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Abstract

The pharmacokinetic and pharmacodynamic disciplines address pharmacological traits, including
efficacy and adverse events. Pharmacogenomics studies have identified pervasive genetic effects
on treatment outcomes, resulting in the development of genetic biomarkers for optimization of
drug therapy. Pharmacogenomics-based tests are already being applied in clinical decision
making. However, despite substantial progress in identifying the genetic etiology of
pharmacological response, current biomarker panels still largely rely on single gene tests with a
large portion of the genetic effects remaining to be discovered. Future research must account for
the combined effects of multiple genetic variants, incorporate pathway-based approaches, explore
gene-gene interactions and nonprotein coding functional genetic variants, extend studies across
ancestral populations, and prioritize laboratory characterization of molecular mechanisms.
Because genetic factors can play a key role in drug response, accurate biomarker tests capturing
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the main genetic factors determining treatment outcomes have substantial potential for improving
individual clinical care.
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The NIH has envisioned translation of the detailed information collected about the human
genome into improvements in human health and well being [1]. Pharmacogenomics (PGXx),
the study of how genetic architecture influences pharmacological traits and outcomes,
provides immediate applications for directing clinical decision making. Pharmacogenomic
information can aid choices about selecting pharmacological treatments, optimal time
courses and drug dosage on the basis of a patients' genetic architecture.

Interpatient variability manifests itself in different ways for pharmacological traits,
described quantitatively by pharmacokinetics (PK) and pharmacodynamics (PD).
Pharmacological traits include efficacy, adverse events and the balance between efficacy
and toxicity, defining the therapeutic ‘window.’ Further definitions of these terms are
presented in Box 1. By connecting genetic variation to measurable interpatient variability, a
course of action can be defined on an individual basis.

Investigating the genetic architecture of PGx traits can be pursued in multiple ways, and
each of the approaches taken has advantages and limitations, discussed further in this
review. PGx studies typically reveal SNP biomarkers that link genetic variation to treatment
outcomes. Elucidating the underlying molecular genetic mechanism underlying the
association between genetic variants and pharmacological traits is a major goal in the PGx
field. In contrast, genome-wide association studies (GWAS) of complex diseases have
yielded numerous variants with significant associations, but for a vast majority of these
results, the causative variants and mechanisms remain unknown [6]. In addition,
pharmacogenomic variants tend to exert stronger effects on drug response phenotypes than
those discovered for complex disorders — perhaps because a relatively limited number of
genes influence PK and PD traits. Moreover, drugs are targeted to specific pathways thought
to be involved in complex disease phenotypes, thereby narrowing the number of candidate
genes, with each displaying a proportionally larger effect size. We assume here that complex
disorders such as cardiovascular diseases and cancer represent a collection of disease
subtypes each with similar symptoms — where drug therapy would typically target a specific
subtype.

A series of limitations and challenges confront the field of PGx. One current limitation is the
wide use of single common-variant/outcome trait association testing. Alternative modeling
methodologies and strategies that incorporate multiple genetic markers, as well as the
inclusion of lower-frequency variants, may prove effective for enhancing PGx trait
prediction. A challenge for PGx studies includes the difficulty of estimating the heritability
of PGx traits, since it is untenable to administer medications to unaffected individuals.
Attaining adequate statistical power presents a challenge when faced with the frequently
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small sample size in PGx studies, especially for adverse drug reaction studies. Effective
biomarker identification has also remained a challenge, with potential biomarkers that have
not shown clinical efficacy [7,8], and important work yet to be done understanding the
biology underlying effective biomarkers [8]. In addition, the PGx field needs to broaden
investigations of PGx traits across samples of diverse ancestry/race/ethnicity, to derive
relevant actionable information for clinicians. Finally, ‘risk’ is difficult to define for PGx
traits, as metrics for drug efficacy can be difficult to ascertain when compared with the
probability (rate) of risk of a common complex disease.

Herein, we describe the current understanding of the genetic architecture of PGx traits. We
discuss in detail some of the aforementioned challenges and limitations while also pointing
out opportunities and future directions for the field of PGx. These include new methods
development such as polygenic modeling, pathway analyses, and systems biology
approaches for the development of further robust biomarkers, all with the goal of
discovering the etiology underlying interindividual variations in drug response, and
designing robust biomarker panels predictive of treatment outcomes.

What have we learned?

Heritability of PGx traits: challenges & successes

The rationale for PGx is the underlying assumption that genetic variation plays a substantial
role in pharmacological outcome. The heritability of a PGx trait should be measurable if
variant transmission from parent to offspring is the basis of the genetic architecture
influencing PGx traits. While determining the heritability provides the rationale for a PGx
study, estimating the heritability of PGx traits is nontrivial.

Defining the heritability of PGx traits encounters hurdles distinct from those found in the
analysis of complex disorders. By definition, any drug response trait represents a gene—
environment interaction, where the drug is only one component of multiple environmental
exposures, and multiple genes may contribute to the PGx response. Moreover, each drug,
even closely related ones such as the statins, has different degrees of heritability and must be
studied individually. Also, drug effects are highly dependent on the dosage, and hence,
genetic factors differ with drug dose, as shown for the impact of S .CO1B1 variants on
simvastatin's muscle toxicity, only detectable when high doses are needed to control
cholesterol levels [9]. Lastly, drug therapy commonly involves multiple drugs. As a result,
predictive biomarker tests of the future will have to evolve to consider complex gene—gene—
environment interactions.

Few drugs can be used in a familial setting to monitor the variability of drug response as
most family members will not have a condition warranting treatment. Drug treatment of a
group of individuals without a need for treatment is limited for safety and ethical reasons. In
addition, sample size is often low for PGx studies, especially when investigating adverse
events. Access to large numbers of related individuals taking a specific drug is limited to
communities that have a common need for a particular drug, such as lipid lowering
treatments [10]. This is distinct from estimating heritability for complex diseases or
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outcomes where twin and family studies are facilitated, even when trait complexity can
present challenges for heritability estimation.

A few examples of familial studies of drug response clearly indicate the heritability of some
PGx traits, underscoring considerable influence of genetic factors; these are presented in
Table 1. For example, dicumarol was monitored in the plasma for a group of identical and
fraternal twins [11], revealing little difference in the variability of dicumarol half-life in
plasma response between identical twins, minor differences between fraternal twins and
wide differences between nonrelated subjects demonstrating a significant heritable
component. Investigating heritability of PGx traits across communities of related individuals
where a specific drug is commonly administered is another way to determine heritability of
certain PGx traits. For instance, a study of the heritability of platelet response, measured by
ex vivo platelet aggregometry, involved the administration of clopidogrel to 429 Amish
persons and revealed the platelet response to be highly heritable [10].

To circumvent limitations of familial studies for PGx traits, estimation of heritability in an
ex vivo manner has been successful. This approach has been applied for measuring drug
cytotoxicity within familial-derived lymphoblastoid cell lines (LCL) [13]. Further work with
the LCL approach has lead to a detailed understanding of effective LCL study design,
enabling identification of loci related to variability of PGx traits which in turn guide studies
in humans and model organisms. For example, heritability of chemotherapeutic cisplatin-
induced cytotoxicity has been estimated at approximately 57% through the LCL approach,
with evidence for multiple causative variants [14]. Table 2 presents a series of heritability
results from cell line experiments. Detailed work has characterized factors that confound
interpretation of these experiments, such as the portion of the genetic variation of drug-
induced cytotoxicity accounted for by heritability of variation in cellular growth rate [13]. In
addition, cellular assays are amenable to high-throughput testing of multiple drugs. For
example, one study investigated the cytotoxic effect of 29 chemotherapeutic agents on 125
LCL from 14 extended families, and found a range of heritabilities from <15%
(gemcitabine) to >60% (epirubicin) [15].

Furthermore, HapMap cell lines from multiple ancestries can be used in these cellular assay
based studies to represent multiple ancestries, allowing for characterization of the
relationship between PGx traits across ancestry groups. For example, an exploratory analysis
used HapMap cells to investigate genetic variants and their functional consequences for the
enzyme deoxycytidine kinase (DCK) in two ancestries, European and African (Yoruba)

[18]. DCK is a rate-limiting enzyme in the activation of nucleoside analogs. Cytarabine (ara-
C), a chemotherapeutic agent commonly used in in acute myeloid leukemia, is one such
nucleoside analog. DCK activity was lower for subjects heterozygous for coding changes
compared with homozygous subjects, and DCK activity in general was higher in the African
cell lines when compared with the European cell lines.

Another approach available for determining the genetic component influencing PGx traits
involves Repeated Drug Administration (RDA). In this method, a drug is administered
multiple times to unrelated individuals, and the variability in the PGx trait of interest
between and within individuals is compared [19]. RDA information can be used to calculate
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the Relative Genetic Component (rGC), an estimate on a scale of 0 to 1 of the genetic
component of a PK or PD parameter. This measurement has also been referred to as
‘intraclass correlation’ or ICC [20]. The rGC measurement is calculated through the
following formula: (variability between individuals - variability within individuals)/
variability between individuals. The measurement can be interpreted as a rough estimate of
heritability, where a trait with high rGC will likely have high heritability. The rGC
measurement can also be calculated from monozygotic twin pairs, when dizygotic twins are
not available [19]. For example, the genetic component of variation in renal clearance of
amoxicillin, ampicillin, metformin, terodiline, digoxin and iohexol, was investigated using
this approach [21]. Results from these rGC based studies are summarized in Table 3.
Limitations of this approach include the high variability of PGx traits over limited time
periods even in the absence of genetic factors, potentially leading to large error estimates.

The PGx landscape: drug efficacy & adverse events

Among the many PGx success stories is the use of genetic information to facilitate
prescription of optimal warfarin dosage levels to prevent cardioembolic stroke, myocardial
infarction and venous thrombosis as well as prevent adverse events. Warfarin is widely
prescribed after placing arterial stents or after myocardial infarction. However, warfarin
causes serious side effects including hemorrhage, especially during drug initiation when
patients are titrated to the optimal dosage level [33,34]. Variants in CYP2C9 influence the
PK [35] and VKORCL1 variants influence the PD of warfarin [36-39]. It is noteworthy that
the two-gene biomarker test for warfarin dosing still represents an exception; most other
genetic biomarker PGx tests only include one gene, and the identification of multigene
robust biomarkers remains an important area for expansion within PGx research. An
algorithm for estimating individualized warfarin dosages was defined using clinical and PGx
data [40]. As a result, the FDA updated the label for warfarin, detailing the use of
pharmacogenetic testing for clinical decision making [33]. Recent studies have evaluated
genotypic bio markers for warfarin dosing with different conclusions; one study indicated
genotype-guided dosing of warfarin was ineffective when compared with dosing without
genotypic information [41]. A separate study indicated genotype-guided dosing was
associated with a patients being within the therapeutic range for a greater period of time
when compared with the standard initiation of warfarin [42].

In another example, clopidogrel is prescribed to prevent atherothrombotic events after
myocardial infarction but exhibits notable variability in successfully preventing further
cardiovascular events. This has at least in part been attributed to genetically determined
variation in the drug metabolizing enzyme CYP2C19, largely responsible for converting
clopidogrel to its active metabolite. The most common loss-of-function allele is CYP2C19* 2
(rs4244285), associated with increased risk of cardiovascular events [43]. Indeed the
CYP2C19*2 variant is considered a major determinant of prognosis for patients <45 years of
age on clopidogrel treatment after myocardial infarction [44].

While the list of PGx traits continues to grow, translating the complex and sometimes
conflicting research results from PGx to clinical action requires accessible information that
is updated as new findings come to light. FDA labels are already being modified in response
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to emerging PGx findings, listed here [45]. However, FDA label changes are only one way
to provide information to clinicians for implementing PGx results in treatment decisions.
The Clinical Pharmacogenetics Implementation Consortium (CPIC) [46], the Royal Dutch
Association for the Advancement of Pharmacy (DPWG) [47] and other professional medical
societies, have also been publishing pharmacogenetic dosing guidelines for an increasing
number of drugs [48].

CPIC in particular has carefully reviewed the criteria for translation of PGx traits, and as a
result, has developed a framework for identifying key evidence justifying clinical
implementation. Published CPIC guidelines target specific gene/drug pairs (Table 4),
reviewing the existing research for each gene/drug pair [49]. In addition, CPIC provides a
standardized web-interface of gene/drug pair summary information, including outcome
phenotype based on genotype, dosing recommendations and allele frequency differences and
impact of specific variants across distinct ancestry. CPIC continues to review ongoing
research on gene/drug pairs to determine whether the existing information needs updating or
new gene—drug pairs can be recommended for clinical use.

The effect size of genetic variants affecting PGx traits tends to exceed that of SNPs derived
from GWAS of complex human disorders. In Figure 1, we illustrate this trend by comparing
the odds ratios for efficacy and toxicity related PGx results with those from the NHGRI
GWAS catalog, where the phenotypic outcome covers a range of non-PGx complex traits
[65]. Figure 1 displays larger relative strength of effect size for PGx traits compared with the
range of effect sizes observed with complex-trait GWAS. This observation is consistent with
our expectation that PGx variants affect targeted subsets of genes and pathways; however,
ascertainment bias cannot be excluded resulting from the different methods used for
discovery of the genetic variants.

Functional role of genomic architecture in PGx traits

The PGx field faces challenges in understanding the mechanistic role of genomic variation
in PGx traits. Much of the focus of interpretation of the relationship between genetic
variability and outcome for both complex disease and PGx has been centered on protein-
coding regions. In PGx studies there has been a particular focus on candidate gene
approaches targeting Absorption, Distribution, Metabolism and Execretion (ADME) genes
in addition to GWAS. This makes particular sense for PGx traits, as genetic variation can
have an impact on the protein structure of drug-metabolizing enzymes resulting in changes
in enzymatic activity. Furthermore, there are known important PK pathways where the
impact of genetic variation has been demonstrated on a protein-coding modification level.
One example is CYP2D6, an enzyme involved in the metabolism of up to 25% of clinical
drugs, where nonsynonomous variants can result in enzymatic changes and subsequent
changes in catalytic activity [66]. Many of these very important pharmacogenes (VIP) are
summarized in the Pharmacogenomics Knowledge Base (PharmGKB) [67]. However,
GWAS and now full-genome sequencing have identified many biomarkers that do not cause
functional protein-coding modification, or are located in genes whose role in drug
disposition, response or toxicity was previously not well characterized. For example, a distal
enhancer variant >100 kb downstream of the coding region of CYP2D6 strongly increases
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gene expression in the liver, accounting for cases of ultra rapid metabolism [68]. Likewise,
in a genome wide association study of flucloxacillin-induced liver injury, a novel association
between ST6GAL1, an enzyme with a possible role in B-cell immune response, and the drug
induced liver toxicity was identified [69]. In some cases, there are genetic variants that
account for substantial outcome variability, and are already used as a clinical biomarker, but
we have a more limited understanding of the impact of that genetic factor, such as the
functional mechanisms of HLA variants and drug response variability [70,71].

Resolving the mechanistic etiology of the impact of genetic variation on PGX traits is a
critical focus for future PGx studies. Exploration of the function of nonprotein coding
genetic regions will be essential, including regulatory regions and noncoding RNA [72].
Regulatory variants may account for a large portion of genetic variability, and should be
incorporated into analyses as knowledge of the functional impact of genetic variation on
genetic enhancers, promoters and gene expression is accrued and shared through projects
such as ENCODE and related databases [73-76].

Beyond PGx GWAS: polygenic analyses

New methodologies will continue to drive advances in the field of PGx. The majority of
PGx results have arisen from investigation of the association between single, common,
genetic variants and pharmacological outcome. As found with GWAS for common complex
traits [6], this approach may have varied or limited success in future studies, as the genetic
architecture of any trait can be complex. On a biological level, a variety of potential genetic
mechanisms influencing PGx traits fail to be captured when investigating only the
relationship between single, common, genetic-variants and outcomes. Thus, we need to
diversify the methodologies being used to better define polygenic traits.

One alternate approach considers polygenic genetic architecture, or the contribution of
multiple common SNPs to phenotypic variance in aggregate. Two methods have already
been used for a variety of complex outcomes for non-PGx traits: mixed linear modeling
(MLM) and polygenic modeling. Both methods test a polygenic model for the relationship
between multiple SNPs and outcome, as illustrated in Figure 2. MLM estimates the additive
genetic variance under a mixed linear model with a random effect representing the polygenic
component of trait variation. The software tool GCTA (Genome-wide Complex Trait
Analysis) has been developed for use of MLM in estimation of the proportion of phenotypic
variance accounted for by genome-wide association genotypic data [77]. The MLM/GCTA
approach has been used successfully for identifying the collective contribution of GWAS-
polymorphisms to traits including height [78], Crohn's disease, bipolar disorder and Type 1
diabetes [79] and other complex outcomes [80,81].

Polygenic modeling develops an additive polygenic risk score for a given trait based on a
group of SNPs filtered by a GWAS-based p-value threshold in a discovery sample set. The
polygenic risk score is then tested in an independent set of samples. This approach has been
successfully used to detect the contribution of multiple variants with small effects to the
heritability of diseases/traits/outcomes such as schizophrenia [82], multiple sclerosis [83],
height [84], body mass index [85] and rheumatoid arthritis [86]. Polygenic modeling
analyses for complex traits yield results consistent with simulated genetic models in which
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hundreds of associated loci harbor common causal variants and a smaller number of loci
harbor multiple rare causal variants [86]. The heritability estimates derived from these
polygenic approaches have been consistent with previously reported estimates for these
complex traits. MLM and polygenic modeling methods are now being applied to PGx data.
MLM/GCTA analyses have been used to investigate asthma PGx traits [87], and paclitaxel-
induced sensory peripheral neuropathy [88].

Paclitaxel is a chemotherapeutic agent commonly prescribed to treat carcinomas of the
breast, ovaries, lung, head and neck. Peripheral neuropathy is one of the most common
toxicities with paclitaxel treatment, and occurs in a substantial subset of patients. Known
causes of peripheral neuropathy do not completely explain the incidence of toxicity amongst
patients treated with paclitaxel, suggesting a genetic basis for susceptibility to the toxicity.
Small candidate gene studies have had mixed results identifying variants related to
variability paclitaxel-induced peripheral neuropathy [4,89]. One study reports a high risk
odds ratio (OR: 19.1) for paclitaxel neurotoxicity associated with CYP3A4*22 [90], as a
result of reduced metabolic activity of the *22 allele [91], but this result requires replication
(CYP3A4*22 is not on earlier GWAS panels and cannot be readily imputed). GWAS for this
PGx trait have identified some candidate SNPs, but replication has been inconsistent [2,92].

Chhibber et al. (2014) [88] investigated a polygenic etiology of paclitaxel-induced
neuropathy. They estimated the variance explained by common SNPs (MAF >1%) for two
outcomes: the maximum grade of sensory peripheral neuropathy, and the dose at first
instance of peripheral neuropathy. They investigated the variance explained by all autosomal
SNPs, SNPs selected based on genomic location, and SNPs in gene sets selected based on
prior knowledge regarding possible mechanisms of the pathogenesis of paclitaxel-induced
peripheral neuropathy using the GCTA software tool. They found whole genome estimates
of heritability were not significant; however, using a pathway-based approach for filtering
SNPs yielded significant results. Specifically, the Axonogenesis GO Term set (GO:
0007409) had significant estimates of heritability close to 20%, suggesting a portion of the
heritability of paclitaxel-induced neuropathy is driven by genes involved in the regulation of
axon extension. These results show both the utility of polygenic approaches for PGx traits,
as well as the utility of exploring pathway-based expert knowledge filtering of SNPs before
investigating polygenic architecture.

McGeachie et al. (2013) estimated the heritability of bronchodilator response (~30%),
airway hyper-responsiveness (~50%) and asthma liability (~61%) due to SNPs in aggregate
using the MLM/GCTA approach [87]. Linkage studies have yielded comparable heritability
estimates for both bronchodilator response (~12-40%) and airway responsiveness (~67%)
[20,93,94], supporting the validity of the polygenic modeling approach. In addition, the
estimate obtained for the heritability of asthma corresponds to published asthma heritability
from twin studies ranging from 70 to 90% [95]. With polygenic approaches, the total
variance explained by a series of alleles should approach the heritability estimates by other
methods, unless there are nonadditive mechanisms or causal alleles are not well tagged in
the GWAS SNP panels. This study indicates polygenic modeling can provide heritability
estimates within the range of heritability measured in familial studies. Therefore, MLM/
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GCTA are suitable for providing narrow-sense heritability estimates for PGx traits where
family or other approaches are not possible for estimating heritability.

MLM/GCTA methods were largely developed for GWAS data of complex traits, and at this
point, most GWAS for non-PGx traits have very large sample size. With PGx traits, low
sample size is common and this can limit the utility of polygenic approaches unless
strategies are implemented to increase sample size, such as multi-institution collaborations
to combine datasets. In addition, all methods have expectations of the type of phenotype that
will be used, implicit in the development of the method. Pharmacological measurements and
outcome measures can be complex, such as ordinal variables or survival times subject to
censoring, to which current polygenic models can be difficult to apply. Despite these
limitations, polygenic analyses are showing utility in providing an additional tool for
seeking information about the relationship between genetic architecture and PGx traits and
estimates of heritability of these traits.

Further limitations of MLM/GCTA methods include the underlying assumptions that
genotype effects are predominantly additive, thereby limiting assessment of the ‘mutational
burden’ as a measure of genetic influence on a trait, including response to therapy. For
example, this approach ignores the pervasive influence of epistatic gene—gene interactions,
where the effect of one variant is contingent on the presence of another variant. Also, while
this approach may yield an estimate of the trait's heritability, it remains to be determined
whether mutational load of many variants can serve as clinical biomarker panels to guide
therapeutic decision.

Future methods

In addition to polygenic analyses, other approaches may provide keys to elucidating the
etiology of PGx traits. Different predictive models based on genetic architecture may be
necessary to explain many PGx traits that remain to be elucidated. These models may not
include loci of large effect, and some of these models may not be additive and fail
assumptions of linear regression. Novel approaches are being introduced and refined at a
fast rate, and these may emerge as key tools for exposing further the genetic architecture
under lying PGx traits. New technologies for characterizing the genome are also emerging.
These technologies include large-scale high-throughput sequencing to detect comprehensive
genetic variation data including low-frequency variants [96], genetic and genomic variation
such as copy-number variants, new gene expression technologies and methods to detect the
complex epigenetic landscape of the human genome. One can argue that drug therapy ranks
among those environmental stimuli that alter the epigenetic chromatin landscape, thereby
adding another dimension to PGx. Novel analysis methods include pathway [97] and prior
knowledge based approaches [98], rare variant analyses [99,100] and interaction studies
[101]. Integration of these diverse large-scale datasets has the potential for driving PGx
discovery and clinical applications.

Pathway approaches are becoming more common, taking advantage of prior knowledge
previously obtained in molecular and cellular biology studies. Diverse databases cataloging
the results of countless PGx studies include the PharmGKB database mentioned earlier. In
addition, newly developed tools allow users to tap simultaneously into multiple database
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sources for pathway based analyses, such as Biofilter [102-104] and PARIS [102].
Furthermore, as mentioned, pathway based approaches can serve as ‘input’ for polygenic
analyses, reducing the search space for variables by collapsing multiple genes into groups
[88].

Methods are now emerging that enable exploring rare-variant data, usually defined as SNPs
with allele frequencies <0.01, data of greater abundance with comprehensive sequencing
data becoming available. The impact of rare variants on PGx traits are just beginning to be
explored. Examples of already discovered rare-variants for PGx traits include rare variants
found within the SLCO1B1 gene, where haplotypes have been associated with reduced
methotrexate clearance during treatment of childhood acute lymphoblastic leukemia.
S._CO01BL1 variants accounted for 10.7% of the population variability in clearance. Of those
variants, common nonsynonymous variants contributed the most to variability, but rare
nonsynonymous variants contributed to 1.9% of total variation in clearance [105]. This
example illustrates the promise of searching for rare variants but also cautions against
optimistic expectations regarding clinical utility. In this case, the rare variants contribute a
relatively small portion to the variability attributable to S.CO1BL1, and for clinical utility in
and an individual patient, the S .CO1B1 phasing is typically unknown, adding uncertainty to
any clinical recommendations.

Rare-variant collapsing strategies have now been developed for assessing their influence on
traits, as the power for detecting the relationship between single low-frequency variants is
limited. Collapsing approaches provide a way to identify specific patterns of genetic
variation predictive of outcome variation. Several collapsing methods have been published
in the past 5 years [106-114]. An example of a novel collapsing strategy is BioBin [115—
117], a low-frequency variant collapsing method that considers the cumulative effect of rare
variants within genetic features chosen by the users. These features can include genes but
can also be pathways, or other biologically based criteria such as evolutionarily conserved
regions.

The role of epistasis in PGx traits

One of the reasons for the popularity of the GWAS and candidate gene approach is the
simplicity of the regressive model for interpretation, and clear guidelines for ascertainment
of significance and multiple hypothesis testing corrections. However, a variety of tools exist
for the development of more complex predictive models beyond single-variant/outcome
association testing for common variants. For example, step-wise regression can be used to
develop models with additional terms, instead of using single variant data. More complex
models may show better outcome prediction, such as gene-by-gene (GxG) interaction
models.

The overall role of dynamic GXG interactions remains a matter of debate. One can argue that
a substantial portion of the ‘missing heritability’ of complex traits is accounted for by
epistasis [118], but few studies document this in PGx. It may require identifying the
interplay of more than one genetic variant to adequately predict the outcome of drug
administration [119]. An example of an interaction has been found between the dopamine
D2 receptor and the dopamine transporter, encoded by DRD2 and DAT, respectively. Both
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genes harbor several common regulatory variants but only DRD2 is associated with lethal
risk resulting from cocaine abuse when each gene is studied separately. Yet, a combination
of a single variants from both DRD2 and DAT convey a seven- to eight-fold increased risk in
a highly significant interaction model [120]. Such cases of gene—gene—environment
interaction may be more prevalent than currently anticipated and need to be explored on a
broader basis.

One challenge for seeking more complex models is the number of options to investigate,
when investigating pairwise GxG and SNP-by-SNP (SNPxSNP) interaction models, as the
number of potential interactions skyrockets as the number of variants grows. Tools exist for
generating pair-wise GXG interaction models that address this. For example, Biofilter [104]
is a tool that allows users to filter and annotate genetic data, as well as generate pairwise
SNPxSNP models prioritized by the biological evidence supporting the genetic interaction.
Multifactor dimensionality reduction (MDR) performs an exhaustive analysis of all n-wise
interacting loci to generate models [101]. The Analysis Tool for Heritable and
Environmental Network Associations (ATHENA) is a software tool that combines advanced
filtering and machine learning analytical techniques to generate multi-variable models that
can predict categorical or quantitative outcomes [121,122]. ATHENA can be used for both
GxG/SNPxSNP interaction models that move beyond pairwise interactions, as well as for
metadimensional analysis, where different data types of high-throughput genetic predictor
variables are incorporated. However, all these methodologies require large sample cohorts,
which are rarely encountered in PGx studies.

Clinical & regulatory decision making: moving from ‘bench to bedside’

The list of drugs for which genetic information has potential utility in guiding individualized
therapy is growing. Clinical implementation is lagging behind our current knowledge in part
because of multiple challenges faced in clinical practice. Recognizing the mandate to
optimize drug therapy, the FDA maintains a website with current assessments of how
clinicians should utilize PGx information (see Table of Pharmaco genomic Biomarkers in
Drug Labels [45]). As more of the complex genetic architecture of PGx traits is uncovered,
substantial challenges remain for translating PGx findings to the clinic. Key questions
include: Is this an effective biomarker with clinical utility? How many individuals will be
helped by geno-typing a specific PGx variant? Will there be an impact on survival, recovery
and/or prevention of a major adverse reaction and how much of an impact? Will a genetic
variant manifest only in one population or is there evidence of consistency across multiple
ancestral populations? Will the cost of genotyping for a PGx variant confer sufficient benefit
to offset the cost?

A major concern for moving PGx findings to the clinic is the impact of ancestry on genetic
variation. Highly significant associations between variants and PGx traits may differ
considerably across ancestries, which has a direct impact on dosing decisions. For example,
a significant association was found between the HLA-B* 1502 variant and carbamazepine-
induced (CBZ-induced) Stevens—Johnson syndrome in Han Chinese and Thai individuals
[123-126]. However, separate studies have indicated that HLA-B* 1502 is not a marker for
all forms of CBZ-induced hypersensitivity in individuals of European decent [127,128]. In
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one study, the only four individuals out of 12 cases with CBZ-induced hypersensitivity had
the HLA-B* 1502 marker; these four individuals also had Asian ancestry [128].

Ancestry specific PGx differences in association of the arginine (Arg) 16 allele in the beta,-
anderegenic receptor (betay-AR) with asthma severity and broncho-dilator response [129]
have been found. Two admixed populations, Puerto Ricans and Mexicans, have different
proportions of European, African and Native American ancestry. These two populations
have the highest and lowest asthma prevalence, morbidity and mortality respectively. In the
study by Choudhury et al. (2005), associations between bronchodilator response, asthma
severity and the beta,-AR (Arg) 16 allele were found in Puerto Ricans, but not in Mexicans.
These results are likely accounted for by the presence of more than one causative variant in
the same gene, or in interaction genes, with distinct population distribution.

We have mentioned already CYP2C9 variation and warfarin dosing. Polymorphisms in
CYP2C9 account for 18% of the variance in warfarin dose, and polymorphisms in VKORC1
account for 30%, in European Americans; however, these variants account for a smaller
portion of variability in patients with Asian or African Ancestry [40,130-137]. Additional
CYP2C9 variant alleles with reduced activity (CYP2C9*5, *6, *8 and * 11) have been found
to contribute to dose variability among African—Americans [55,138].

The field of PGx already has a record of investigations in groups beyond European
Americans, when contrasted with much of the initial work of GWAS that was focused on
European American ancestry. CPIC guidelines usually contain statements about existing
knowledge of gene/drug pair information across ancestry. Work is being done to determine
repeated drug administration rGC values across ancestry [29]. These analyses incorporating
multiple ancestries should continue to be an important pursuit for the field of PGx moving
forward. FDA labeling should also consistently reflect what populations PGx discoveries
were made in, as that may impact the utility of a biomarker for a given patient.

Finally, substantial inconsistencies exist in study design, dosing regimens, study population
and analysis methods for the field of PGx. For example, three studies, with differences in
ethnic background and disease state of patients, study size and methods used to measure
response to treatment, have reported contradictory results on the association of the FcyRIIIA
158V/F polymorphism and response to etanercept or infliximab in patients with Rheumatoid
Anrthritis [139-141]. Such inconsistencies are common between PGx studies, making
interpretation of results across studies challenging, even for the same PGx trait. Further
more, huge variability exists in the information that is reported when a PGx study is
published. A standardized way of reporting PGx results and more consistency in study
design could assist in developing clear guidelines for what constitutes a validated and
actionable PGx result, and provide the means for comparing results across studies. The
CPIC-authored studies have made recommendations for evaluating PGx results and
reporting information accessible to clinicians [46].
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Conclusion

Current understanding of the genetic architecture of PGx traits presents a picture of a
substantial impact of genetic variation on PK, PD, adverse events and other pharmacological
outcomes. We have detailed here several examples of successes for the field of PGx. This
information is being moved into the clinic for aiding decision making and results of these
studies guide future drug development. While this knowledge is proving useful, we have
outlined here key considerations for future PGx research and use of clinical biomarkers.
Figure 3 provides an overview of important aspects that should be integrated in PGx studies
to identify more robust markers for PGx traits and advance a more comprehensive
understanding of the relationship between genetic architecture and drug response.

Improving the way the PGx field has been sharing PGx association results, and expanding
what is considered ‘validation” and ‘replication’ for PGx association results, has broad
potential for improving the utility of PGx findings as robust clinical biomarkers.
Standardized reporting of PGx results will assist in compiling evidence and subsequent
interpretation of multiple study results. Furthermore, molecular evaluation and validation of
the mechanism by which polymorphisms have an effect on outcome needs to be an
important step after association studies have identified variants of interest. While seeking
replication of association results over multiple studies can provide evidence for a bio-
marker, establishing the biological mechanistic role of a genetic variant on outcome can
identify robust markers for clinical trial [8,72]. Multiple polymorphisms have known effects
on protein coding genes, such as the well understood ADME genes. However, GWAS have
identified numerous genetic variants outside of protein coding genes. As nearly 80% of the
human genome is transcribed while only 1.2% encodes proteins, and as countless genomic
regions carry epigenetic regulatory marks, our emerging understanding of the dynamic
nature of nonprotein-coding regions of the genome must be leveraged for studying
functionality of SNPs identified in association studies.

The field of PGx and GWAS of complex traits have focused almost exclusively on SNPs of
common frequency. Rare variants, as well as other genetic variation such as copy number
variation and mitochondrial variants may also prove important moving forward. Much of the
original GWAS for complex traits was limited to individuals of European descent. The PGx
field has stronger track record of studies across ancestry, accruing information about
variation in drug response and genetic variation across multiple ancestries. Such ancestry
information has clinical relevance and is being incorporated with FDA drug labeling.

An emphasis on cross-disciplinary work has become increasingly critical, with involvement
of clinicians, genetic epidemiologists, statisticians, bioinformaticists and molecular and
cellular biologists. The Pharmaco-genomics Research Network (PGRN), and the related
Pharmacogenomics Statistical Analysis Resource (P-STAR), exemplify cross-disciplinary
collaborations supporting PGx discovery. Furthermore, novel computational and statistical
methods will prove critical, given the explosion of data generated in recent years.
Simulations will be useful for exploring models for PGx traits.
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Future work utilizing electronic health records will provide new dimensions for the
successful development of PGx phenotypes, cohorts, studies and hypotheses, made available
on a large scale through consortia such as the eMERGE network [143]. For analytical
methods development, future efforts should include extension of MLM/GCTA/polygenic
methods for better handling non-normal PGx traits, investigating sensitivity of heritability
estimates with model specification and covariate selection and the development of integrated
analysis methods for simultaneously incorporating different types of genomic features
(genetic and epigenetic) and prior knowledge (pathways, gene sets, etc.) in each PGx study.
Going beyond additive models, future studies should also focus on dynamic (epistatic)
gene—gene interactions, and the impact of environmental influence.

Future perspective

PGx research has already yielded numerous examples of the pervasive effect of genetic
factors on drug response. These advances demonstrate that clinical applications of
pharmacogenomic biomarker tests have outstanding potential to enhance efficacy and
reduce adverse effects, considered a main cause of morbidity and mortality — thereby
showing promise for advancing the NIH mandate for the future of genomics. However,
much of the genetic influence on treatment outcomes remains hidden, leaving uncertain how
many genes and genetic variants contribute to pharmacological traits, how common and rare
variants affect response and whether gene—gene interactions play a role. These relationships
form the ‘pharmacogenomics architecture’ that still needs to be elucidated, presaging a
profound evolution of the field of PGX, as is occurring in genomics studies of complex
disorders. New approaches and studies across multiple human populations will prove critical
for the characterization of the genetic architecture of pharmacogenomic traits required for
realizing the full potential of PGx in guiding the development of optimal individualized
therapies. With these advances realized over the next 5-10 years, the findings of PGx will
dramatically increase use of genotypic data by clinicians in decisions on individual
therapies, with substantially improved health outcomes.

Acknowledgments

The authors thank the Pharmacogenomics Research Network (PGRN) and its trans-network project on ‘Polygenic
Modeling": P-STAR (PGRN Statistical Analysis Resource (funded as part of PAT — HL065962, XGEN (Expression
Genetics in Drug Therapy) PMT GM092655, PAAR4KIids (Pharmacogenom-cs of Anticancer Agents Research in
Children) GM092666, PEAR (Pharmacogenomic Evaluation of Antihypertensive Responses) GM074492, PARC
(Pharmacogenomics and Risk of Cardiovascular Disease) HL069757, PHAT (Pharmacogenetics of Asthma
Treatment) HL065899, PAPI (Pharmacogenomics of Anti-Platlet Intervention) HL105198, PHRAT
(Pharmacogenomics of Rheumatoid Arthritis Therapy) GM092691.

References

Papers of special note have been highlighted as:
» of interest;
+« of considerable interest

1. Green ED, Guyer MS. Charting a course for genomic medicine from base pairs to bedside. Nature.
2011; 470(7333):204-213. [PubMed: 21307933]

Pharmacogenomics. Author manuscript; available in PMC 2015 October 01.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Chhibber et al.

Page 15

2. Bergmann TK, Vach W, Feddersen S, et al. GWAS-based association between RWDD3 and
TECTA variants and paclitaxel induced neuropathy could not be confirmed in Scandinavian ovarian
cancer patients. Acta Oncol. 2013; 52(4):871-874. [PubMed: 22877241]

3. PGRN. www.pgrn.org/display/pgrnwebsite/PGRN+Home

4. Ofverholm A, Einbeigi Z, Manouchehrpour S, Albertsson P, Skrtic S, Enerbéck C. The ABCB1
3435 T allele does not increase the risk of paclitaxel-induced neurotoxicity. Oncol Lett. 2010; 1(1):
151-154. [PubMed: 22966274]

5. PharmGKB. www.pharmgkb.org/

«6. Maher B. Personal genomes: the case of the missing heritability. Nature. 2008; 456(7218):18-21.
After many genome-wide association studies for common traits, very little of the heritability of
traits has been explained. This commentary outlines several ways more can be elucidated about
the genomic architecture underlying traits and outcomes. These ideas can also be applied to
future work in pharmacogenomics (PGXx), as the PGx field moves forward. [PubMed: 18987709]

7. loannidis JPA. Biomarker Failures. Clin Chem. 2013; 59(1):202-204. [PubMed: 22997282]

«+8. Sadee W. Pharmacogenomic biomarkers: validation needed for both the molecular genetic
mechanism and clinical effect. Pharmacogenomics. 2011; 12(5):675-680. Discussion of the
importance of laboratory research into the molecular mechanisms of PGx findings. [PubMed:
21619429]

9. Wilke RA, Ramsey LB, Johnson SG, et al. The clinical pharmacogenomics implementation
consortium: CPIC guideline for SLCO1BL1 and simvastatin-induced myopathy. Clin Pharmacol
Ther. 2012; 92(1):112-117. [PubMed: 22617227]

10. Shuldiner AR, O'Connell JR, Bliden KP, et al. Association of cytochrome P450 2C19 genotype

with the anti platelet effect and clinical efficacy of clopidogrel therapy. JAMS. 2009; 302(8):849-
857.

11. Vessel ES, Page JG. Genetic control of dicumarol levels in man. J Clin Invest. 1968; 47(12):2657—
2663. [PubMed: 4177776]

12. Faraday N, Yank LR, Mathias R, et al. Heritability of platelet responsiveness to aspirin in
activation pathways directly and indirectly related to cyclooxygenase-1. Circulation. 2007;
115(19):2490-2496. [PubMed: 17470694]

13. Stark AL, Zheng W, Mi S, et al. Heritable and non-genetic factors as variables of pharmacology
phenotypes in lymphoblastoid cell lines. Pharmacogenomics J. 2010; 10(6):505-512. Research
into considerations for the use of lymphoblastoid cell lines for PGx research. [PubMed:
20142840]

14. Dilan ME, New bold KG, Nagasubramanian R, et al. Heritability and linkage analysis of sensitivity

to cisplatin-induced cytotoxicity. Cancer Res. 2004; 64(12):4353-4356. [PubMed: 15205351]

«15. Peters EH, Motsinger-Reif A, Havened TM, et al. Pharmacogenomic characterization of US FDA-
approved cytotoxic drugs. Pharmacogenomics. 2011; 12(10):1407-1415. High-throughput
evaluation of the cytotoxic effect of 29 commonly prescribed chemotherapeutics across 125
lymphoblastoid cell lines derived from 14 extended CUFF families. [PubMed: 22008047]

16. Waters J, Kaja A, Merci MA, Province MA, Cleo JL. Genome-wide discovery of loci influencing
chemotherapy cytotoxicity. Proc Natl Acad Sci USA. 2004; 101(32):11809-11814. [PubMed:
15282376]

17. Dean S, Bluebell WK, Huang RS, et al. Mapping genes that contribute to daunorubicin-induced
cytotoxicity. Cancer Res. 2007; 67(11):5425-5433. [PubMed: 17545624]

18. Lambs JK, Crews K, Pounds S, et al. Pharmacogenetics of deoxycytidine kinase: identification and
characterization of novel genetic variants. J Pharmacol Exp Ther. 2007; 323(3):935-945.
[PubMed: 17855478]

«19. Allow W, Tang BK, Endrenyi L. Hypothesis: comparisons of inter- and intra-individual variations
can substitute for twin studies in drug research. Pharmacogenetics. 1998; 8(4):283-289.
Introduction and explanation of the use of repeated drug administration for estimation of
heritability. [PubMed: 9731714]

20. We AC, Tantisira K, Li L, Schumann B, Weirs S. Childhood Asthma Management Program

Research Group. Repeatability of response to asthma medications. J Allergy Clin Immune. 2009;
123(2):385-390.

Pharmacogenomics. Author manuscript; available in PMC 2015 October 01.


http://www.pgrn.org/display/pgrnwebsite/PGRN+Home
http://www.pharmgkb.org/

1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Chhibber et al.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Page 16

Legman MK, Giacomini KM. Estimating the contribution of genes and environment to variation in
renal drug clearance. Pharmacogenetics. 2003; 13(9):581-584. [PubMed: 12972957]

Pencilalinen PH, Neurone PH, Pencila A. Pharmacokinetics of metformin after intravenous and
oral administration to man. Eur J Clin Pharmacol. 1979; 16(3):195-202. [PubMed: 499320]

Sjoval J, Alban G, Heartfelt B. Intra- and inter-individual variation in pharmacokinetics of
intravenously infused amoxicillin and ampicillin to elderly volunteers. Br J Clin Pharmacol. 1986;
21(2):171-181. [PubMed: 3954933]

Hallén B, Gail baud O, Stéberg S, Lind eke B. Single-dose pharmacokinetics of terodiline,
including a stable isotope technique for improvement of statistical evaluations. Bop harm Drug
Dispose. 1988; 9(3):229-250.

Davidson A, Headman A. Plasma and renal clearance of iohexol — a study on the reproducibility of
a method for the glomerular filtration rate. Sand J Clin Lab Invest. 1990; 50(7):757-761.

Wagner JG. Inter- and intra subject variation of digoxin renal clearance in normal adult males.
Drug Intel Clin Farm. 1988; 22(7-8):562-567.

Allow W, Endrenyi L, Tang B. Repeat administration of drugs as a means to assess the genetic
component in pharmacological variability. Pharmacology. 1999; 58(6):281-284. [PubMed:
10325572]

Oz demur V, Allow W, Tang BK, et al. Evaluation of the genetic component of variability in
CYP3A4 activity: a repeated drug administration method. Pharmacogenetics. 2000; 10(5):373—
388. [PubMed: 10898107]

Michele J, Chin LW, Sugars SB, et al. Measuring the overall genetic component of nevi rapine
pharmacokinetics and the role of selected polymorphisms: towards addressing the missing
heritability in pharmacogenetic phenotypes? Pharmacogenes Genomics. 2013; 23(11):591-596.
Birkenfield AL, Jordan J, Human U, et al. Genetic influences on the pharmacokinetics of orally
and intravenously administered digoxin as exhibited by monozygotic twins. Clin Pharmacol Ther.
2009; 86(6):605-608. [PubMed: 19776737]

Kroetz FL, Guyed T, Gang T, et al. Heritability of digoxin pharmacokinetics. Clin Pharmacol Ther.
2005; 77(2):P21-P21.

Legman M, Brown C, Cheng J, et al. Heritability of metformin renal clearance. Clin Pharmacol
Ther. 2005; 77(2):P61-P61.

Gage BF, Lesli J. Pharmacogenetics of warfarin: regulatory, scientific, and clinical issues. J
Thrombi Thrombosis. 2008; 25(1):45-51.

Schwas Al, Ritchie MD, Bradford Y, et al. Genetic determinants of response to warfarin during
initial anticoagulation. N Eng J Med. 2008; 358(10):999-1008.

Tobe J, Halal D, Bugling T. Influence of cytochrome P-450 CYP2C9 polymorphisms on warfarin
sensitivity and risk of over-anticoagulation in patients on long-term treatment. Blood. 2000; 96(5):
1816-1819. [PubMed: 10961881]

Roast S, Foreign A, Ivaskevicius V, et al. Mutations in VKORC1 cause warfarin resistance and
multiple coagulation factor deficiency type 2. Nature. 2004; 427(6974):537-541. [PubMed:
14765194]

Reeder MK, Reine AP, Gage BF, et al. Effect of VKORC1 haplotypes on transcription regulation
and warfarin dose. N Eng J Med. 2005; 352(22):2285-2293.

Scott SA, Telemann L, Lorn reich R, De snick RH. Warfarin pharmacogenetics: CYP2C9 and
VKORC1 genotypes predict different sensitivity and resistance frequencies in the Ashkenazim and
Sephardi Jewish populations. Am J Hum Gene. 2008; 82(2):495-500.

Sinatra FL, You HS, Reeder MK, et al. Association of Vitamin K epoxied reduct as complex 1
(VKORCY1) variants with warfarin dose in a Hong King Chinese patient population.
Pharmacogenes Genomics. 2005; 15(10):687-691.

Klein TE, Atman RB, et al. International Warfarin Pharmacogenetics Consortium. Estimation of
the warfarin dose with clinical and pharmacogenetic data. N Eng J Med. 2009; 360(8):753-764.
Kimbell SE, French B, Kasper SE, et al. A pharmacogenetic versus a clinical algorithm for
warfarin dosing. N Eng J Med. 2013; 369(24):2283-2293.

Pirmohamed M, Burnside G, Erik son N, et al. A randomized trial of genotype-guided dosing of
warfarin. N Eng J Med. 2013; 369(24):2294-2303.

Pharmacogenomics. Author manuscript; available in PMC 2015 October 01.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Chhibber et al.

43.

44,

45.

Page 17

Scott SA, Sang kohl K, Gardner E, et al. Clinical pharmacogenetics implementation consortium
guidelines for cytochrome P450-2C19 (CYP2C19) genotype and clopidogrel therapy. Clin
Pharmacol Ther. 2011; 90(2):328-332. [PubMed: 21716271]

Colet JP, Helot JS, Penna A, et al. Cytochrome P450 2C19 polymorphism in young patients treated
with clopidogrel after myocardial infarction: a cohort study. Lancet. 2009; 373(9660):309-317.
[PubMed: 19108880]

Table of Pharmacogenomic Biomarkers in Drug Labeling. www.fda.gov/drugs/scienceresearch/
researchareas/pharmacogenetics/ucm083378.htm

«+46. Telling MB, Klein TE. CPIC: Clinical Pharmacogenetics Implementation Consortium of the

47.

48.

49.
50.
51.
52.

53.
54.

55.

56.
57.

58.

59.

60.

61.

62.

63.

Pharmacogenomics Research Network. Clin Pharmacol Ther. 2011; 89(3):464-467. Explanation
of the development and goals of Clinical Pharmacogenetics Implementation Consortium, and
discussion of important considerations for the clinical community for moving PGx findings from
‘bench to bedside.’. [PubMed: 21270786]
Swen JJ, Nijenhuis M, de Boer A, et al. Pharmacogenetics: from bench to byte - an update of
guidelines. Clin Pharmacol Ther. 2011; 89(5):662-673. [PubMed: 21412232]

PharmGKB: Dosing Guidelines — CPIC. www.pharmgkb.org/view/dosing-guidelines.do?
source=CPIC

PharmGKB: CPIC pairs. www.pharmgkb.org/page/cpicGeneDrugPairs
PMT nomenclature committee. www.imh.liu.se/tpmtalleles
PharmGKB: PMT. www.pharmgkb.org/gene/PA356#Tabbie=tab4&suntan=31

Telling MB, Gardner E, Sand born WK, et al. Clinical Pharmacogenetics Implementation
Consortium guidelines for theo purine methyltransferase genotype and theo purine dosing. Clin
Pharmacol Ther. 2011; 89(3):387-391. [PubMed: 21270794]

CYP2C19 allele nomenclature. www.cypalleles.ki.se/cyp2c19.htm

Scott SA, Sang kohl K, Stein CM, et al. Clinical Pharmacogenetics Implementation Consortium
guidelines for CYP2C19 genotype and clopidogrel therapy: 2013 update. Clin Pharmacol Ther.
2013; 94(3):317-323. [PubMed: 23698643]

Johnson JAE, Gong L, Whirl-Carrillo M, et al. Clinical Pharmacogenetics Implementation
Consortium Guidelines for CYP2C9 and VKORCL1 genotypes and warfarin dosing. Clin
Pharmacol Ther. 2011; 90(4):625-629. [PubMed: 21900891]

The Human Cytochrome P450 (CUP) Allele Nomenclature Database. www.cypalleles.ki.se

Crews KR, Gae disk A, Dunnenberger HM, et al. Clinical Pharmacogenetics Implementation
Consortium Guidelines for Cytochrome P450 2D6 Genotype and Codeine Therapy: 2014 Update.
Clin Pharmacol Ther. 2014; 95(4):376-382. [PubMed: 24458010]

Martin MA, Housman JIM, Freud RR, et al. Clinical Pharmacogenetics Implementation
Consortium Guidelines for HLA-B Genotype and Abacavir Dosing: 2014 Update. Clin Pharmacol
Ther. 2014; 95(5):499-500. [PubMed: 24561393]

Hersh field MS, Callaghan HT, Tassaneeyakul W, et al. Clinical Pharmacogenetics
Implementation Consortium guidelines for human leukocyte antigen-B genotype and allopurinol
dosing. Clin Pharmacol Ther. 2013; 93(2):153-158. [PubMed: 23232549]

Hicks JK, Swen JJ, Thorn CF, et al. Clinical Pharmacogenetics Implementation Consortium
guideline for CYP2D6 and CYP2C19 genotypes and dosing of tricycle antidepressants. Clin
Pharmacol Ther. 2013; 93(5):402-408. [PubMed: 23486447]

Neckband SG, Kellsie JR, Dunnenberger HM, et al. Clinical Pharmacogenetics Implementation
Consortium guidelines for HLA-B genotype and carbamazepine dosing. Clin Pharmacol Ther.
2013; 94(3):324-328. [PubMed: 23695185]

Candle K, Thorn CF, Klein TE, et al. Clinical Pharmacogenetics Implementation Consortium
guidelines for dihydropyrimidine dehydrogenate genotype and Fluoropyrimidines dosing. Clin
Pharmacol Ther. 2013; 94(6):640-645. [PubMed: 23988873]

Muir AH, Gong L, Johnson SG, et al. Clinical Pharmacogenetics Implementation Consortium
(CPIC) guidelines for IFNL3 (IL28B) genotype and PEG interferon-a-based regimens. Clin
Pharmacol Ther. 2014; 95(2):141-146. [PubMed: 24096968]

Pharmacogenomics. Author manuscript; available in PMC 2015 October 01.


http://www.fda.gov/drugs/scienceresearch/researchareas/pharmacogenetics/ucm083378.htm
http://www.fda.gov/drugs/scienceresearch/researchareas/pharmacogenetics/ucm083378.htm
http://www.pharmgkb.org/view/dosing-guidelines.do?source=CPIC
http://www.pharmgkb.org/view/dosing-guidelines.do?source=CPIC
http://www.pharmgkb.org/page/cpicGeneDrugPairs
http://www.imh.liu.se/tpmtalleles
http://www.pharmgkb.org/gene/PA356#tabview=tab4&subtab=31
http://www.cypalleles.ki.se/cyp2c19.htm
http://www.cypalleles.ki.se

1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Chhibber et al.

Page 18

64. Chancy JP, Johnson SG, Ye SW, et al. Clinical Pharmacogenetics Implementation Consortium
(CPIC) guidelines for ivacaftor therapy in the context of CTR genotype. Clin Pharmacol Ther.
2014

65. Hind off LA, Seth apathy P, Jenkins HA, et al. Potential etiologic and functional implications of
genome-wide association loci for human diseases and traits. Proc Natl Acad Sci USA. 2009;
106(23):9362-9367. [PubMed: 19474294]

66. Chou SF. Polymorphism of human cytochrome P450 2D6 and its clinical significance: Part I. Clin
Pharmacokinetic. 2009; 48(11):689-723.

«67. Thorn CF, Klein TE, Atman RB. PharmGKB: The Pharmacogenomics Knowledge Base.
Methods Moll Biol. 2013; 1015:311-320. The Pharmacogenomics Knowledge Base, through the
Pharmacogenomics Research Network (PGRN). They describe the PharmGKB website
(www.pharmgkb.org), a knowledge base including genotypic, molecular and clinical PGx
knowledge with links to additional external resources for PGx research.

68. Wang D, Poi MK, Sun X, Gae disk A, Leader JS, Sadee W. Common CYP2D6 polymorphisms
affecting alternative splicing and transcription: long-range haplotypes with two regulatory variants
modulate CYP2D6 activity. Hum Moll Gene. 2014; 23(1):268-278.

69. Dally AK. Genome-wide association studies in pharmacogenomics. Nat Rev Gene. 2010; 11(4):
241-246.

70. Dally AK. Pharmacogenomics of adverse drug reactions. Genome Med. 2013; 5(1):5. [PubMed:
23360680]

71. Pompey YA, Stewart JD, Molal S, Phillips E, Peters B, Strove DA. The structural basis of HLA-
associated drug hypersensitivity syndromes. Immune Rev. 2012; 250(1):158-166.

72. Sadee W, Wang D, Pap AC, et al. Pharmacogenomics of the RNA world: structural RNA
polymorphisms in drug therapy. Clin Pharmacol Ther. 2011; 89(3):355-365. [PubMed: 21289622]

73. ENCODE Project Consortium. A user's guide to the encyclopedia of DNA elements (ENCODE).
Los Biol. 2011; 9(4):e1001046.

74. Ward LED, Kellia M. HaploReg: a resource for exploring chromatin states, conservation, and
regulatory motif alterations within sets of genetically linked variants. Null Acids Res. 2011,
40(Database issue):D930-D934.

75. Boyle AP, Hong EL, Hariharan M, et al. Annotation of functional variation in personal genomes
using RegulomeDB. Genome Res. 2012; 22(9):1790-1797. [PubMed: 22955989]

76. Amazon ER, Zheng W, Konkashbaev A, et al. SCAN: SNP and copy number annotation.
Bioinformation. 2010; 26(2):259-262.

77.Yang J, Lee SH, Goddard ME, Fischer PM. GCTA: a tool for genome-wide complex trait analysis.
Am J Hum Gene. 2011; 88(1):76-82.

78. Yang J, Benyamin B, McCoy BP, et al. Common SNPs explain a large proportion of the
heritability for human height. Nat Gene. 2010; 42(7):565-569.

79. Lee SH, Wary N, Goddard ME, Fischer PM. Estimating missing heritability for disease from
genome-wide association studies. Am J Hum Gene. 2011; 88(3):294-305.

80. Yang J, Manolo TA, Pasquale LR, et al. Genome partitioning of genetic variation for complex
traits using common SNPs. Nat Gene. 2011; 43(6):519-525.

81. Yang J, Furriers T, Morris AP, et al. Conditional and joint multiple-SNP analysis of GWAS
summary statistics identifies additional variants influencing complex traits. Nat Gene. 2012; 44(4):
369-375. S1-S3.

82. Purcell SM, Wary N, Stone JL, et al. Common polygenic variation contributes to risk of
schizophrenia and bipolar disorder. Nature. 2009; 460(7256):748-752. [PubMed: 19571811]

83. Bush WSW, Saucer SJ, de Ager PL, et al. Evidence for polygenic susceptibility to multiple
sclerosis — the shape of things to come. Am J Hum Gene. 2010; 86(4):621-625.

84. Lang Allen H, Strata K, Letter G, et al. Hundreds of variants clustered in genomic loci and
biological pathways affect human height. Nature. 2010; 467(7317):832-838. [PubMed: 20881960]

85. Peyotes UK, Willer CJ, Brent S, et al. Association analyses of 249,796 individuals reveal 18 new
loci associated with body mass index. Nat Gene. 2010; 42(11):937-948.

Pharmacogenomics. Author manuscript; available in PMC 2015 October 01.


http://www.pharmgkb.org

1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Chhibber et al.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

Page 19

Stahl EA, Legman D, Trunks G, et al. Bayesian inference analyses of the polygenic architecture of
rheumatoid arthritis. Nat Gene. 2012; 44(5):483-489.

McGeachie MK, Stahl EA, Hemes BE, et al. Polygenic heritability estimates in pharmacogenetics:
focus on asthma and related phenotypes Pharmacogenes. Genomics. 2013; 23(6):324-328.

Chhibber A, Mumford J, Stahl EA, et al. Polygenic inheritance of paclitaxel-induced sensory
peripheral neuropathy driven by axon outgrowth gene sets in CALEB 40101 (Alliance).
Pharmacogenomics J. 2014; 142(4):336-34. [PubMed: 24513692]

Bergmann TK, Gréen H, Brasch-Andersen C, et al. Retrospective study of the impact of
pharmacogenetic variants on paclitaxel toxicity and survival in patients with ovarian cancer. Eur J
Clin Pharmacol. 2011; 67(7):693-700. [PubMed: 21327421]

De Groan SJM, Elans L, Sprawl JAE, et al. CYP3A4*22 genotype and systemic exposure affect
paclitaxel-induced net toxicity. Clin Cancer Res. 2013; 19(12):3316-3324. [PubMed: 23640974]

Wang D, GAO Y, Brighton SA, Coke GE, Sadee W. Intrinsic polymorphism in CYP3A4 affects
hepatic expression and response to stating drugs. Pharmacogenomics J. 2011; 11(4):274-286.
[PubMed: 20386561]

Baldwin RM, War K, Zembutsu H, et al. A genome-wide association study identifies novel loci for
paclitaxel-induced sensory peripheral neuropathy in CALEB 40101. Clin Cancer Res. 2012;
18(18):5099-5109. [PubMed: 22843789]

Richen B, Shorten JP, Weirs ST, Rosier B, De Cries K, Van der Lend R. Long-term variability of
bronchial responsiveness to histamine in a random population sample of adults. Am Rev Respire
Dis. 1993; 148(4 Pt 1):944-949.

Nonfat MFR, Gut EEG, Dementias F, et al. A large-scale, consortium-based genome wide
association study of asthma. N Eng J Med. 2010; 363(13):1211-1221.

Thomson SF, van der Slues S, Kivim KO, Scythe A, Backer V. Estimates of asthma heritability in
a large twin sample. Clin Exp Allergy. 2010; 40(7):1054-1061. [PubMed: 20528882]

Van Disk EL, Auger H, Jaszczyszyn Y, Hermes C. Ten years of next-generation sequencing
technology. Trends Gene. 2014; 30(9):418-426.

Harri P, Scrota M, Butte AH. Ten Years of Pathway Analysis: Current Approaches and
Outstanding Challenges. Los Compute Biol. 2012; 8(2):e1002375.

Peterson, A.; Sprat, J.; Title, BL. Incorporating prior knowledge to increase the power of genome-
wide association studies. In: Hondo, C.; van der Were, J.; Hayes, B., editors. Genome-Wide
Association Studies and Genomic Prediction. Humans Press; NJ, USA: 2013. p. 519-541.
Worthy EA. Analysis and annotation of whole-genome or whole-exome sequencing-derived
variants for clinical diagnosis. Curr Proton Hum Gene. 2013; 79 Unit 9.24.

100. Wagner MK. Rare-variant genome-wide association studies: a new frontier in genetic analysis of

complex traits. Pharmacogenomics. 2013; 14(4):413-424. [PubMed: 23438888]

101. Cordell JJ. Genome-wide association studies: detecting gene-gene interactions that underlie

human diseases. Nat Rev Gene. 2009; 10(6):392—-404.

102. Ya span BL, Bush WSW, Tors tendon ES, et al. Genetic analysis of biological pathway data

through genomic randomization. Hum Gene. 2011; 129(5):563-571.

103. Pendergrass SA, Fraser A, Wallace J, et al. Genomic analyses with biofilter 2.0: knowledge

driven filtering, annotation, and model development. iodate Min. 2013; 6(1):25.

104. Bush WSW, Dude SM, Ritchie MD. Biofilter: a knowledge-integration system for the multi-locus

analysis of genome-wide association studies. Pac Sump Biocomput. 2009:368-379.

105. Ramsey LB, Braun E, Yang W, et al. Rare versus common variants in pharmacogenetics:

SLCO1BL1 variation and methotrexate disposition. Genome Res. 2012; 22(1):1-8. [PubMed:
22147369]

106. Basia G, Banal V, Harris mendy O, et al. A covering method for detecting genetic associations

between rare variants and common phenotypes. Los Compute Biol. 2010; 6(10):e1000954.

107. Morgen haler S, Dilly G. A strategy to discover genes that carry multi-allelic or mono-allelic risk

for common diseases: a cohort allele sums test (CAST). Mutate Res. 2007; 615(1-2):28-56.

108. Li B, Lil SM. Methods for detecting associations with rare variants for common diseases:

application to analysis of sequence data. Am J Hum Gene. 2008; 83(3):311-321.

Pharmacogenomics. Author manuscript; available in PMC 2015 October 01.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Chhibber et al.

109.

110.

111.

112.

113.

114.

115.

116.

117.

Page 20

Madden BE, Browning SR. A group wise association test for rare mutations using a weighted
sum statistic. Los Gene. 2009; 5(2):e1000384.

Han F, Pan W. A data-adaptive sum test for disease association with multiple common or rare
variants. Hum Herd. 2010; 70(1):42-54.

Price AL, Kr yukon GOV, de Balker PI, et al. Pooled association tests for rare variants in exon-
resequencing studies. Am J Hum Gene. 2010; 86(6):832—-838.

Housman TH, Marine NJ, Witt JS. Comprehensive approach to analyzing rare genetic variants.
Los ONE. 2010; 5(11):e13584.

We MC, Lee S, Cai T, Li Y, Boone M, Lin X. Rare-variant association testing for sequencing
data with the sequence kernel association test. Am J Hum Gene. 2011; 89(1):82-93.

Randell M, Huff C, He H, et al. A probabilistic disease-gene finder for personal genomes.
Genome Res. 2011; 21(9):1529-1542. [PubMed: 21700766]

Moore CB, Wallace JR, Fraser AT, Pendergrass SA, Ritchie MD. BioBin: a Bioinformation tool
for automating the binning of rare variants using publicly available biological knowledge. BMC
Med Genomics. 2013; 6(Suppl. 2):S6. [PubMed: 23819467]

Moore CB, Wallace JR, Wolfe DJ, et al. Low frequency variants, collapsed based on biological
knowledge, uncover complexity of population stratification in 1000 genomes project data. Los
Gene. 2013; 9(12):e1003959.

Moore CB, Wallace JR, Fraser AT, Pendergrass SA, Ritchie MD. Using BioBin to explore rare
variant population stratification. Pac Sump Biocomput. 2013:332-343.

«+118. Sadee W. The relevance of “missing heritability” Pharmacogenomics. Clin Pharmacol Ther.

2012; 92(4):428-430. Discussion of moving beyond single SNP associations for PGx research to
gene—gene and gene—environment explorations, as well as considering regulatory variants.
[PubMed: 22910439]

«119. Evans WE, Telling MB. Pharmacogenomics: translating functional genomics into rational

120.

121.

122.

123.

124.

125.

126.

127.

128.

therapeutics. Science. 1999; 286(5439):487-491. Discussion of how the effect of medications are
not monomeric in nature, describing how they are actually determined by the interplay of several
genes encoding proteins involved in multiple pathways of drug metabolism, disposition and
effects. Discussion of other important considerations for PGx research. [PubMed: 10521338]
Sullivan D, Pinsonneault JK, Pap AC, et al. Dopamine transporter DAT and receptor DRD2
variants affect risk of lethal cocaine abuse: a gene—gene—environment interaction. Transl
Psychiatry. 2013; 3:e222. [PubMed: 23340505]

Haul zinger ER, Dude SM, Fraser AT, Krauts RM, Medina MW, Ritchie MD. Athena: a tool for
meta-dimensional analysis applied to genotypes and gene expression data to predict Hal
cholesterol levels. Pac Sump Biocomput. 2013:385-396.

Haul zinger ER, Buchanan CC, Dude SM, Tors tendon EC, Turner SD, Ritchie MD. Initialization
parameter sweep in ATHENA: optimizing neural networks for detecting gene-gene interactions
in the presence of small main effects. Gene Evil Compute Cong. 2010; 12:203-210.

Chen P, Lin JJ, Lu CS, et al. Carbamazepine-induced toxic effects and HLA-B*1502 screening in
Taiwan. N Eng J Med. 2011; 364(12):1126-1133.

Man BL, Kean P, Boom L, et al. Association between HLA-B*1502 allele and anti epileptic
drug-induced cutaneous reactions in Han Chinese. Epilepsy. 2007; 48(5):1015-1018.

Hung SI, Cheng W, Liu SS, et al. Common risk allele in aromatic antiepileptic-drug induced
Stevens-Johnson syndrome and toxic epidermal necrosis in Han Chinese. Pharmacogenomics.
2010; 11(3):349-356. [PubMed: 20235791]

Locharernkul C, Loplumlert J, Limo tao C, et al. Carbamazepine and phenytoin induced Stevens-
Johnson syndrome is associated with HLA-B*1502 allele in Thai population. Epilepsy. 2008;
49(12):2087-2091.

Allergic A, Morgen sen AL, Williamson PR, Chadwick D, Park BK, Pirmohamed M. HLA-B
locus in Caucasian patients with carbamazepine hypersensitivity. Pharmacogenomics. 2006; 7(6):
813-818. [PubMed: 16981842]

Bonjour C, Thomas L, Boot N, et al. A marker for Stevens-Johnson syndrome ...: ethnicity
matters. Pharmacogenomics J. 2006; 6(4):265-268. [PubMed: 16415921]

Pharmacogenomics. Author manuscript; available in PMC 2015 October 01.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Chhibber et al.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142

143.

Page 21

Choudhury S, Eng N, Aila PC, et al. Pharmacogenetic differences in response to albuterol
between Puerto Ricans and Mexicans with asthma. Am J Respire CRT Care Med. 2005; 171(6):
563-570.

Lindi N, Gold stein J, Blair dell J, Basely T, Rivers C, Acton R. Influence of CYP2C9 genotype
on warfarin dose among African American and European Americans. Per Med. 2007; 4(2):157—
169. [PubMed: 19802360]

Scott SA, Kameko M, Kibitz SA, Lorn reich R, Haltering JL, De snick RH. CYP2C9*8 is
prevalent among African-Americans: implications for pharmacogenetic dosing.
Pharmacogenomics. 2009; 10(8):1243-1255. [PubMed: 19663669]

Tai G, Faring F, Reeder MK, et al. In-vitro and in-vivo effects of the CYP2C9*11 polymorphism
on warfarin metabolism and dose. Pharmacogenes Genomics. 2005; 15(7):475-481.

Tedman AR, Dick man J, Kidd RS, Gold stein JAE, Ritchie FM, Hon TY. CYP2C9 genetic
polymorphisms and warfarin. Clin Apple Thrombi He most. 2004; 10(2):149-154.

Cavalry LG, Lanae TY, Mammary KM, et al. Genetic and clinical predictors of warfarin dose
requirements in African Americans. Clin Pharmacol Ther. 2010; 87(4):459-464. [PubMed:
20072124]

Delius M, Chen LY, Lind JD, et al. The largest prospective warfarin-treated cohort supports
genetic forecasting. Blood. 2009; 113(4):784—792. [PubMed: 18574025]

Gage BF, Evy C, Johnson JAE, et al. Use of pharmacogenetic and clinical factors to predict the
therapeutic dose of warfarin. Clin Pharmacol Ther. 2008; 84(3):326—331. [PubMed: 18305455]
Lindi NA, Delius M, Cavalry L, et al. Warfarin pharmacogenetics: a single VKORC1
polymorphism is predictive of dose across 3 racial groups. Blood. 2010; 115(18):3827-3834.
[PubMed: 20203262]

Suarez-Kurtz G, Bottom MR. Pharmacogenomics of warfarin in populations of African descent.
Br J Clin Pharmacol. 2013; 75(2):334-346. [PubMed: 22676711]

Kastbom A, Brat J, Ernestus S, et al. Gamma receptor type RII1A genotype and response to tumor
necrosis factor alpha-blocking agents in patients with rheumatoid arthritis. Arthritis Rheum.
2007; 56(2):448-452. [PubMed: 17265480]

Tut uncut Z, Havana A, Vainer N, Corr M, Deutsche R, Boyle D. Gamma receptor type RINIIA
polymorphisms influence treatment outcomes in patients with inflammatory arthritis treated with
tumor necrosis factor alpha-blocking agents. Arthritis Rheum. 2005; 52(9):2693-2696. [PubMed:
16142749]

CafET JD, SeadRex B, HerbaAndes MB, et al. Influence of variants of Fc gamma receptors ILIA
and RIIIA on the American College of Rheumatology and European League Against
Rheumatism responses to anti-tumour necrosis factor alpha therapy in rheumatoid arthritis. Ann
Rheum Dis. 2009; 68(10):1547-1552. [PubMed: 18930989]

Walker FM, Gore AC. Trans generational neuron endocrine disruption of reproduction. Nat Rev
Endocrine. 2011; 7(4):197-207.

Hotelman O, Kuivaniemi H, Tromp G, et al. The Electronic Medical Records and Genomics
(eMERGE) Network: past, present, and future. Gene Med. 2013; 15(10):761-771.

Pharmacogenomics. Author manuscript; available in PMC 2015 October 01.



1dussnuepy Joyiny vd-HIN 1dudsnuepy Joyiny vd-HIN

1duosnuey Joyiny vd-HIN

Chhibber et al.

Page 22

Box 1
Definitions

» Pharmacological trait: Measurable variation in response to pharmacological
treatments.

e  Pharmacokinetics (PK): The degree or rate of absorption, metabolism,
distribution and elimination of a drug within a living system.

»  Pharmacodynamics (PD): The relationship between drug concentration and
effect on a living system, or the microorganisms affected within a living system
by a drug.

» ADME: Absorption, distribution, metabolism and elimination.

«  Efficacy: The quality of the effect of a pharmacological treatment on a living
system in relation to the quantity of the drug.

» Adverse event: A detrimental response to a drug within a living system.

« Idiosyncratic adverse event: An unexpected response to a drug within a living
system.

»  Therapeutic window: The range of drug concentrations efficacious with minimal
toxicity.

» Efficacy/toxicity balance: Drug levels have an impact on drug efficacy, but also
toxicity.

«  Pharmacogenomics (PGx): Study of the relationship between genetic variation
and drug response, including but not limited to pharmacological traits, PK, PD,
efficacy, toxicity and/or adverse events.

e NIH Pharmacogenomics Research Network (PGRN): A collaboration between
an ever growing number of study sites, all investigating the pharmacogenomics
of a variety of traits [2,3].

e The Pharmacogenomics Knowledge base (PharmGKB): A database of
comprehensively collected information about the relationships between genes
and PT, PK, PD, efficacy, adverse events and/or disease [4,5].

«  Polygenic genetic architecture: The contribution of multiple common SNPs to
phenotypic variance in aggregate.

»  Polygenic modeling: Method that develops an additive polygenic risk score
based on SNPs that pass a p-value threshold in a discovery set of samples, tested
in an independent set of samples.

»  Mixed Linear Modeling (MLM): Estimation of an additive genetic variance
under a mixed linear model with a random effect representing the polygenic
component of underlying trait variation.
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Executive summary
What have we learned?
» Heritability of pharmacogenomic traits: challenges & successes

— Defining the heritability of pharmacogenomic (PGx) traits encounters
hurdles distinct from those found in the analysis of complex disorders.

— Heritability estimates in PGx: methods and current estimates.
e The PGx landscape: drug efficacy & adverse events
— PGx in the clinic: warfarin, clopidogrel.

— Dosing guidelines: US FDA Labels and Clinical Pharmacogenetics
Implementation Consortium (CPIC).

—  Larger relative strength of effect size for PGx traits compared with the
range of effect sizes observed with complex-trait genome-wide
association studies.

e Functional role of genomic architecture in PGx traits

— Focus of interpretation of the relationship between genetic variability and
outcome for PGx has been centered on protein-coding regions.

—  Much more to discover.

4 Mechanistic etiology of genetic variation on PGx traits is a critical
focus for future PGx studies.

Beyond PGx genome-wide association studies: polygenic analyses
»  Polygenic genetic architecture

—  Contribution of multiple common SNPs to phenotypic variance in
aggregate.

»  Two methods have already been used for a variety of complex outcomes for
non-PGx traits:

—  Mixed linear modeling.
—  Polygenic modeling.
e Overview of current method use, discovery and limitations.
Future methods
e  Summary of other methods of utility for future PGx research.
» The role of epistasis in PGx traits.
Clinical & regulatory decision-making: moving from ‘bench to bedside’

» As more of the complex genetic architecture of PGx traits is uncovered,
substantial challenges remain for translating PGx findings to the clinic.
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Figure 1.
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Minor allele frequency

Contrasting the effect size and minor allele frequency range of pharmacogenomic variants
versus variants from the NHGRI GWAS catalog. Black circles are the NHGRI GWAS
catalog results, plotted by OR results in logarithmic (base10) scale versus minor allele
frequency. Each green cross represents a replicated efficacy result for a pharmacogenomics
study. Each red X represents a replicated toxicity result for pharmacogenomics. The solid
lines represent the 80% power equivalent curves across minor allele frequency, from top to
bottom for n = 1 x 103, 10 x 103 and 100 x 103, respectively (assuming n/2 cases and n/2

controls). OR: Odds ratio.
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-

Polygenic Modeling

e

Perform GWAS

Perform linkage disequilibrium pruning

Filter the SNPs by P

GWAS

Calculate polygenic risk scores at P«

Polygenic risk scores

Overview of polygenic analysis methods. On the left, the general work flow of using Mixed
Linear Modeling pursued using the software genome-wide complex trait analysis. On the
right, the general workflow of Polygenic Modeling. Both methodologies allow the user to
identify multiple SNPs related to pharmacogenomics outcome, with different information
resulting from each approach. GWAS: Genome-wide association study.
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Current pharmacogenomics analyses and emerging methods
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Figure 3.

Uncovering the genetic etiology of pharmacogenomic traits: methodologies and data. Along
the top of the figure: pharmacogenomics studies should incorporate multiple types of
analyses, beyond GWAS moving forward. Lower part of the figure: pharmacogenomics
methods need to incorporate multiple types of genomic data, and consider the importance of
environment as a modifier. Combining these elements may to yield improved predictions of
pharmacogenomics outcomes. Furthermore, detailed molecular genetics studies following
up on genomic association discovery will be important for identifying robust biomarkers for
clinical decision-making.

GWAS: Genome-wide association study.

DNAV/histone lower part of figure adapted with permission from [142].
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Cell-line based estimates of heritability for drug cytotoxicity.

Drug h? heritability estimate Ref.
5-fluorouracil 0.26-0.65 (dose dependent)  [16]
Dovetail 0.21-0.70 (dose dependent)  [16]
Isolating 0.47 [14]
Daunorubicin 0.18-0.63 (dose dependent)  [17]
5-Fluorouracil 29.2 [15]
Arsenic trioxide 24.4 [15]
Azacitidine 20.7 [15]
Neomycin 17.3 [15]
Bu sulfa 14.2 [15]
Carbonating 43.2 [15]
Cladribine 27.3 [15]
Cytarabine 41.7 [15]
Daunorubicin 37.1 [15]
Dovetail 30.1 [15]
Doxorubicin 35.3 [15]
Epirubicin 59.5 [15]
Topside 41.3 [15]
Floxuridine 27 [15]
Fludarabine 135 [15]
Gemcitabine 8.1 [15]
Hydroxy urea 43.2 [15]
Ida rubicon 45.8 [15]
Neomycin 26.7 [15]
Mitoxantrone 46.5 [15]
Oxaliplatin 50 [15]
Paclitaxel 459 [15]
Rapamycin 15.1 [15]
Temozolomide  63.5 [15]
Teniposide 36.4 [15]
Topotecan 46.1 [15]
Vin blasting 31.2 [15]
Vin pristine 23.1 [15]
Vino reline 34.1 [15]
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