmentation algorithms were based on two machine learning 

techniques, cognition network (Schmidt et al., 2008) and ensemble segmentation using 

AdaBoost training (Shimizu et al., 2008).
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Machine learning methods have become popular in recent work on hepatic tumor 

segmentation. Hame (Hame and Pollari, 2012) interactively classified CT images into tumor 

and non-tumor regions, and refined tumor regions using Hidden Markov fields. Support 

vector machine and affinity constraint propagation were explored to semi-automatically 

segment hepatic tumors in (Freiman et al., 2011). Recently, Linguraru (Linguraru et al., 

2012b) developed a fully automated tumor segmentation algorithm by comparing the 

segmented liver with a sequence of liver atlases to identify tumors along liver boundaries 

through shape analysis. Hepatic tumors were segmented using machine learning with shape 

and intensity priors.

Nevertheless, the major difference between hepatic tumor analysis and our approach is that 

their methods aim to find hepatic tumors inside the liver while our work focuses on the 

detection of ovarian cancer metastases outside the liver and spleen. Detection and 

segmentation of perihepatic ovarian cancer metastasis in this paper also have some 

similarities to the identification of hepatic tumors on the liver boundaries (Hong et al., 2000; 

Bilello et al., 2004). However, in contrast to hepatic tumors which are often more spherical, 

ovarian cancer metastases manifest a wide variety of shapes (Figs. 1a and 1b), which 

prevents predefining metastasis shape priors in metastasis detection and segmentation. 

Moreover, ovarian cancer metastases often present weak boundaries with the liver, which 

easily fails the adaptive thresholding algorithm in hepatic lesions segmentation (Joshi and 

Londhe, 2013; Bilello et al., 2004).

2.3. Level Set Methods

In this section, we give an overview of level set methods because they are used to segment 

ovarian cancer metastases in this work. The level set method (Sethian, 1999) is a process of 

interface propagation by integrating image information into a partial-differential-equation 

(PDE) framework. The interface stops at the object boundaries and divides the image into 

several meaningful objects. The level set propagation has many beneficial properties, 

including high segmentation accuracy, simplified region representation, and accurate 

tracking of object topology changes. Therefore, the level set method is widely used in tumor 

segmentation (Linguraru et al., 1989; Sean et al., 2002; Smeets et al., 2010).

The level set method is generally classified into two categories, edge-based and region-

based. The edge-based approaches (Caselles et al., 1997; Kichenassamy et al., 1996) extract 

objects by using image gradients to formulate the interface speed term. However, these 

methods are sensitive to the image noise and the level set interface is easily stuck at noisy 

image points. To address this issue, the region-based methods compute global region 

statistics and perform region competition to drive level sets (Mumford and Shah, 1989; Zhu 

and Yuille, 1996). The Chan-Vese model (Chan and Vese, 2001) is a typical region-based 

approach, in which the mean intensity difference between foreground and background forces 

the level set to stop at object boundaries. Kim (Kim et al., 2005) chose a non-parametrical 

distribution model to describe region statistics, which was demonstrated to produce more 

accurate segmentations than the Chan-Vese model. Brox (Brox and Weickert, 2006) 

extended two-region competition to simultaneously segment multi-objects. Paragios 

(Paragios and Deriche, 2002) combined edge-based and region-based level sets into a 
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unified framework to take advantages from both sides, which claimed better performance 

than edge-based solely or region-based solely methods. The region-based level set can also 

include different visual cues, such as texture and image motion (Brox et al., 2010; Cremers 

et al., 2007), to assist image segmentation.

Recent research on level set segmentation has shifted to embedding shape priors into the 

segmentation framework because weak object boundaries ubiquitously exist. Cremers 

(Cremers et al., 2003) developed a dynamical labeling strategy to constrain the target object 

with a shape prior. Chan (Chan, 2005) introduced an affine registration process to align the 

shape prior with the target object. Cremers (Cremers et al., 2006) subsequently included this 

affine registration process into his early work (Cremers et al., 2003) to segment multiple 

objects using multiple shape priors. Instead of using Gaussian probability model to describe 

the shape prior, Dambreville (Dambreville et al., 2008) chose kernel PCA to delineate the 

distribution of shape priors. Recently, sparse coding (Prisacariu and Reid, 2011; Zhang et 

al., 2012) was studied to nonlinearly combine training shape priors to represent the target 

object, based on the assumption that training datasets are over-complete. However, these 

methods might not stably segment ovarian cancer metastases because the wide variety of 

metastasis shapes cannot be constructed beforehand.

3. Methodology

Fig. 3 summarizes our TSMF method for detection and segmentation of ovarian cancer 

metastases. It consists of three main steps: shape descriptor construction, TSMF 

computation, and metastasis detection and segmentation.

Shape descriptor construction aims to create two image pairs. One image pair consists of the 

patient image and a reference image, and the other pair is distance maps of the segmented 

organ and the probabilistic atlas. The first image pair contributes to find metastases in the 

image domain, and the second pair helps to identify them in the shape space. TSMF 

computation compares two image pairs within a variational framework and embeds a 

metastasis-likelihood function to yield the flow field only highlighted in the metastasis 

regions. Metastases can thus be identified by searching for large TSMF vectors. Moreover, 

the image regions containing large TSMF vectors approximately describe the metastasis 

shapes and they are used as the shape prior for metastasis segmentation, which effectively 

handles large variety of metastasis shapes. Ovarian cancer metastases (the red object in the 

bottom right image of Fig. 3) are finally segmented by integrating TSMF shape constraints 

into the geodesic active contour.

3.1. Shape Descriptor Construction

The purpose of this step is the creation of two image pairs. One pair describes the intensity 

difference between the patient image and a reference image, and the other is a pair of 

distance fields that encapsulate the shape differences between the patient organ and 

probabilistic atlas.

A CT image from a female patient without metastases is chosen as the reference image (top 

center image of Fig. 3). Interpatient organ difference was reduced by performing affine 
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registration (Studholme et al., 1999) with 9-parameter affine transform on the reference 

image to globally match with the patient image. The registration accuracy was further 

improved by locally adjusting the reference image with a free-form deformation based on B-

splines (Rueckert et al., 1999). Thus, both images are measured in the patient physical space, 

and comparing their intensity values becomes meaningful.

The construction of shape image pair consists of five main steps. 1) Liver and spleen are 

segmented using Linguraru's approach (Linguraru et al., 2010) because the objective of this 

work is the detection of perihepatic and perisplenic ovarian cancer metastases. This process 

initializes liver and spleen segmentation by aligning their atlases to the current patient 

image. The organ boundary is then refined using 4D-convolution and geodesic active 

contour, which leads to the final segmentation. 2) Distance transform (Maurer et al., 2003) is 

computed on liver and spleen segmentation to build organ distance fields. It is an iterative 

process that assigns the shortest distance to the nearest object boundary for every image 

point. Because the distance value can accurately measure the local shape variance as well as 

facilitate organ shape comparison in TSMF computation, distance field is chosen as the 

shape descriptor in our work. 3) Probabilistic liver and spleen atlases are established on the 

reference image. The top right image in Fig. 3 shows a probabilistic liver atlas constructed 

from ten liver segmentations. One liver segmentation is extracted from the reference image, 

and the remaining nine segmentations are registered to it by using affine registration 

(Studholme et al., 1999) with 9-parameter affine transform. The liver probabilistic atlas is 

measured in the reference image since all liver segmentations are converted into the 

reference image domain. The probabilistic liver atlas is finally established by averaging nine 

registered liver segmentation and the one from the reference image. A similar process is 

used to build spleen probabilistic atlas. Note that liver and spleen probabilistic atlases are 

created beforehand. Once it is established, it can be used to process different patient images. 

4) Distance transform is computed on the probabilistic liver and spleen atlases. 5) We use 

the same registration process of the reference image and the patient image, to build shape 

image pairs for liver and spleen distance fields. Affine registration (Studholme et al., 1999) 

and non-rigid registration (Rueckert et al., 1999) are sequentially used to register the 

probabilistic atlas distance field to the organ distance field. Distance fields of the registered 

probabilistic atlas and the segmented organ are normalized to [0, 1], and comprise the final 

shape image pair.

3.2. TSMF Computation

The role of TSMF computation is to match shape and intensity image pairs within a 

variational framework. The key contribution of the TSMF computation is to embed a 

metastasis-likelihood function into the matching computation. TSMF vectors are thus 

magnified at the metastasis regions while suppressed in all other regions. Ovarian cancer 

metastases are detected by searching for large TSMF vectors.

Let Ip(p) and Ir(p) be the patient image and the reference image, and Dp(p) and Dr(p) be 

their corresponding distance fields (either liver or spleen shape image pairs), with u = (ux, 

uy, uz) be the TSMF vector at a point p = (x, y, z) in the image domain Ω. Assuming M(p) is 
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the metastasis-likelihood function, the TSMF computation is formulated as a global energy 

function within a variational framework.

(1)

where , ε = 0.001 is a modified L1 norm and allows the computation to 

handle non-Gaussian deviations of the matching criterion (Brox et al., 2004; Papenberg et 

al., 2006). β = 50 and γ = 200 suggested by Brox (Brox, 2005) and α = 1000 experimentally 

determined in section 5.1.1 are constants to balance different components. Minimizing Eq. 1 

generates TSMF vectors. Note that the weights of gradient constancy term and distance 

constancy term are dynamically controlled by M(p), which measures the possibility of 

metastasis existence in the local image region. The larger the value of M(p), the more likely 

the local region contains metastases. Distance and gradient terms with large M(p) will 

dominate the local TSMF computation. Therefore, TSMF vectors are enlarged at the 

locations where metastases are more likely to exist.

Next, we analyze the metastasis intensity and shape properties to define M(p). Fig. 4 

illustrates a metastasis attached to the liver. We can see that the metastasis is darker than 

liver, and metastasis regions are also homogeneous (Fig. 4a). The intensity histograms of 

metastasis, liver, and spleen confirm this visual observation (Fig. 4c) because the metastasis 

intensities (red bars) are smaller than liver (green) and spleen (blue), and its intensity range 

is also narrow due to the homogeneity. Moreover, the metastasis intensity profile is similar 

to a Gaussian distribution. To account for individual variability, a Gaussian mixture model 

established on N representative metastases from different patients is used to describe the 

metastasis intensity distribution

(2)

where (μm)i and (σm)i are the mean intensity and standard deviation of i-th metastasis. N = 6 

in this paper, which was experimentally determined in section 5.1.1.

Metastases often push organs to deform and generate a cup shape on the organ surface 

(indicated by a yellow arrow in Fig. 4b). It is an important shape feature to discriminate the 

metastasis, and shape index (Koenderink and Doorn, 1992) is chosen to identify the cup 

shape. Letting 1 < 2 be the principal curvatures of the organ surface, the shape index at p is 

defined as
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(3)

A cup shape has a small shape index value. We can find that the cup shape deformed by the 

metastasis is in blue, which corresponds to small shape index. Therefore, shape index can 

accurately identify the shape deformation caused by ovarian cancer metastases, though it 

also spots false positives when used alone.

M(p) is defined according to the Gaussian mixture model and shape index, which leads to 

Eqs. 4a-4c. Ωo and  are the organ regions and non-organ regions in the patient image, and 

∂ Ωo is the organ boundary. Dmax is the largest distance value in the patient distance field, 

and μ and σ are the mean intensity and standard deviation of an image region {q : |p − q| < 3 

and }. This region contains a set of image points2q that are outside the organ and 

their distance to the current point p is less than 3 voxels, where the 3-voxel threshold is 

determined empirically. wi is the weight of i-th metastasis instance in Eq. 2 in terms of its 

population in the entire patient data. In this work, we set wi = 1. Note that M(p) is a 

piecewise function because we are only interested in detecting metastases near the organ 

surface. Eq. 4a indicates that the likelihood of the metastases existence remains a small 

value in the non-organ regions, and the likelihood is also penalized inside the organ in Eq. 

4c because metastases inside organs are not our concern in this paper. Eq. 4b is designed to 

find metastases attached to the organ surface. The metastasis-caused shape variance is 

measured by |Dr(p) − Dp(p)|, which formulates the nominator. A large distance difference 

means high possibility of organ shape variance caused by metastasis existence. The 

denominator is composed of three components. The first two components measure the 

homogeneity and intensity difference between the current image region and the Gaussian 

mixture model of metastases. M(p) yields large values if the current mean intensity value 

stays within metastasis intensity ranges and the deviation also obeys the Gaussian mixture 

model. The shape index term is placed in the denominator since small values correspond to 

the cup shape caused by metastases. Thus, the response of Eq. 4b will be large if the current 

image region potentially contains metastases, and TSMF vectors will be enhanced. 

Otherwise, TSMF vectors will be suppressed.

Calculus of variations is used to minimize Eq. 1 and estimate TSMF vectors. The numerical 

computation of calculus of variations is given in Appendix A. Fig. 5a shows the TSMF 

results mapped to the liver surface, where surface in red contains large TSMF vectors 

corresponding to the attached metastasis (Fig. 5f). Ovarian cancer metastases can thus be 

found by searching for large TSMF vectors.

3.3. Metastasis Detection and Segmentation

Metastasis detection and segmentation consist of seed point determination and TSMF-

constrained GAC (Fig. 5). Seed point determination constructs graphs on organ surface with 

large TSMF vectors and searches for a set of image points inside metastases. They are used 

as seed points for TSMF-constrained GAC to segment metastases. TSMF vectors also play 

the role of dynamical shape prior to constrain the GAC and to reduce inaccurate metastasis 

segmentation.
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3.3.1. Seed Point Determination—The purpose of this step is to find a set of seed 

points inside metastases. Fig. 5 shows a patient with several perihepatic and perisplenic 

ovarian cancer metastases. The surface points with TSMF vector length larger than 10mm 

are first chosen and grouped into a TSMF graph, represented as red regions (Fig. 5b). 

Selected surface points form graph nodes and they are connected if they are adjacent on the 

organ surface. We set 10mm as the decision parameter because we are interested in 

detecting metastases larger than 10mm and TSMF vector length approximately represents 

the organ deformation caused by metastases.

Segmentation of large metastases requires the placement of multiple seed points to 

accurately represent

(4a)

(4b)

(4c)

the metastasis shape. For this reason, we partition the TSMF graph into sub-graphs with 

their areas approximately equal to 100mm2. Colored patches in Fig. 5c show the graph 

partition. Let Pi denote i-th patch and p = (x, y, z) be a point on Pi. Because u(p) measures 

the metastasis-caused shape variance at p and displacing p by u(p)/2 yields a new point 

inside the metastasis, the seed point q from Pi is computed as

(5)

Moreover, the intensity value of q should fall into the metastasis intensity range estimated in 

Eq. 2. Pink spheres in Fig. 5d represent the estimated seed points.

3.3.2. TSMF-Constrained Geodesic Active Contour—We embed seed points into 

our TSMF-constrained GAC to segment metastases. TSMF-constrained GAC augments 

conventional GAC (Caselles et al., 1997) based on the observation that image regions with 

large TSMF vectors approximately represent metastasis shapes (red regions in Fig. 6c). 

Therefore, TSMF can be used as shape constraints to prevent inaccurate metastasis 

segmentation (Fig. 6b) caused by weak edge response of metastasis boundaries. Moreover, 

TSMF constraints are dynamically established and adaptable to the current patient, which is 

a desirable property to handle a wide variety of metastasis shapes.

We start with conventional GAC (Caselles et al., 1997) to derive the mathematical 

formulation of TSMF-constrained GAC. GAC is given by

(6)

where ϕ is a level set function, Ω is the image domain, G(x) = 1/(1 + x2), and the Heaviside 

function H is defined as
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(7)

Conventional GAC forces ϕ to stop at image edges with large gradient magnitudes by 

minimizing Eq. 6.

TSMF shape constraints are represented as two addition terms that are embedded into Eq. 6. 

We include G(∇∥u(p)∥) to drive the level set function towards the boundaries of image 

regions with TSMF vector length larger than 10mm (red regions in Fig. 6c). Fig. 6c reveals 

that their boundaries are in the vicinity of the actual metastasis boundaries, such as a yellow 

curve pointed by a red arrow. Thus, level set propagation controlled by G(r[bardbl]u(p)

[bardbl]) is also robust to the local gradients which are not the actual metastasis boundaries.

We also use a radial basis function to spatially relax the first TSMF shape constraint and 

adjust the level set to stop at the actual metastasis boundaries in the case that metastases are 

large.

(8)

Here, xi is an image point at the yellow curve and τ defines the width of relaxation regions. 

We set τ = 10, which is determined empirically based on the metastasis size in the validation 

dataset. Integrating two shape terms into Eq. 6 yields

(9)

Minimizing Eq. 9 with respect to ϕ generates the following gradient descent formulation.

(10)

To increase the convergence speed of level set propagation, we add a balloon model (Cohen, 

1991) to Eq. 10 to prevent the level set from stopping on a nonsignificant local minimum. 

This term takes the propagation role, and Eq 10 is rewritten as

(11)
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where λ is the weight of this propagation term. In this work, we experimentally set λ = 5. 

Fig. 6d shows the final metastasis segmentation by computing Eq. 11 and inaccurate 

metastasis segmentation is resolved thanks to the TSMF shape constraints.

4. Validation Datasets and Methods

We searched our Radiology Information System for CT scans of patients with known 

ovarian cancer during the period from 01/2008 to 12/2012 and obtained 239 records. We 

manually reviewed all CT images and found 57 women with ovarian cancer metastases. We 

then randomly chose an additional 57 women without metastases from the remaining 172 

records. The validation datasets thus consisted of intravenous contrast-enhanced abdominal 

CT images from 114 women (age range, 17-81 years; mean age, 53±14 years). 

Retrospective analysis of these images was approved by our Institutional Review Board. CT 

images were generated with LightSpeed Ultra and QX/I [GE Health-care], Brilliance64 and 

iCT256 [Philips Healthcare], Definition and Biograph128 [Siemens Healthcare], and 

Aquilion ONE [Toshiba] scanners. The slice thickness ranged from 1mm to 5mm, and the 

in-slice resolution from 0.5mm to 0.98mm. 57 patients had at least one metastasis and the 

maximum number of metastases in one patient was fifteen. The total number of metastases 

was 226 (size range, 0.05-868.95cm3; mean size, 32.984cm3). 195 metastases were 

perihepatic and the remaining 31 were perisplenic. All metastases were manually segmented 

by two research fellows supervised by a board-certified radiologist and considered as the 

reference standard.

We explored two configurations of training and test datasets. One configuration was evenly 

and randomly to separate the validation dataset into the training dataset with 57 patient 

images (26 having at least one metastasis) and the test dataset with the other 57 patient 

images (31 having at least one metastasis). This configuration was only used for the 

comparison between the TSMF and OSP methods discussed in section 5.1.4 because the 

OSP method needs more training images to achieve high detection accuracy. The other 

configuration was to randomly choose six patient images with ovarian cancer metastases to 

compose the training dataset and define the metastasis-likelihood function for the TSMF. 

The remaining 108 patient images were used to formulate the test dataset. The choice of six 

patient images to form the training dataset is discussed in section 5.1.1.

A metastasis detection is considered to be a true positive if its segmentation overlaps that of 

the ground-truth by at least 20% of the volume of the ground truth. Otherwise, it is called 

false positive. To better understand metastasis detection using our TSMF algorithm, we 

experimentally evaluate two key parameters in Eq 1, the number of metastases to define the 

metastasis-likelihood function and the weight of the smoothness constraint term. The 

number of metastases used to define the metastasis-likelihood function is critical because a 

small number fails to describe metastasis appearance adequately while a large number 

requires that more training datasets be annotated, a time-consuming procedure. The weight 

of the smoothness term is important because small weights improve the sensitivity of 

metastasis detection but also increase the number of false positives, while large values can 

filter out false positives but decrease sensitivity. Determining optimized weights is thus 

important to balance the sensitivity and the number of false positives.
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After these two parameters were determined through extensive experiments, we analyzed 

detection accuracy as a function of the metastasis size. We then compared the detection 

accuracy on perihepatic and perisplenic metastases. Finally, we compared TSMF with an 

organ surface partition (OSP) algorithm as the baseline method, which is similar to the 

sliding tangent circle algorithm (Bilello et al., 2004) to exhaustively find peripheral tumors 

on the liver surface. Peripheral liver tumors are similar to the ovarian cancer metastases 

because they are all growing near the liver boundaries. However, the tangent circle 

algorithm assumes that peripheral liver tumors are presented as spherical structures, and 

many other hepatic lesion detection methods (Joshi and Londhe, 2013; Bilello et al., 2004) 

also exploit this assumption. It is invalid in the detection of ovarian cancer metastases 

because ovarian cancer metastases present a wide variety of shapes (Figs. 1a and 1b). In 

addition, we want to point out that peripheral liver tumors are growing inside the liver while 

ovarian cancer metastases are transferred from other organs to the liver surface. Therefore, it 

is improper to directly compare TSMF with hepatic tumor detection algorithms

We study existing peripheral liver lesion detection algorithms (Hong et al., 2000; Bilello et 

al., 2004) that perform the greedy search of tumors on the organ surface, which leads to the 

organ surface partition (OSP) algorithm as the baseline approach. It decomposes the hepatic 

surface into 50 ~ 70 patches and the splenic surface into 15 ~ 25 patches (Fig. 7b). Instead of 

exploring the spherical shape and low intensity texture of hepatic tumors, OSP exploits the 

characteristic texture information of ovarian cancer metastases because their intensity values 

are constrained. The current surface patch is attached by a metastasis if the mean intensity 

value Ir of the adjacent image regions fulfilling (μm)i −(σm)i ≤ Ir ≤ (μm)i +(σm)i, where (μm)i 

and (σm)i are mean and standard deviation of i-th metastasis for defining Gaussian mixture 

model in Eq. 2. If the current surface patch satisfies the intensity condition, we create a set 

of metastasis features on this patch including shape index, average distance difference 

between the patient and reference images, mean and standard deviation of the intensity 

values of the adjacent image regions, local binary pattern (Ojala et al., 1996) and histogram 

of oriented gradients (Dalal and Triggs, 2005). Metastasis features are then imported into a 

SVM classifier trained on a dataset with 57 patient images. The classifier determines the 

final metastasis detections and removes false positives. Here, the SVM classifier uses 

Gaussian radial basis function as the kernel (Chang and Lin, 2011).

The OSP algorithm preserves the main strategy of existing peripheral liver lesion detection 

algorithms (Hong et al., 2000; Bilello et al., 2004) that performs greedy search, and only 

modify the metastasis detection with the characteristic of metastasis intensity values. Thus, 

OSP is a reasonable baseline method to compare with TSMF.

We evaluated metastasis segmentation accuracy by only considering the segmentation of 

true positives. We compared the segmentation results of GAC and TSMF-constrained GAC 

to show the role of dynamical TSMF shape constraints in improving segmentation accuracy. 

Here, GAC also used seed points determined in section 3.3.1 to segment ovarian cancer 

metastases and was assigned with the same iteration number of level set propagation as the 

TSMF-constrained GAC. In our experiments, the segmentation accuracy was measured 

using six metrics defined in liver segmentation (Linguraru et al., 2010). They were volume 

overlap (VO), Dice coefficient (DC), relative absolute volume difference (RA), average 
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symmetric absolute surface distance (ASD), symmetric RMS surface distance (RSD), and 

maximum symmetric absolute surface distance (MSD).

5. Experimental Results

In this section, we report the accuracy of metastasis detection and segmentation. All TSMF 

computations are carried out on a Windows machine with a six-core 2.67 GHz Intel Xeon 

CPU and 24 GB memory executing C/C++ code. The computational time on the detection 

and segmentation of perihepatic ovarian cancer metastases on high-resolution CT images 

(slice thickness less than 2mm) was 11 minutes, and it drops to 5 minutes on low-resolution 

CT images (5mm). The computational time on the perisplenic ovarian cancer metastases on 

high-resolution CT images was 6 minutes and it was 3 minutes on low-resolution CT 

images.

5.1. Detection Accuracy Evaluation

5.1.1. Key parameter selection—This section analyzed the choice of two key 

parameters in TSMF computation, including number of metastases to define the metastasis-

likelihood function and weight of the smoothness constraint term in Eq. 1.

The free-response receiver operating characteristic (FROC) analysis (Hillis et al., 2009) was 

chosen to evaluate the metastasis detection accuracy. Fig. 8 compares the metastasis 

detection accuracy using 1, 6, and 26 metastases to define the metastasis-likelihood function. 

The comparison results indicate that at 2 false positives, the sensitivity of the metastasis 

function using six metastases (red curve) achieves 84% while it is only 44% (green) using 

one metastasis (p < 0.001 reported by JAFROC (Dorfman et al., 1992; Chakraborty, 2006)). 

However, the detection accuracies were comparable after we increased the number of 

metastasis from 6 to 26 (blue). This experiment confirmed that using six metastases to 

define the metastasis-likelihood function was sufficient to achieve high sensitivity while 

preserving a small number of false positives.

The weight α in the smoothness constraint term of Eq. 1 was evaluated in Fig. 9. Although 

setting α equal to 100 or 500 could increase the number of true positives compared with α 

larger than 1000, the number of false positives was also increased. Adjusting α to 1500 and 

2000 reduced false positives with the side effect that actual metastases were also missed. 

Fig. 9 shows that 1000 is the optimum value for α yielding the highest sensitivity for a given 

number of false positives. Thus, we set α equal to 1000 in all our experiments.

5.1.2. Perihepatic and perisplenic ovarian cancer metastasis detection—In this 

section, we compare the detection accuracy on perihepatic and perisplenic ovarian cancer 

metastases (Fig. 10). Because there were a small number of perisplenic ovarian cancer 

metastases and some patients had undergone splenectomy, the FROC curve for splenic 

metastases contains fewer points. The sensitivity of perihepatic metastasis detection was 

higher than perisplenic metastasis detection. The highest sensitivities for perihepatic and 

perisplenic metastasis detection were 86% and 57%, respectively. Both types of metastases 

had few false positives.
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Typical examples of true positive, true negative, false positive, and false negative detections 

are shown in Fig. 11. Fig. 11a shows the true detection of a perihepatic metastasis even 

though its intensity values were similar to the liver parenchyma. The metastasis-likelihood 

function defined from six metastases identified the subtle intensity difference and 

successfully detected the lesion. TSMF also accurately distinguished fluid from metastases 

based on shape index although fluid and metastases can have similar intensity values (Fig. 

11c). The gallbladder is the main source of false positives of perihepatic metastasis detection 

(Fig. 11e) because it has the same intensity levels and location as many metastases and can 

also produce the cup-shaped indentation on the liver surface. It accounts for 61% of the false 

positives in perihepatic metastasis detection. Other false positives are due to soft tissues at 

concave liver regions. Fig. 11g shows a difficult case in which intensity values of the 

metastasis were higher than normal and the metastasis was too small to deform the liver. 

Metastases less than 1cm3 accounted for 90% (15/17) of the false negatives. The 15 false 

negatives occurred in 9 patients.

A true detection of perisplenic ovarian cancer metastasis is shown in Fig. 11b. In Fig. 11d, 

TSMF successfully excluded a kidney lesion that was similar to a metastasis and adjacent to 

the spleen. 90% of false positives in the detection of perisplenic ovarian cancer metastases 

were caused by muscles because they have similar intensity values to metastases and also 

surround part of the spleen (Fig. 11f). Fig. 11h depicts a false negative of a perisplenic 

metastasis because the spleen was inaccurately segmented and this metastasis was not 

attached to the spleen segmentation.

5.1.3. Metastasis volume influence—In the previous experiments, the detection 

accuracy was evaluated on all metastases regardless of volume. This section assesses the 

detection accuracy with respect to the metastasis volume because the volume is related to 

the clinical importance and detectability. In this experiment, the detection is not considered 

as false negative if the metastasis volume is less than a threshold. Fig. 12 shows FROC 

curves by thresholding metastasis volumes. Not surprisingly, at a rate of two false positives 

per patient, the sensitivity improved from 86% to 96% by increasing the threshold from 

0.5cm3 to 20cm3. Note that the sensitivity was 90% when the threshold was 1cm3. In other 

words, our method was robust to detect metastasis larger than approximately 1 cm diameter.

5.1.4. Comparison of OSP and TSMF—This section compares metastasis detection 

results of the TSMF and OSP methods. The total number of perihepatic and perisplenic 

metastases is 109 in the test dataset. For the TSMF method, there were 111 true detections 

(from 95 unique metastases) and 214 false positives. For the OSP method, there were 368 

true postives (85 unique) and 3521 false positives. Fig. 13 shows the comparison results 

between TSMF and OSP on this test dataset. TSMF significantly outperforms OSP (p < 

0.001 reported by JAFROC) because at 2 false positives, the sensitivity of OSP is less than 

17% and TSMF is 87%.

5.2. Evaluation of Segmentation Accuracy

Table 1 shows the comparison results on metastasis segmentation using GAC and TSMF-

constrained GAC. The TSMF-constrained GAC outperformed GAC on all six assessments 
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(p < 0.001). Fig. 14 illustrates metastasis segmentation on four patients using GAC and 

TSMF-constrained GAC methods. From these four examples, we can find that TSMF-

constrained GAC method can improve the metastasis segmentation over the conventional 

GAC because it exploits TSMF shape constraints in the level set propagation. It confirmed 

the findings in Table 1.

6. Discussion

We developed a tumor sensitive matching flow (TSMF) method to address the difficult 

challenges of detection and segmentation of perihepatic and perisplenic ovarian cancer 

metastases. In contrast to spherical hepatic tumors with low intensity values and inside the 

liver, ovarian cancer metastases often present a wide variety of shapes on the liver and 

spleen surfaces and have weak boundaries with these organs. The TSMF method embeds a 

metastasis-likelihood function into the image matching process within a variational 

framework to address these challenges. The metastasis-likelihood function forces TSMF 

vectors to be enlarged if the current image region possibly contains metastases. Otherwise, 

the function suppresses TSMF vectors. Randomly distributed ovarian cancer metastases can 

be detected by searching for large TSMF vectors. Moreover, image regions with large 

TSMF vectors approximately represent metastasis shapes. This is an important visual cue 

that deals with inaccurate segmentation due to weak metastasis boundaries and a wide 

variety of metastasis shapes.

There are two key parameters that control metastasis detection accuracy. One parameter is 

the number of metastases that formulates Gaussian mixture model in Eq. 2 to describe the 

metastasis appearance. An accurate Gaussian mixture model is critical to define the 

metastasis-likelihood function in Eqs. 4a-4c. A small number of metastases is insufficient to 

measure metastasis appearance precisely, while increasing the number demands more data 

annotation. Moreover, a large number of metastases might decrease the sensitivity, as 

observed in Fig. 8 because it adds rare metastases to introduce outliers. Our experiments 

revealed that six metastases are sufficient to define an accurate metastasis-likelihood 

function, which is a significant advantage over the conventional computer-aided diagnosis 

algorithms (Doi, 2007; Tateyama et al., 2011; Xu et al., 2011) since they require a lot of 

training samples. The other parameter is the weight of smoothness constraint term in Eq. 1. 

Small weights leverage the sensitivity of metastasis detection but increase the number of 

false positives, while large values can reduce false positives but decrease the sensitivity. Our 

extensive experiments indicated that 1000 was the optimal value to balance the sensitivity 

and the number of false positives.

We compared the detection accuracy of perihepatic and perisplenic ovarian cancer 

metastases using the estimated key parameters in TSMF computation. The detection 

accuracy of perisplenic metastases is lower than perihepatic metastases (Fig. 10) because of 

inaccurate spleen segmentation and small perisplenic metastases. They are too small to push 

the spleen to deform, and shape index fails to identify such subtle deformation. Similarly, 

TSMF method also missed small perihepatic metastases. Moreover, the number of false 

positives on persplenic metastasis detection is also smaller than the perihepatic metastasis 

detection because 13 patients have undergone splenectomy. Muscle is the primary false 
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positive in the detection of perisplenic ovarian cancer metastases, and gallbladder often 

misleads TSMF in perhepatic metastasis detection because it has the similar intensity values 

to the metastases and also yields a cup shape on the liver surface.

We analyzed the volume influence on the metastasis detection accuracy (Fig. 12). 

Obviously, large metastases are more robustly detected in comparison with small ones 

because they yield large deformation on the organ surface and have the similar intensity 

distributions to the Gaussian mixture model in Eq. 2. TSMF computation also enforces the 

existence of metastases because the smoothness term in Eq. 1 propagates the likelihood of 

metastasis existence on the organ surface. Fig. 12 indicated that the TSMF method achieved 

90% sensitivity with only 2 false positives for metastases larger than 1cm3, a clinically 

important size category.

We also compared the detection accuracy between TSMF and OSP methods. OSP method 

was developed from the existing peripheral liver perihepatic tumor detection algorithms 

(Hong et al., 2000; Joshi and Londhe, 2013; Bilello et al., 2004) that performed the greedy 

search of tumors on the organ surface, except that metastasis intensity features based on 

Gaussian mixture model in Eq. 2 were used to replace spherical shape and low intensity 

values of hepatic tumors to perform metastasis detection. TSMF markedly outperformed 

OSP because TSMF has many desirable properties in detecting ovarian cancer metastases. It 

juxtaposes the roles of image matching and metastasis classification according to the 

metastasis-likelihood function. The image matching process measures the shape variance 

between the current patient organs and atlases, and the metastasis-likelihood function 

evaluates if the current shape variance is caused by metastases. The effectiveness of this 

strategy is demonstrated by the method's sensitivity of 87% at a rate of two false positives 

per patient.

TSMF vectors are also an important cue to guide metastasis segmentation. Image regions 

with large TSMF vectors approximately represent metastasis shapes (Fig. 6c). In contrast to 

conventional shape priors (Chan, 2005; Cremers et al., 2006) that were created beforehand, 

our TSMF shape priors are established on the detection phase and are adaptable to an 

individual patient. Thus, the TSMF shape priors are an efficient means to guide 

segmentation of a wide variety of metastasis shapes. Embedding TSMF shape priors into a 

geodesic active contour significantly improves the accuracy of metastasis segmentation. The 

volume overlap rate of the TSMF-constrained geodesic active contour was markedly greater 

and the average surface distance markedly smaller than those from the conventional 

geodesic active contour. The detection accuracy of TSMF method is slightly better than 

existing hepatic tumor detection approaches (Hong et al., 2000; Joshi and Londhe, 2013; 

Bilello et al., 2004; Zhang et al., 2011) because their results were 87% sensitivity with 2.5 

false positives per patient and TSMF also generated 87% sensitivity but with 2 false 

positives per patient. Moreover, comparing metastasis segmentation with hepatic tumor 

segmentation in the MICCAI challenge (Deng and Du, 2008), TSMF-constrained geodesic 

active contour yielded smaller relative absolute volume difference than the state-of-the-art 

hepatic tumor segmentation method (Stawiaski et al., 2008) (17% vs. 24%), and they have 

comparable average surface distance errors (2.4mm vs. 1.5mm). This result is encouraging 

considering that Stawiaski's approach is interactive while our approach is fully-automatic.

Liu et al. Page 18

Med Image Anal. Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



In the future, we will develop gallbladder atlas and embedding it into our detection 

framework to reduce false positives. We are also planning to detect and segment ovarian 

cancer metastases attached to other organs such as the colon and small bowel. Metastases 

elsewhere in the abdomen and not adjacent to organs are also being studied. Multi-organ 

segmentation (Linguraru et al., 2012a) is a potential approach to extend our TSMF method 

to these applications.

Another important issue is to distinguish fluid from perihepatic ovarian cancer metastases. 

In Fig. 11c, TSMF successfully excluded pleural fluid because the fluid was disconnected 

from the ovarian cancer metastases. In some challenging images, perihepatic fluid is present. 

Perihepatic fluids similar intensity values to some metastases may mislead TSMF to 

consider the fluid as a metastasis. Also, over-segmentation of actual metastases can occur if 

both fluid and metastases are present. Since perihepatic fluid tends to wrap around the liver 

and have large volumes, we are currently studying these two features to eliminate such fluid 

from our detection results.

The TSMF method missed some small metastases, and there is still room for improving 

metastasis segmentation accuracy. Joint detection and segmentation of ovarian cancer 

metastases (Liu et al., 2013) is a potential strategy to deal with this problem. In this strategy, 

accurate metastasis detection provides a precise TSMF shape prior for metastasis 

segmentation, and likewise accurate metastasis segmentation contributes to the metastasis 

detection.

7. Conclusions

We presented a variational framework to accurately detect and segment perihepatic and 

perisplenic ovarian cancer metastases by 1) juxtaposing the roles of metastasis 

classification / image matching to generate a tumor sensitive matching flow, 2) searching for 

image regions with large TSMF vectors to detect ovarian cancer metastases, and 3) 

embedding the detected image regions as the metastasis shape priors into the geodesic active 

contour to segment metastases. These beneficial properties lead our TSMF method to 

efficiently address the inherent challenges of metastasis detection and segmentation, 

including metastases randomly attaching to the liver or spleen, weak metastasis boundaries, 

and a wide variety of metastasis shapes. Validation on a large dataset demonstrated that 

TSMF can accurately detect perihepatic and perisplenic ovarian cancer metastases on 

contrast-enhanced CT images. The accurate detection and segmentation of ovarian cancer 

metastases have the potential to greatly impact clinical diagnosis and treatment on the 

women with ovarian cancer.
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Appendix A. Numerical Computation of Tumor Sensitive Matching Flow

To simplify the description, we first define some abbreviations.
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(A.1)

The Euler-Lagrange equation of Eq. 1 corresponding to x-component is expressed as

(A.

2)

Similar equations can be derived for the y and z components. We treat M(p) as a constant 

value in Eq. A.2 at each image point because 1) derivatives of the piecewise function M(p) 

are void at some image points; 2) M(p) is independent of u and its value is nearly constant at 

each iteration in resolving Eq. A.2; and 3) simplifying M(p) calculation significantly reduces 

the computational cost and complexity while preserving the accuracy of TSMF vectors. Our 

experimental results in section 5 also confirmed that such simplification is reasonable in 

TSMF computation. However, Eq. A.2 is still highly non-linear and non-convex. Two 

numerical strategies, multi-scale analysis and sequential linearization, are employed to 

resolve these two issues.

Multi-scale analysis is an efficient approach to handle the non-convexity of Eq. A.2 because 

the solution in the coarse scale can better approximate the global minimum. Three-level 

volume pyramids are constructed to create multi-scale space on patient and reference images 

as well as their distance fields. Sampling rate is 0.75 to ensure the smooth transition between 

different scales. Sequential linearization is another numerical strategy to remove non-

linearity in Eq. A.2. It is represented as two nested fixed-point iterations. Assuming k is the 

pyramid level and l is the outer iteration index, Eq. A.2 is converted to Eq. A.3

However, Eq. A.3 still remains nonlinear because , , and  are related to the 

estimated variables , , and . The inner iteration is thus introduced to decouple 

such correlation. Assuming m is the inner iteration index, we derive Eq. A.4 from Eq. A.3. 

We can observe that , , and  are decoupled with , , and 

. Eq. A.4 is thus converted into a linear equation. We can derive the similar 

equations for the y and z components. Finally, we obtain a massive linear equation with 

three unknown TSMF vector components at each image point. Successive over-relaxation 

(Young, 1999) is used to solve this large linear system. After two nested iterations exceed 

predefined values at the current pyramid level, the solutions are used as the initialization for 

the next pyramid level through bilinear interpolation. TSMF field is generated after the 

computation is accomplished at the third, finest pyramid level.
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Highlights

• Detect and segment ovarian cancer metastases outside the liver and spleen.

• Require a few patient images to formulate the training dataset.

• Achieve higher detection accuracy than existing approaches.

• Create dynamic shape priors to segment metastases with a wide variety of 

shapes.

• Embed shape priors into the level set framework for metastasis segmentation.
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Figure 1. 
Challenges of detection and segmentation of ovarian cancer metastases (red arrows). (a) 

Random distribution in the abdomen, (a, b) varying metastasis shapes, e.g., elongated in (b) 

and spherical in (a), (c) weak boundaries of low contrast between metastases and 

surrounding tissues (yellow arrow), and (d) imaging artifacts caused by metallic streaks 

(blue arrow).
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Figure 2. 
Tumor sensitive matching flow (TSMF) for the detection and segmentation of ovarian 

cancer metastases. (a) A metastasis (red) attached to the liver (cyan), (b) the liver atlas 

(violet), and (c) TSMF results, where the magnitudes of flow vectors are mapped into the 

organ surface and blue to red represents small to large shape variance. The fundamental idea 

of the TSMF computation is to only highlight shape variance caused by metastases between 

the patient organ and the atlas (pointed by a red arrow in (b)), while all other shape variance 

due to individual difference (marked by yellow arrows) are suppressed. Metastases are thus 

be identified by searching for large TSMF vectors (red regions in (c)).
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Figure 3. 
Pipeline of tumor sensitive matching flow computation for detection and segmentation of 

ovarian cancer metastases. It consists of three main steps: shape descriptor construction (red 

rectangle), TSMF computation (blue), and metastasis detection and segmentation (green).
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Figure 4. 
Metastasis intensity and shape properties for the definition of the metastasis-likelihood 

function. (a) A metastasis annotated by a yellow arrow, which is adjacent to the liver, (b) 

shape index distribution over the liver surface where blue to red means small to large values 

and the liver surface adjacent to the metastasis is also indicated by a yellow arrow, and (c) 

the intensity histograms of metastasis, liver, and spleen.
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Figure 5. 
Process of ovarian cancer metastasis detection and segmentation. (a) TSMF results, (b) 

TSMF graph (pink) construction by connecting surface points with large TSMF vectors, (c) 

Graph patches (colored) by partitioning TSMF graph into many sub-graphs, (d) seed point 

(spheres), (e) metastasis segmentation by embedding seed points into TSMF-constrained 

GAC where yellow objects are false positives, and (f) Ground-truth metastases.
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Figure 6. 
TSMF shape constraints for metastasis segmentation. (a) A metastasis marked by red curves 

(ground truth); (b) inaccurate metastasis segmentation using conventional GAC; (c) Overlay 

of TSMF vectors on the original image, where image regions in red contain large TSMF 

vectors and regions in blue have small vectors; (d) metastasis segmentation using TSMF-

constrained GAC (red regions in (c)).
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Figure 7. 
Organ surface partition method to detect ovarian cancer metastases and used as the baseline 

method to compare against TSMF. (a) Liver (cyan) and spleen (brown), (b) surface partition, 

where each colored component represents a partition.
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Figure 8. 
Comparison of FROC curves of metastasis detection using 1, 6, and 26 metastases to define 

the metastasis-likelihood function.
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Figure 9. 
Comparison of FROC curves of metastasis detection by adjusting the weight α of 

smoothness constraint term in Eq. 1.
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Figure 10. 
Comparison of FROC curves of detection of perihepatic and perisplenic ovarian cancer 

metastasis.
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Figure 11. 
Typical examples of true positive (indicated by green rectangles), true negative (green 

arrows), false positive (red rectangles), and false negative (red arrows) on the detection of 

perihepatic ovarian metastases (left column) and perisplenic metastases (right column).

Liu et al. Page 37

Med Image Anal. Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 12. 
Comparison of FROC curves of metastasis detection with respect to metastasis volume.
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Figure 13. 
Comparison of FROC curves of metastasis detection using TSMF and OSP methods.
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Figure 14. 
Comparison of metastasis segmentation using GAC and TSMF-constrained GAC, where 

livers are visualized in cyan, metastases in red, spleen in brown and false positives in 

yellow. Metastasis ground-truths were given in the first column, and TSMF results were in 

the second column. Metastasis segmentations using GAC and TSMF-constrained GAC were 

shown in the third and fourth columns. Each row corresponds to a patient. The first patient 

at the top row was scanned with 5mm slice thickness. GAC caused metastasis over-

segmentation (white arrow in (c)). Thanks to TSMF accurately detecting metastasis shapes 

in (b), the over-segmentation was relieved in (d). Metastasis clustering was observed in (e), 

and TSMF detected all these metastases. TSMF-constrained GAC also addressed over-

segmentation (white arrow in (g)) generated by GAC. Although one metastasis less than 
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10mm in size (blue circles) was missed in the third patient, TSMF successfully detected all 

other metastases and TSMF-constrained GAC also reduced metastasis over-segmentation 

(white arrow in (k)). In the last patient, TSMF identified metastases adherent to both spleen 

and liver with one false positive on the spleen. TSMF-constrained GAC was again superior 

to GAC in dealing with over-segmentation (white arrow in (o)).
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Table 1

Comparison of segmentation accuracy using GAC and TSMF-constrained GAC. Wilcoxon signed rank test 

revealed that TSMF-constrained GAC significantly outperformed the conventional GAC based on six 

evaluation metrics (p < 0.001).

Meth. VO (%) DC (%) RA (%) ASD (mm) RSD (mm) MSD (mm)

GAC 42±26 58±29 25±13 7.0±6.0 10.2±6.9 39.6±13.9

TSMF-GAC 73±9 85±6 17±10 2.4±1.2 4.0±2.0 16.0±9.2
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