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Abstract

The pharmacokinetic and pharmacodynamic disciplines address pharmacological traits, including 

efficacy and adverse events. Pharmacogenomics studies have identified pervasive genetic effects 

on treatment outcomes, resulting in the development of genetic biomarkers for optimization of 

drug therapy. Pharmacogenomics-based tests are already being applied in clinical decision 

making. However, despite substantial progress in identifying the genetic etiology of 

pharmacological response, current biomarker panels still largely rely on single gene tests with a 

large portion of the genetic effects remaining to be discovered. Future research must account for 

the combined effects of multiple genetic variants, incorporate pathway-based approaches, explore 

gene-gene interactions and nonprotein coding functional genetic variants, extend studies across 

ancestral populations, and prioritize laboratory characterization of molecular mechanisms. 

Because genetic factors can play a key role in drug response, accurate biomarker tests capturing 
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the main genetic factors determining treatment outcomes have substantial potential for improving 

individual clinical care.
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genetic architecture; genomics; heritability; linear mixed modeling; pharmacogenomics; polygenic 
architecture; polygenic modeling

The NIH has envisioned translation of the detailed information collected about the human 

genome into improvements in human health and well being [1]. Pharmacogenomics (PGx), 

the study of how genetic architecture influences pharmacological traits and outcomes, 

provides immediate applications for directing clinical decision making. Pharmacogenomic 

information can aid choices about selecting pharmacological treatments, optimal time 

courses and drug dosage on the basis of a patients' genetic architecture.

Interpatient variability manifests itself in different ways for pharmacological traits, 

described quantitatively by pharmacokinetics (PK) and pharmacodynamics (PD). 

Pharmacological traits include efficacy, adverse events and the balance between efficacy 

and toxicity, defining the therapeutic ‘window.’ Further definitions of these terms are 

presented in Box 1. By connecting genetic variation to measurable interpatient variability, a 

course of action can be defined on an individual basis.

Investigating the genetic architecture of PGx traits can be pursued in multiple ways, and 

each of the approaches taken has advantages and limitations, discussed further in this 

review. PGx studies typically reveal SNP biomarkers that link genetic variation to treatment 

outcomes. Elucidating the underlying molecular genetic mechanism underlying the 

association between genetic variants and pharmacological traits is a major goal in the PGx 

field. In contrast, genome-wide association studies (GWAS) of complex diseases have 

yielded numerous variants with significant associations, but for a vast majority of these 

results, the causative variants and mechanisms remain unknown [6]. In addition, 

pharmacogenomic variants tend to exert stronger effects on drug response phenotypes than 

those discovered for complex disorders – perhaps because a relatively limited number of 

genes influence PK and PD traits. Moreover, drugs are targeted to specific pathways thought 

to be involved in complex disease phenotypes, thereby narrowing the number of candidate 

genes, with each displaying a proportionally larger effect size. We assume here that complex 

disorders such as cardiovascular diseases and cancer represent a collection of disease 

subtypes each with similar symptoms – where drug therapy would typically target a specific 

subtype.

A series of limitations and challenges confront the field of PGx. One current limitation is the 

wide use of single common-variant/outcome trait association testing. Alternative modeling 

methodologies and strategies that incorporate multiple genetic markers, as well as the 

inclusion of lower-frequency variants, may prove effective for enhancing PGx trait 

prediction. A challenge for PGx studies includes the difficulty of estimating the heritability 

of PGx traits, since it is untenable to administer medications to unaffected individuals. 

Attaining adequate statistical power presents a challenge when faced with the frequently 
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small sample size in PGx studies, especially for adverse drug reaction studies. Effective 

biomarker identification has also remained a challenge, with potential biomarkers that have 

not shown clinical efficacy [7,8], and important work yet to be done understanding the 

biology underlying effective biomarkers [8]. In addition, the PGx field needs to broaden 

investigations of PGx traits across samples of diverse ancestry/race/ethnicity, to derive 

relevant actionable information for clinicians. Finally, ‘risk’ is difficult to define for PGx 

traits, as metrics for drug efficacy can be difficult to ascertain when compared with the 

probability (rate) of risk of a common complex disease.

Herein, we describe the current understanding of the genetic architecture of PGx traits. We 

discuss in detail some of the aforementioned challenges and limitations while also pointing 

out opportunities and future directions for the field of PGx. These include new methods 

development such as polygenic modeling, pathway analyses, and systems biology 

approaches for the development of further robust biomarkers, all with the goal of 

discovering the etiology underlying interindividual variations in drug response, and 

designing robust biomarker panels predictive of treatment outcomes.

What have we learned?

Heritability of PGx traits: challenges & successes

The rationale for PGx is the underlying assumption that genetic variation plays a substantial 

role in pharmacological outcome. The heritability of a PGx trait should be measurable if 

variant transmission from parent to offspring is the basis of the genetic architecture 

influencing PGx traits. While determining the heritability provides the rationale for a PGx 

study, estimating the heritability of PGx traits is nontrivial.

Defining the heritability of PGx traits encounters hurdles distinct from those found in the 

analysis of complex disorders. By definition, any drug response trait represents a gene–

environment interaction, where the drug is only one component of multiple environmental 

exposures, and multiple genes may contribute to the PGx response. Moreover, each drug, 

even closely related ones such as the statins, has different degrees of heritability and must be 

studied individually. Also, drug effects are highly dependent on the dosage, and hence, 

genetic factors differ with drug dose, as shown for the impact of SLCO1B1 variants on 

simvastatin's muscle toxicity, only detectable when high doses are needed to control 

cholesterol levels [9]. Lastly, drug therapy commonly involves multiple drugs. As a result, 

predictive biomarker tests of the future will have to evolve to consider complex gene–gene–

environment interactions.

Few drugs can be used in a familial setting to monitor the variability of drug response as 

most family members will not have a condition warranting treatment. Drug treatment of a 

group of individuals without a need for treatment is limited for safety and ethical reasons. In 

addition, sample size is often low for PGx studies, especially when investigating adverse 

events. Access to large numbers of related individuals taking a specific drug is limited to 

communities that have a common need for a particular drug, such as lipid lowering 

treatments [10]. This is distinct from estimating heritability for complex diseases or 
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outcomes where twin and family studies are facilitated, even when trait complexity can 

present challenges for heritability estimation.

A few examples of familial studies of drug response clearly indicate the heritability of some 

PGx traits, underscoring considerable influence of genetic factors; these are presented in 

Table 1. For example, dicumarol was monitored in the plasma for a group of identical and 

fraternal twins [11], revealing little difference in the variability of dicumarol half-life in 

plasma response between identical twins, minor differences between fraternal twins and 

wide differences between nonrelated subjects demonstrating a significant heritable 

component. Investigating heritability of PGx traits across communities of related individuals 

where a specific drug is commonly administered is another way to determine heritability of 

certain PGx traits. For instance, a study of the heritability of platelet response, measured by 

ex vivo platelet aggregometry, involved the administration of clopidogrel to 429 Amish 

persons and revealed the platelet response to be highly heritable [10].

To circumvent limitations of familial studies for PGx traits, estimation of heritability in an 

ex vivo manner has been successful. This approach has been applied for measuring drug 

cytotoxicity within familial-derived lymphoblastoid cell lines (LCL) [13]. Further work with 

the LCL approach has lead to a detailed understanding of effective LCL study design, 

enabling identification of loci related to variability of PGx traits which in turn guide studies 

in humans and model organisms. For example, heritability of chemotherapeutic cisplatin-

induced cytotoxicity has been estimated at approximately 57% through the LCL approach, 

with evidence for multiple causative variants [14]. Table 2 presents a series of heritability 

results from cell line experiments. Detailed work has characterized factors that confound 

interpretation of these experiments, such as the portion of the genetic variation of drug-

induced cytotoxicity accounted for by heritability of variation in cellular growth rate [13]. In 

addition, cellular assays are amenable to high-throughput testing of multiple drugs. For 

example, one study investigated the cytotoxic effect of 29 chemotherapeutic agents on 125 

LCL from 14 extended families, and found a range of heritabilities from <15% 

(gemcitabine) to >60% (epirubicin) [15].

Furthermore, HapMap cell lines from multiple ancestries can be used in these cellular assay 

based studies to represent multiple ancestries, allowing for characterization of the 

relationship between PGx traits across ancestry groups. For example, an exploratory analysis 

used HapMap cells to investigate genetic variants and their functional consequences for the 

enzyme deoxycytidine kinase (DCK) in two ancestries, European and African (Yoruba) 

[18]. DCK is a rate-limiting enzyme in the activation of nucleoside analogs. Cytarabine (ara-

C), a chemotherapeutic agent commonly used in in acute myeloid leukemia, is one such 

nucleoside analog. DCK activity was lower for subjects heterozygous for coding changes 

compared with homozygous subjects, and DCK activity in general was higher in the African 

cell lines when compared with the European cell lines.

Another approach available for determining the genetic component influencing PGx traits 

involves Repeated Drug Administration (RDA). In this method, a drug is administered 

multiple times to unrelated individuals, and the variability in the PGx trait of interest 

between and within individuals is compared [19]. RDA information can be used to calculate 
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the Relative Genetic Component (rGC), an estimate on a scale of 0 to 1 of the genetic 

component of a PK or PD parameter. This measurement has also been referred to as 

‘intraclass correlation’ or ICC [20]. The rGC measurement is calculated through the 

following formula: (variability between individuals - variability within individuals)/

variability between individuals. The measurement can be interpreted as a rough estimate of 

heritability, where a trait with high rGC will likely have high heritability. The rGC 

measurement can also be calculated from monozygotic twin pairs, when dizygotic twins are 

not available [19]. For example, the genetic component of variation in renal clearance of 

amoxicillin, ampicillin, metformin, terodiline, digoxin and iohexol, was investigated using 

this approach [21]. Results from these rGC based studies are summarized in Table 3. 

Limitations of this approach include the high variability of PGx traits over limited time 

periods even in the absence of genetic factors, potentially leading to large error estimates.

The PGx landscape: drug efficacy & adverse events

Among the many PGx success stories is the use of genetic information to facilitate 

prescription of optimal warfarin dosage levels to prevent cardioembolic stroke, myocardial 

infarction and venous thrombosis as well as prevent adverse events. Warfarin is widely 

prescribed after placing arterial stents or after myocardial infarction. However, warfarin 

causes serious side effects including hemorrhage, especially during drug initiation when 

patients are titrated to the optimal dosage level [33,34]. Variants in CYP2C9 influence the 

PK [35] and VKORC1 variants influence the PD of warfarin [36–39]. It is noteworthy that 

the two-gene biomarker test for warfarin dosing still represents an exception; most other 

genetic biomarker PGx tests only include one gene, and the identification of multigene 

robust biomarkers remains an important area for expansion within PGx research. An 

algorithm for estimating individualized warfarin dosages was defined using clinical and PGx 

data [40]. As a result, the FDA updated the label for warfarin, detailing the use of 

pharmacogenetic testing for clinical decision making [33]. Recent studies have evaluated 

genotypic bio markers for warfarin dosing with different conclusions; one study indicated 

genotype-guided dosing of warfarin was ineffective when compared with dosing without 

genotypic information [41]. A separate study indicated genotype-guided dosing was 

associated with a patients being within the therapeutic range for a greater period of time 

when compared with the standard initiation of warfarin [42].

In another example, clopidogrel is prescribed to prevent atherothrombotic events after 

myocardial infarction but exhibits notable variability in successfully preventing further 

cardiovascular events. This has at least in part been attributed to genetically determined 

variation in the drug metabolizing enzyme CYP2C19, largely responsible for converting 

clopidogrel to its active metabolite. The most common loss-of-function allele is CYP2C19*2 

(rs4244285), associated with increased risk of cardiovascular events [43]. Indeed the 

CYP2C19*2 variant is considered a major determinant of prognosis for patients <45 years of 

age on clopidogrel treatment after myocardial infarction [44].

While the list of PGx traits continues to grow, translating the complex and sometimes 

conflicting research results from PGx to clinical action requires accessible information that 

is updated as new findings come to light. FDA labels are already being modified in response 
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to emerging PGx findings, listed here [45]. However, FDA label changes are only one way 

to provide information to clinicians for implementing PGx results in treatment decisions. 

The Clinical Pharmacogenetics Implementation Consortium (CPIC) [46], the Royal Dutch 

Association for the Advancement of Pharmacy (DPWG) [47] and other professional medical 

societies, have also been publishing pharmacogenetic dosing guidelines for an increasing 

number of drugs [48].

CPIC in particular has carefully reviewed the criteria for translation of PGx traits, and as a 

result, has developed a framework for identifying key evidence justifying clinical 

implementation. Published CPIC guidelines target specific gene/drug pairs (Table 4), 

reviewing the existing research for each gene/drug pair [49]. In addition, CPIC provides a 

standardized web-interface of gene/drug pair summary information, including outcome 

phenotype based on genotype, dosing recommendations and allele frequency differences and 

impact of specific variants across distinct ancestry. CPIC continues to review ongoing 

research on gene/drug pairs to determine whether the existing information needs updating or 

new gene–drug pairs can be recommended for clinical use.

The effect size of genetic variants affecting PGx traits tends to exceed that of SNPs derived 

from GWAS of complex human disorders. In Figure 1, we illustrate this trend by comparing 

the odds ratios for efficacy and toxicity related PGx results with those from the NHGRI 

GWAS catalog, where the phenotypic outcome covers a range of non-PGx complex traits 

[65]. Figure 1 displays larger relative strength of effect size for PGx traits compared with the 

range of effect sizes observed with complex-trait GWAS. This observation is consistent with 

our expectation that PGx variants affect targeted subsets of genes and pathways; however, 

ascertainment bias cannot be excluded resulting from the different methods used for 

discovery of the genetic variants.

Functional role of genomic architecture in PGx traits

The PGx field faces challenges in understanding the mechanistic role of genomic variation 

in PGx traits. Much of the focus of interpretation of the relationship between genetic 

variability and outcome for both complex disease and PGx has been centered on protein-

coding regions. In PGx studies there has been a particular focus on candidate gene 

approaches targeting Absorption, Distribution, Metabolism and Execretion (ADME) genes 

in addition to GWAS. This makes particular sense for PGx traits, as genetic variation can 

have an impact on the protein structure of drug-metabolizing enzymes resulting in changes 

in enzymatic activity. Furthermore, there are known important PK pathways where the 

impact of genetic variation has been demonstrated on a protein-coding modification level. 

One example is CYP2D6, an enzyme involved in the metabolism of up to 25% of clinical 

drugs, where nonsynonomous variants can result in enzymatic changes and subsequent 

changes in catalytic activity [66]. Many of these very important pharmacogenes (VIP) are 

summarized in the Pharmacogenomics Knowledge Base (PharmGKB) [67]. However, 

GWAS and now full-genome sequencing have identified many biomarkers that do not cause 

functional protein-coding modification, or are located in genes whose role in drug 

disposition, response or toxicity was previously not well characterized. For example, a distal 

enhancer variant >100 kb downstream of the coding region of CYP2D6 strongly increases 

Chhibber et al. Page 6

Pharmacogenomics. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



gene expression in the liver, accounting for cases of ultra rapid metabolism [68]. Likewise, 

in a genome wide association study of flucloxacillin-induced liver injury, a novel association 

between ST6GAL1, an enzyme with a possible role in B-cell immune response, and the drug 

induced liver toxicity was identified [69]. In some cases, there are genetic variants that 

account for substantial outcome variability, and are already used as a clinical biomarker, but 

we have a more limited understanding of the impact of that genetic factor, such as the 

functional mechanisms of HLA variants and drug response variability [70,71].

Resolving the mechanistic etiology of the impact of genetic variation on PGx traits is a 

critical focus for future PGx studies. Exploration of the function of nonprotein coding 

genetic regions will be essential, including regulatory regions and noncoding RNA [72]. 

Regulatory variants may account for a large portion of genetic variability, and should be 

incorporated into analyses as knowledge of the functional impact of genetic variation on 

genetic enhancers, promoters and gene expression is accrued and shared through projects 

such as ENCODE and related databases [73–76].

Beyond PGx GWAS: polygenic analyses

New methodologies will continue to drive advances in the field of PGx. The majority of 

PGx results have arisen from investigation of the association between single, common, 

genetic variants and pharmacological outcome. As found with GWAS for common complex 

traits [6], this approach may have varied or limited success in future studies, as the genetic 

architecture of any trait can be complex. On a biological level, a variety of potential genetic 

mechanisms influencing PGx traits fail to be captured when investigating only the 

relationship between single, common, genetic-variants and outcomes. Thus, we need to 

diversify the methodologies being used to better define polygenic traits.

One alternate approach considers polygenic genetic architecture, or the contribution of 

multiple common SNPs to phenotypic variance in aggregate. Two methods have already 

been used for a variety of complex outcomes for non-PGx traits: mixed linear modeling 

(MLM) and polygenic modeling. Both methods test a polygenic model for the relationship 

between multiple SNPs and outcome, as illustrated in Figure 2. MLM estimates the additive 

genetic variance under a mixed linear model with a random effect representing the polygenic 

component of trait variation. The software tool GCTA (Genome-wide Complex Trait 

Analysis) has been developed for use of MLM in estimation of the proportion of phenotypic 

variance accounted for by genome-wide association genotypic data [77]. The MLM/GCTA 

approach has been used successfully for identifying the collective contribution of GWAS-

polymorphisms to traits including height [78], Crohn's disease, bipolar disorder and Type 1 

diabetes [79] and other complex outcomes [80,81].

Polygenic modeling develops an additive polygenic risk score for a given trait based on a 

group of SNPs filtered by a GWAS-based p-value threshold in a discovery sample set. The 

polygenic risk score is then tested in an independent set of samples. This approach has been 

successfully used to detect the contribution of multiple variants with small effects to the 

heritability of diseases/traits/outcomes such as schizophrenia [82], multiple sclerosis [83], 

height [84], body mass index [85] and rheumatoid arthritis [86]. Polygenic modeling 

analyses for complex traits yield results consistent with simulated genetic models in which 
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hundreds of associated loci harbor common causal variants and a smaller number of loci 

harbor multiple rare causal variants [86]. The heritability estimates derived from these 

polygenic approaches have been consistent with previously reported estimates for these 

complex traits. MLM and polygenic modeling methods are now being applied to PGx data. 

MLM/GCTA analyses have been used to investigate asthma PGx traits [87], and paclitaxel-

induced sensory peripheral neuropathy [88].

Paclitaxel is a chemotherapeutic agent commonly prescribed to treat carcinomas of the 

breast, ovaries, lung, head and neck. Peripheral neuropathy is one of the most common 

toxicities with paclitaxel treatment, and occurs in a substantial subset of patients. Known 

causes of peripheral neuropathy do not completely explain the incidence of toxicity amongst 

patients treated with paclitaxel, suggesting a genetic basis for susceptibility to the toxicity. 

Small candidate gene studies have had mixed results identifying variants related to 

variability paclitaxel-induced peripheral neuropathy [4,89]. One study reports a high risk 

odds ratio (OR: 19.1) for paclitaxel neurotoxicity associated with CYP3A4*22 [90], as a 

result of reduced metabolic activity of the *22 allele [91], but this result requires replication 

(CYP3A4*22 is not on earlier GWAS panels and cannot be readily imputed). GWAS for this 

PGx trait have identified some candidate SNPs, but replication has been inconsistent [2,92].

Chhibber et al. (2014) [88] investigated a polygenic etiology of paclitaxel-induced 

neuropathy. They estimated the variance explained by common SNPs (MAF >1%) for two 

outcomes: the maximum grade of sensory peripheral neuropathy, and the dose at first 

instance of peripheral neuropathy. They investigated the variance explained by all autosomal 

SNPs, SNPs selected based on genomic location, and SNPs in gene sets selected based on 

prior knowledge regarding possible mechanisms of the pathogenesis of paclitaxel-induced 

peripheral neuropathy using the GCTA software tool. They found whole genome estimates 

of heritability were not significant; however, using a pathway-based approach for filtering 

SNPs yielded significant results. Specifically, the Axonogenesis GO Term set (GO: 

0007409) had significant estimates of heritability close to 20%, suggesting a portion of the 

heritability of paclitaxel-induced neuropathy is driven by genes involved in the regulation of 

axon extension. These results show both the utility of polygenic approaches for PGx traits, 

as well as the utility of exploring pathway-based expert knowledge filtering of SNPs before 

investigating polygenic architecture.

McGeachie et al. (2013) estimated the heritability of bronchodilator response (∼30%), 

airway hyper-responsiveness (∼50%) and asthma liability (∼61%) due to SNPs in aggregate 

using the MLM/GCTA approach [87]. Linkage studies have yielded comparable heritability 

estimates for both bronchodilator response (∼12–40%) and airway responsiveness (∼67%) 

[20,93,94], supporting the validity of the polygenic modeling approach. In addition, the 

estimate obtained for the heritability of asthma corresponds to published asthma heritability 

from twin studies ranging from 70 to 90% [95]. With polygenic approaches, the total 

variance explained by a series of alleles should approach the heritability estimates by other 

methods, unless there are nonadditive mechanisms or causal alleles are not well tagged in 

the GWAS SNP panels. This study indicates polygenic modeling can provide heritability 

estimates within the range of heritability measured in familial studies. Therefore, MLM/
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GCTA are suitable for providing narrow-sense heritability estimates for PGx traits where 

family or other approaches are not possible for estimating heritability.

MLM/GCTA methods were largely developed for GWAS data of complex traits, and at this 

point, most GWAS for non-PGx traits have very large sample size. With PGx traits, low 

sample size is common and this can limit the utility of polygenic approaches unless 

strategies are implemented to increase sample size, such as multi-institution collaborations 

to combine datasets. In addition, all methods have expectations of the type of phenotype that 

will be used, implicit in the development of the method. Pharmacological measurements and 

outcome measures can be complex, such as ordinal variables or survival times subject to 

censoring, to which current polygenic models can be difficult to apply. Despite these 

limitations, polygenic analyses are showing utility in providing an additional tool for 

seeking information about the relationship between genetic architecture and PGx traits and 

estimates of heritability of these traits.

Further limitations of MLM/GCTA methods include the underlying assumptions that 

genotype effects are predominantly additive, thereby limiting assessment of the ‘mutational 

burden’ as a measure of genetic influence on a trait, including response to therapy. For 

example, this approach ignores the pervasive influence of epistatic gene–gene interactions, 

where the effect of one variant is contingent on the presence of another variant. Also, while 

this approach may yield an estimate of the trait's heritability, it remains to be determined 

whether mutational load of many variants can serve as clinical biomarker panels to guide 

therapeutic decision.

Future methods

In addition to polygenic analyses, other approaches may provide keys to elucidating the 

etiology of PGx traits. Different predictive models based on genetic architecture may be 

necessary to explain many PGx traits that remain to be elucidated. These models may not 

include loci of large effect, and some of these models may not be additive and fail 

assumptions of linear regression. Novel approaches are being introduced and refined at a 

fast rate, and these may emerge as key tools for exposing further the genetic architecture 

under lying PGx traits. New technologies for characterizing the genome are also emerging. 

These technologies include large-scale high-throughput sequencing to detect comprehensive 

genetic variation data including low-frequency variants [96], genetic and genomic variation 

such as copy-number variants, new gene expression technologies and methods to detect the 

complex epigenetic landscape of the human genome. One can argue that drug therapy ranks 

among those environmental stimuli that alter the epigenetic chromatin landscape, thereby 

adding another dimension to PGx. Novel analysis methods include pathway [97] and prior 

knowledge based approaches [98], rare variant analyses [99,100] and interaction studies 

[101]. Integration of these diverse large-scale datasets has the potential for driving PGx 

discovery and clinical applications.

Pathway approaches are becoming more common, taking advantage of prior knowledge 

previously obtained in molecular and cellular biology studies. Diverse databases cataloging 

the results of countless PGx studies include the PharmGKB database mentioned earlier. In 

addition, newly developed tools allow users to tap simultaneously into multiple database 

Chhibber et al. Page 9

Pharmacogenomics. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



sources for pathway based analyses, such as Biofilter [102–104] and PARIS [102]. 

Furthermore, as mentioned, pathway based approaches can serve as ‘input’ for polygenic 

analyses, reducing the search space for variables by collapsing multiple genes into groups 

[88].

Methods are now emerging that enable exploring rare-variant data, usually defined as SNPs 

with allele frequencies <0.01, data of greater abundance with comprehensive sequencing 

data becoming available. The impact of rare variants on PGx traits are just beginning to be 

explored. Examples of already discovered rare-variants for PGx traits include rare variants 

found within the SLCO1B1 gene, where haplotypes have been associated with reduced 

methotrexate clearance during treatment of childhood acute lymphoblastic leukemia. 

SLC01B1 variants accounted for 10.7% of the population variability in clearance. Of those 

variants, common nonsynonymous variants contributed the most to variability, but rare 

nonsynonymous variants contributed to 1.9% of total variation in clearance [105]. This 

example illustrates the promise of searching for rare variants but also cautions against 

optimistic expectations regarding clinical utility. In this case, the rare variants contribute a 

relatively small portion to the variability attributable to SLCO1B1, and for clinical utility in 

and an individual patient, the SLCO1B1 phasing is typically unknown, adding uncertainty to 

any clinical recommendations.

Rare-variant collapsing strategies have now been developed for assessing their influence on 

traits, as the power for detecting the relationship between single low-frequency variants is 

limited. Collapsing approaches provide a way to identify specific patterns of genetic 

variation predictive of outcome variation. Several collapsing methods have been published 

in the past 5 years [106–114]. An example of a novel collapsing strategy is BioBin [115–

117], a low-frequency variant collapsing method that considers the cumulative effect of rare 

variants within genetic features chosen by the users. These features can include genes but 

can also be pathways, or other biologically based criteria such as evolutionarily conserved 

regions.

The role of epistasis in PGx traits

One of the reasons for the popularity of the GWAS and candidate gene approach is the 

simplicity of the regressive model for interpretation, and clear guidelines for ascertainment 

of significance and multiple hypothesis testing corrections. However, a variety of tools exist 

for the development of more complex predictive models beyond single-variant/outcome 

association testing for common variants. For example, step-wise regression can be used to 

develop models with additional terms, instead of using single variant data. More complex 

models may show better outcome prediction, such as gene-by-gene (GxG) interaction 

models.

The overall role of dynamic GxG interactions remains a matter of debate. One can argue that 

a substantial portion of the ‘missing heritability’ of complex traits is accounted for by 

epistasis [118], but few studies document this in PGx. It may require identifying the 

interplay of more than one genetic variant to adequately predict the outcome of drug 

administration [119]. An example of an interaction has been found between the dopamine 

D2 receptor and the dopamine transporter, encoded by DRD2 and DAT, respectively. Both 
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genes harbor several common regulatory variants but only DRD2 is associated with lethal 

risk resulting from cocaine abuse when each gene is studied separately. Yet, a combination 

of a single variants from both DRD2 and DAT convey a seven- to eight-fold increased risk in 

a highly significant interaction model [120]. Such cases of gene–gene–environment 

interaction may be more prevalent than currently anticipated and need to be explored on a 

broader basis.

One challenge for seeking more complex models is the number of options to investigate, 

when investigating pairwise GxG and SNP-by-SNP (SNP×SNP) interaction models, as the 

number of potential interactions skyrockets as the number of variants grows. Tools exist for 

generating pair-wise GxG interaction models that address this. For example, Biofilter [104] 

is a tool that allows users to filter and annotate genetic data, as well as generate pairwise 

SNP×SNP models prioritized by the biological evidence supporting the genetic interaction. 

Multifactor dimensionality reduction (MDR) performs an exhaustive analysis of all n-wise 

interacting loci to generate models [101]. The Analysis Tool for Heritable and 

Environmental Network Associations (ATHENA) is a software tool that combines advanced 

filtering and machine learning analytical techniques to generate multi-variable models that 

can predict categorical or quantitative outcomes [121,122]. ATHENA can be used for both 

G×G/SNP×SNP interaction models that move beyond pairwise interactions, as well as for 

metadimensional analysis, where different data types of high-throughput genetic predictor 

variables are incorporated. However, all these methodologies require large sample cohorts, 

which are rarely encountered in PGx studies.

Clinical & regulatory decision making: moving from ‘bench to bedside’

The list of drugs for which genetic information has potential utility in guiding individualized 

therapy is growing. Clinical implementation is lagging behind our current knowledge in part 

because of multiple challenges faced in clinical practice. Recognizing the mandate to 

optimize drug therapy, the FDA maintains a website with current assessments of how 

clinicians should utilize PGx information (see Table of Pharmaco genomic Biomarkers in 

Drug Labels [45]). As more of the complex genetic architecture of PGx traits is uncovered, 

substantial challenges remain for translating PGx findings to the clinic. Key questions 

include: Is this an effective biomarker with clinical utility? How many individuals will be 

helped by geno-typing a specific PGx variant? Will there be an impact on survival, recovery 

and/or prevention of a major adverse reaction and how much of an impact? Will a genetic 

variant manifest only in one population or is there evidence of consistency across multiple 

ancestral populations? Will the cost of genotyping for a PGx variant confer sufficient benefit 

to offset the cost?

A major concern for moving PGx findings to the clinic is the impact of ancestry on genetic 

variation. Highly significant associations between variants and PGx traits may differ 

considerably across ancestries, which has a direct impact on dosing decisions. For example, 

a significant association was found between the HLA-B*1502 variant and carbamazepine-

induced (CBZ-induced) Stevens–Johnson syndrome in Han Chinese and Thai individuals 

[123–126]. However, separate studies have indicated that HLA-B*1502 is not a marker for 

all forms of CBZ-induced hypersensitivity in individuals of European decent [127,128]. In 
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one study, the only four individuals out of 12 cases with CBZ-induced hypersensitivity had 

the HLA-B*1502 marker; these four individuals also had Asian ancestry [128].

Ancestry specific PGx differences in association of the arginine (Arg) 16 allele in the beta2-

anderegenic receptor (beta2-AR) with asthma severity and broncho-dilator response [129] 

have been found. Two admixed populations, Puerto Ricans and Mexicans, have different 

proportions of European, African and Native American ancestry. These two populations 

have the highest and lowest asthma prevalence, morbidity and mortality respectively. In the 

study by Choudhury et al. (2005), associations between bronchodilator response, asthma 

severity and the beta2-AR (Arg) 16 allele were found in Puerto Ricans, but not in Mexicans. 

These results are likely accounted for by the presence of more than one causative variant in 

the same gene, or in interaction genes, with distinct population distribution.

We have mentioned already CYP2C9 variation and warfarin dosing. Polymorphisms in 

CYP2C9 account for 18% of the variance in warfarin dose, and polymorphisms in VKORC1 

account for 30%, in European Americans; however, these variants account for a smaller 

portion of variability in patients with Asian or African Ancestry [40,130–137]. Additional 

CYP2C9 variant alleles with reduced activity (CYP2C9*5, *6, *8 and *11) have been found 

to contribute to dose variability among African–Americans [55,138].

The field of PGx already has a record of investigations in groups beyond European 

Americans, when contrasted with much of the initial work of GWAS that was focused on 

European American ancestry. CPIC guidelines usually contain statements about existing 

knowledge of gene/drug pair information across ancestry. Work is being done to determine 

repeated drug administration rGC values across ancestry [29]. These analyses incorporating 

multiple ancestries should continue to be an important pursuit for the field of PGx moving 

forward. FDA labeling should also consistently reflect what populations PGx discoveries 

were made in, as that may impact the utility of a biomarker for a given patient.

Finally, substantial inconsistencies exist in study design, dosing regimens, study population 

and analysis methods for the field of PGx. For example, three studies, with differences in 

ethnic background and disease state of patients, study size and methods used to measure 

response to treatment, have reported contradictory results on the association of the FcγRIIIA 

158V/F polymorphism and response to etanercept or infliximab in patients with Rheumatoid 

Arthritis [139–141]. Such inconsistencies are common between PGx studies, making 

interpretation of results across studies challenging, even for the same PGx trait. Further 

more, huge variability exists in the information that is reported when a PGx study is 

published. A standardized way of reporting PGx results and more consistency in study 

design could assist in developing clear guidelines for what constitutes a validated and 

actionable PGx result, and provide the means for comparing results across studies. The 

CPIC-authored studies have made recommendations for evaluating PGx results and 

reporting information accessible to clinicians [46].
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Conclusion

Current understanding of the genetic architecture of PGx traits presents a picture of a 

substantial impact of genetic variation on PK, PD, adverse events and other pharmacological 

outcomes. We have detailed here several examples of successes for the field of PGx. This 

information is being moved into the clinic for aiding decision making and results of these 

studies guide future drug development. While this knowledge is proving useful, we have 

outlined here key considerations for future PGx research and use of clinical biomarkers. 

Figure 3 provides an overview of important aspects that should be integrated in PGx studies 

to identify more robust markers for PGx traits and advance a more comprehensive 

understanding of the relationship between genetic architecture and drug response.

Improving the way the PGx field has been sharing PGx association results, and expanding 

what is considered ‘validation’ and ‘replication’ for PGx association results, has broad 

potential for improving the utility of PGx findings as robust clinical biomarkers. 

Standardized reporting of PGx results will assist in compiling evidence and subsequent 

interpretation of multiple study results. Furthermore, molecular evaluation and validation of 

the mechanism by which polymorphisms have an effect on outcome needs to be an 

important step after association studies have identified variants of interest. While seeking 

replication of association results over multiple studies can provide evidence for a bio-

marker, establishing the biological mechanistic role of a genetic variant on outcome can 

identify robust markers for clinical trial [8,72]. Multiple polymorphisms have known effects 

on protein coding genes, such as the well understood ADME genes. However, GWAS have 

identified numerous genetic variants outside of protein coding genes. As nearly 80% of the 

human genome is transcribed while only 1.2% encodes proteins, and as countless genomic 

regions carry epigenetic regulatory marks, our emerging understanding of the dynamic 

nature of nonprotein-coding regions of the genome must be leveraged for studying 

functionality of SNPs identified in association studies.

The field of PGx and GWAS of complex traits have focused almost exclusively on SNPs of 

common frequency. Rare variants, as well as other genetic variation such as copy number 

variation and mitochondrial variants may also prove important moving forward. Much of the 

original GWAS for complex traits was limited to individuals of European descent. The PGx 

field has stronger track record of studies across ancestry, accruing information about 

variation in drug response and genetic variation across multiple ancestries. Such ancestry 

information has clinical relevance and is being incorporated with FDA drug labeling.

An emphasis on cross-disciplinary work has become increasingly critical, with involvement 

of clinicians, genetic epidemiologists, statisticians, bioinformaticists and molecular and 

cellular biologists. The Pharmaco-genomics Research Network (PGRN), and the related 

Pharmacogenomics Statistical Analysis Resource (P-STAR), exemplify cross-disciplinary 

collaborations supporting PGx discovery. Furthermore, novel computational and statistical 

methods will prove critical, given the explosion of data generated in recent years. 

Simulations will be useful for exploring models for PGx traits.
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Future work utilizing electronic health records will provide new dimensions for the 

successful development of PGx phenotypes, cohorts, studies and hypotheses, made available 

on a large scale through consortia such as the eMERGE network [143]. For analytical 

methods development, future efforts should include extension of MLM/GCTA/polygenic 

methods for better handling non-normal PGx traits, investigating sensitivity of heritability 

estimates with model specification and covariate selection and the development of integrated 

analysis methods for simultaneously incorporating different types of genomic features 

(genetic and epigenetic) and prior knowledge (pathways, gene sets, etc.) in each PGx study. 

Going beyond additive models, future studies should also focus on dynamic (epistatic) 

gene–gene interactions, and the impact of environmental influence.

Future perspective

PGx research has already yielded numerous examples of the pervasive effect of genetic 

factors on drug response. These advances demonstrate that clinical applications of 

pharmacogenomic biomarker tests have outstanding potential to enhance efficacy and 

reduce adverse effects, considered a main cause of morbidity and mortality – thereby 

showing promise for advancing the NIH mandate for the future of genomics. However, 

much of the genetic influence on treatment outcomes remains hidden, leaving uncertain how 

many genes and genetic variants contribute to pharmacological traits, how common and rare 

variants affect response and whether gene–gene interactions play a role. These relationships 

form the ‘pharmacogenomics architecture’ that still needs to be elucidated, presaging a 

profound evolution of the field of PGx, as is occurring in genomics studies of complex 

disorders. New approaches and studies across multiple human populations will prove critical 

for the characterization of the genetic architecture of pharmacogenomic traits required for 

realizing the full potential of PGx in guiding the development of optimal individualized 

therapies. With these advances realized over the next 5–10 years, the findings of PGx will 

dramatically increase use of genotypic data by clinicians in decisions on individual 

therapies, with substantially improved health outcomes.
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Box 1

Definitions

• Pharmacological trait: Measurable variation in response to pharmacological 

treatments.

• Pharmacokinetics (PK): The degree or rate of absorption, metabolism, 

distribution and elimination of a drug within a living system.

• Pharmacodynamics (PD): The relationship between drug concentration and 

effect on a living system, or the microorganisms affected within a living system 

by a drug.

• ADME: Absorption, distribution, metabolism and elimination.

• Efficacy: The quality of the effect of a pharmacological treatment on a living 

system in relation to the quantity of the drug.

• Adverse event: A detrimental response to a drug within a living system.

• Idiosyncratic adverse event: An unexpected response to a drug within a living 

system.

• Therapeutic window: The range of drug concentrations efficacious with minimal 

toxicity.

• Efficacy/toxicity balance: Drug levels have an impact on drug efficacy, but also 

toxicity.

• Pharmacogenomics (PGx): Study of the relationship between genetic variation 

and drug response, including but not limited to pharmacological traits, PK, PD, 

efficacy, toxicity and/or adverse events.

• NIH Pharmacogenomics Research Network (PGRN): A collaboration between 

an ever growing number of study sites, all investigating the pharmacogenomics 

of a variety of traits [2,3].

• The Pharmacogenomics Knowledge base (PharmGKB): A database of 

comprehensively collected information about the relationships between genes 

and PT, PK, PD, efficacy, adverse events and/or disease [4,5].

• Polygenic genetic architecture: The contribution of multiple common SNPs to 

phenotypic variance in aggregate.

• Polygenic modeling: Method that develops an additive polygenic risk score 

based on SNPs that pass a p-value threshold in a discovery set of samples, tested 

in an independent set of samples.

• Mixed Linear Modeling (MLM): Estimation of an additive genetic variance 

under a mixed linear model with a random effect representing the polygenic 

component of underlying trait variation.
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Executive summary

What have we learned?

• Heritability of pharmacogenomic traits: challenges & successes

– Defining the heritability of pharmacogenomic (PGx) traits encounters 

hurdles distinct from those found in the analysis of complex disorders.

– Heritability estimates in PGx: methods and current estimates.

• The PGx landscape: drug efficacy & adverse events

– PGx in the clinic: warfarin, clopidogrel.

– Dosing guidelines: US FDA Labels and Clinical Pharmacogenetics 

Implementation Consortium (CPIC).

– Larger relative strength of effect size for PGx traits compared with the 

range of effect sizes observed with complex-trait genome-wide 

association studies.

• Functional role of genomic architecture in PGx traits

– Focus of interpretation of the relationship between genetic variability and 

outcome for PGx has been centered on protein-coding regions.

– Much more to discover.

♦ Mechanistic etiology of genetic variation on PGx traits is a critical 

focus for future PGx studies.

Beyond PGx genome-wide association studies: polygenic analyses

• Polygenic genetic architecture

– Contribution of multiple common SNPs to phenotypic variance in 

aggregate.

• Two methods have already been used for a variety of complex outcomes for 

non-PGx traits:

– Mixed linear modeling.

– Polygenic modeling.

• Overview of current method use, discovery and limitations.

Future methods

• Summary of other methods of utility for future PGx research.

• The role of epistasis in PGx traits.

Clinical & regulatory decision-making: moving from ‘bench to bedside’

• As more of the complex genetic architecture of PGx traits is uncovered, 

substantial challenges remain for translating PGx findings to the clinic.
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• Highly significant associations between variants and PGx traits may differ 

considerably across ancestries, which has a direct impact on dosing decisions.

• Substantial inconsistencies exist in study design, dosing regimens, study 

population and analysis methods for the field of PGx that should be addressed.

Conclusion

• Much has been learned in the PGx field about the genetic architecture of PGx; 

however, there is more to be understood.

• A variety of additional methods and approaches should be included in future 

PGx research.

• There are many challenges still faced by the field, but ultimately promise for 

incorporating understanding of individuals genetic architecture for personalized/

precision medicine.
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Figure 1. 
Contrasting the effect size and minor allele frequency range of pharmacogenomic variants 

versus variants from the NHGRI GWAS catalog. Black circles are the NHGRI GWAS 

catalog results, plotted by OR results in logarithmic (base10) scale versus minor allele 

frequency. Each green cross represents a replicated efficacy result for a pharmacogenomics 

study. Each red X represents a replicated toxicity result for pharmacogenomics. The solid 

lines represent the 80% power equivalent curves across minor allele frequency, from top to 

bottom for n = 1 × 103, 10 × 103 and 100 × 103, respectively (assuming n/2 cases and n/2 

controls). OR: Odds ratio.
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Figure 2. 
Overview of polygenic analysis methods. On the left, the general work flow of using Mixed 

Linear Modeling pursued using the software genome-wide complex trait analysis. On the 

right, the general workflow of Polygenic Modeling. Both methodologies allow the user to 

identify multiple SNPs related to pharmacogenomics outcome, with different information 

resulting from each approach. GWAS: Genome-wide association study.

Chhibber et al. Page 26

Pharmacogenomics. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3. 
Uncovering the genetic etiology of pharmacogenomic traits: methodologies and data. Along 

the top of the figure: pharmacogenomics studies should incorporate multiple types of 

analyses, beyond GWAS moving forward. Lower part of the figure: pharmacogenomics 

methods need to incorporate multiple types of genomic data, and consider the importance of 

environment as a modifier. Combining these elements may to yield improved predictions of 

pharmacogenomics outcomes. Furthermore, detailed molecular genetics studies following 

up on genomic association discovery will be important for identifying robust biomarkers for 

clinical decision-making.

GWAS: Genome-wide association study.

DNA/histone lower part of figure adapted with permission from [142].
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Table 2

Cell-line based estimates of heritability for drug cytotoxicity.

Drug h2 heritability estimate Ref.

5-fluorouracil 0.26–0.65 (dose dependent) [16]

Dovetail 0.21–0.70 (dose dependent) [16]

Isolating 0.47 [14]

Daunorubicin 0.18–0.63 (dose dependent) [17]

5-Fluorouracil 29.2 [15]

Arsenic trioxide 24.4 [15]

Azacitidine 20.7 [15]

Neomycin 17.3 [15]

Bu sulfa 14.2 [15]

Carbonating 43.2 [15]

Cladribine 27.3 [15]

Cytarabine 41.7 [15]

Daunorubicin 37.1 [15]

Dovetail 30.1 [15]

Doxorubicin 35.3 [15]

Epirubicin 59.5 [15]

Topside 41.3 [15]

Floxuridine 27 [15]

Fludarabine 13.5 [15]

Gemcitabine 8.1 [15]

Hydroxy urea 43.2 [15]

Ida rubicon 45.8 [15]

Neomycin 26.7 [15]

Mitoxantrone 46.5 [15]

Oxaliplatin 50 [15]

Paclitaxel 45.9 [15]

Rapamycin 15.1 [15]

Temozolomide 63.5 [15]

Teniposide 36.4 [15]

Topotecan 46.1 [15]

Vin blasting 31.2 [15]

Vin pristine 23.1 [15]

Vino reline 34.1 [15]
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