Skip to main content
. Author manuscript; available in PMC: 2016 Mar 1.
Published in final edited form as: J Comput Phys. 2015 Mar 1;284:668–686. doi: 10.1016/j.jcp.2015.01.004

Table 3.

Overview of the multiple time-stepping algorithms for the multiscale model

vpvp + λp · (Δt/m) · FP DPD
 ▶  For l1 = 0 … K1 − 1 DPD-CGMD
 ▶  set δt1 ≡ Δt/K1 DPD-CGMD
 ▶ vmvm + λm · (δt1/m) · FM DPD-CGMD
  ▶   For l2 = 0 … K2 − 1 CGMD-NB
  ▶   set δt2δt1/K2 = Δt/(K1 · K2) CGMD-NB
  ▶   vnvn + (δt2/2m) · FN CGMD-NB
   ▶    For l3 = 0 … K3 − 1 CGMD-BD
   ▶    set δtδt3 = δt2/K3 = Δt/(K1 · K2 · K3) CGMD-BD
   ▶    vbvb + (δt/2m) · FB CGMD-BD
   ▶    rr + δt · v All Particles
   ▶    Communication of positions and velocities.
   ▶    compute FB(r) CGMD-BD
   ▶    Communication of forces.
   ▶    vbvb + (δt/2m) · FB CGMD-BD
  ▶   compute FN(r) CGMD-NB
  ▶   Communication of forces.
  ▶   vnvn + (δt2/2m) · FN CGMD-NB
 ▶  compute M(r, v) DPD-CGMD
 ▶ Communication of forces.
 ▶ vmvm + (δt1/2m) · (FM + M) DPD-CGMD
 ▶ FMM DPD-CGMD
compute P(r, v) DPD
Communication of forces.
Add external forces to the viscous flow if any. Add Forces to flow
vpvp + (Δt/2m) · (FP + P) DPD
FPP DPD