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Abstract

Intratumoral heterogeneity has been found to be a major cause of drug resistance. Cell-to-cell 

variation increases as a result of cancer-related alterations, which are acquired by stochastic events 

and further induced by environmental signals. However, most cellular mechanisms include natural 

fluctuations that are closely regulated, and thus lead to asynchronization of the cells, which causes 

intrinsic heterogeneity in a given population. Here, we derive two novel mathematical models, a 

stochastic agent-based model and an integro-differential equation model, each of which describes 

the growth of cancer cells as a dynamic transition between proliferative and quiescent states. 

These models are designed to predict variations in growth as a function of the intrinsic 

heterogeneity emerging from the durations of the cell-cycle and apoptosis, and also include 

cellular density dependencies. By examining the role all parameters play in the evolution of 

intrinsic tumor heterogeneity, and the sensitivity of the population growth to parameter values, we 

show that the cell-cycle length has the most significant effect on the growth dynamics. In addition, 

we demonstrate that the agent-based model can be approximated well by the more 

computationally efficient integro-differential equations when the number of cells is large. This 

essential step in cancer growth modeling will allow us to revisit the mechanisms of multi-drug 

resistance by examining spatiotemporal differences of cell growth while administering a drug 

among the different sub-populations in a single tumor, as well as the evolution of those 

mechanisms as a function of the resistance level.
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1. Introduction

1.1. Induced Heterogeneity

The development of a tumor is a complex evolutionary process that involves perturbations in 

many essential cellular mechanisms. Spatiotemporal cellular dynamics include various types 

of hallmark alterations that may be acquired through stochastic processes and induced by 

environmental signals, such as metabolic stress, inflammatory microenvironments, immune 

responses, and/or therapy. Combinations of these signals produce intratumoral 

heterogeneity. Many primary human tumors have been discovered to contain genetically and 

phenotypically distinct cellular subpopulations with different growth rates. This intratumoral 

heterogeneity has further been found to be a major contributor of drug resistance [17]. 

Resistance to chemotherapy is a major impediment to successful cancer treatment. Several 

central mechanisms have been identified as contributing to resistance; however, these do not 

necessarily account for tumor dynamics [7]. It is known that most patients that are diagnosed 

with cancer have already developed some level of drug resistance while the tumor is 

forming. Thus after therapy, they experience a relapse, where the disease could become 

intractable or even possibly untreatable. Various theoretical and empirical studies aim to 

predict the development of a tumor, mainly by assuming the existence of abnormal events 

that cause cancer-related alterations [10]. Understanding the course of malignancy and 

estimating cancer growth based on tumor cell responses to microenvironmental changes as 

an induced dynamic process may serve to identify new targets for therapy or methods of 

prevention.

1.2. Intrinsic Heterogeneity

However, there is another side to this ‘equation’; one that does not necessarily account for 

tumor heterogeneity that results exclusively from cancer-related irreversible processes. 

Instead, heterogeneity can arise via typical reversible biological processes that are 

stochastic, yet nevertheless tightly regulated, in nature. These natural intrinsic mechanisms 

add another layer of complexity to a cell’s capacity to integrate information, particularly in 

cancer cells. One such cellular process is the cell-cycle. The cell-cycle is one of the most 

studied biological processes, and has obvious effects on cancer development, growth, and 

therapeutic resistance. Eukaryotic intracellular dynamics are mediated by many different 

molecular components (e.g. transcription factors, proteins, metabolites, RNA, etc.). Each 

such component operates at a different rate, often under different conditions, and responds to 

many dynamic inter- and intra-cellular signals, such as pH, temperature, and cellular density 

in the local environment. In order to maintain an ordered cell-cycle mechanism that would 

function consistently, despite a routinely noisy microenvironment, variations in gene 

expression [15], cell-cycle period [22], cell size and age [21], and cellular death period [12, 

19] of cells from the same clone must exist. Advances in methods to both study naturally 

intrinsic significant variations in tumor growth and characterize intratumoral heterogeneity 

would aid in determining natural fluctuations in cell growth, understanding how tumor 

development is affected by these natural fluctuations, detecting these types of tumors after 

treatment, and understanding how induced and intrinsic mechanisms can be found.
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1.3. Self-Organized Dynamics

Two frameworks that are commonly used to design mathematical cancer models which 

predict cellular behavior are individual-based models and continuous deterministic models. 

Several different individual-based models of tumor growth have been developed recently 

(see review [1]). Among them are agent-based models (ABMs). The ABM framework is a 

powerful simulation method that has seen a variety of applications, including bio-medical 

research [14, 20, 23] and socio-economic modeling [4]. ABMs describe dynamic systems as 

collections of autonomous decision-making individuals called agents. Each agent assesses 

its state and makes decisions on the basis of a set of rules. Agents may execute various 

behaviors appropriate for the system they represent. ABMs are generally more flexible than 

deterministic models and may take into account virtually any biological phenomenon. Here, 

we present two mathematical approaches, the ABM and a corresponding integro-differential 

(IDE) model, to predict the growth of a single ovarian cell line, OVCAR-8, where the cells 

can be proliferating, dying, or in quiescence. The novelty of our methods lie in the 

description of cellular decision-making as a function of the global dynamic cell density, with 

intrinsic variations of the cell-cycle and death process lengths. Decisions concerning actions 

are based on how the cell senses its environment, in a probabilistic fashion. We study the 

robustness of cell growth despite noise in division and natural death rates. The entire system 

dynamic results from the decisions of individual entities that can cause transient or 

permanent heterogeneity, generate network effects, and potentially lead to significant 

deviations from stochastic to deterministic predictions. We demonstrate the existence of 

fluctuations in cell growth using data of proliferation rates as a function of cellular density. 

This fundamental framework of cellular growth dynamics is a necessary first step that will 

allow us to work on more complex co-cultured systems based on geometry, which includes a 

spatial mechanism of drug resistance that could shed light on the spatiotemporal evolution of 

intratumoral heterogeneity.

2. Agent-Based Model

The first model we introduce is an ABM, where each cell is distinguished with its own state 

and behavior. This framework permits a simple way to introduce an age structure into the 

model, which is a main focus of this work.

2.1. Model Construction

The ABM consists of three compartments of cells: proliferative (P), apoptotic (A), and 

quiescent (Q). See Figure 1 for an outline of the transitions between compartments. Q 

consists of cells that are neither dividing nor dying, and acts mainly as a reservoir for the 

other two compartments. P consists of cells that are currently in any stage of the cell-cycle. 

When a cell makes a transition from Q into P, a cell-cycle length, LP, is chosen. LP was 

assumed to be a random variable with normal distribution:

(1)

where μ is the mean length of the cell-cycle, and σ is the standard deviation [22]. The value 

of μ is taken as the doubling time of OVCAR-8 cells, which is estimated to be 24.4416 hours 
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(see Section 4.1). Once a cell is in P, it progresses through the cell-cycle for LP hours, unless 

a transition occurs to the apoptotic compartment A. Both mother and daughter cells 

subsequently leave the division stage and become quiescent (Q). The last compartment, A, 

consists of cells currently in the apoptotic process. Cells in A remain for a random length of 

time LA, after which the cell transitions out of the apoptotic compartment to complete cell 

death. Based on the experimental data of Messam and Pittman [12], we approximate LA as a 

gamma-distributed random variable:

(2)

where ω and λ denote the shape and rate parameters, respectively. See Section 4.1 for 

details.

Lastly, we assumed that transitions between the three compartments are governed both by 

the global cellular density, labeled ρ, and the random amount of time spent in P or A (LP, 

LA, respectively). We formulated these transitions in terms of rate parameters. Consider, for 

example, the transition from Q to P, that is, the probability of a cell entering the cell-cycle 

from quiescence. We model this using a rate, αp(t), with the interpretation that for a small 

amount of time Δt, αp(t)Δt is essentially the probability of one cell making a transition from 

Q into P at some point in the time interval [t, t + Δt]. More precisely, we are assuming a 

first-order dependence in the time step for transition probabilities, and thus the process can 

be thought of as Poisson, with non-homogeneous intensity αp(t). Of course, all of this holds 

only in the limit as Δt → 0+, as theoretically this is a continuous time Markov chain. In 

practice however, we simulate using small discrete time steps Δt, and take αp(t)Δt as the 

exact transition probability per cell. All other explicit transition rates (dark lines in Figure 1) 

have this same interpretation.

The transition rates are functions of β and d (see AppendixB). One of our fundamental 

assumptions is that the measurements of β and d did not occur at equilibrium, since the two 

division fraction data sets do not agree in value (see Figure 2(a)). However, the two curves 

do agree qualitatively in their general trend, as both contain relative maxima βm ∈ [0.3, 0.8] 

occurring at some density ρm ∈ (0, 1). Using this observation, we postulated equilibrium 

distributions β(ρ) and d(ρ) with the same basic structure:

(3)

(4)

where

(5)
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There are a total of 4 free parameters in (3)–(4): βm, ρm, ε, and d. See Table A1 for 

calculated values and explanations, and Figures 2(a) and 2(b) (red curves) for a sample plot 

of β(ρ) and d(ρ) at an arbitrary parameter set.

d(ρ) is chosen as a constant d since its observed range of values is small (0.01 ≤ d ≤ 0.05), 

and relative to β, appears essentially constant (see Figure 2(b)). However, we do use these 

values as the lower and upper bound on parameter searches (see Section 4.4). One can also 

check that β(ρ) in (4) has absolute/relative maximum βm at ρ = ρm, which is the 

aforementioned desired constraint. ε is a constant which dictates how rapidly β(ρ) decreases 

for large cellular densities. Condition (5) guarantees that β(1) = d, and furthermore, β(ρ) < d 

for ρ > 1. Lastly, β(ρ) = 0 for ρ > 1 + ε. The reason for these choices is as follows: we allow 

the possibility that ε > 1, since it was observed that OVCAR-8 cells may deform their cell 

membranes and/or grow upon one another in a two-dimensional culture to complete mitosis. 

Hence, we allow divisions when ρ > 1, but we ensure that death is more likely in this 

regime. Thus, when ρ > 1, a net increase in cells should only occur from cells that 

previously entered compartment P and successfully completed cell division; no net flow 

between compartments P and A exists. Furthermore, when the plate becomes dense enough 

(i.e. ρ > 1 + ε), no cells can enter P.

The rates that describe the transitions between the cellular compartments are given below:

(6)

(7)

(8)

where

(9)

(10)

Nq(t), Np(t), and Na(t) are the cell counts in compartments Q, P, and A, respectively, at time 

t, and K represents a constant that defines ρ = 1, which should be interpreted as the number 

of cells which occupy a single layer of the culture. Throughout this work, K was scaled to be 

40401, for a 201 cell by 201 cell square environment. c > 0 is a per time constant which 

represents a cellular reaction rate, and γ ∈ [0, 1] is a unitless proportion corresponding to the 

difference in arrivals to compartment A via compartments P and Q. Note that all quantities 

are dynamic and stochastic.
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2.2. Rate Derivations

In this section, we provide motivation for the forms employed in equations (6)–(8). Consider 

transitions from quiescence to division (Q to P). Our fundamental assumption is that there 

exists a theoretical β(ρ) (represented by (4) with sample visualization appearing as the red 

curve in Figure 2(a)) which yield the fraction of cells that are in compartment P at 

equilibrium. Hence, all cells on the culture calibrate towards the fraction in this figure. 

Converting fractions to cell numbers, one can mathematically describe the desired number 

of proliferative cells as

(11)

in general, Np,desired(t) and Np(t) are not equal, and thus cells transfer compartments. By the 

interpretation of Poisson rates, the number of cells transferring from Q to P in the time 

interval [t, t + Δt] is approximately αp(t)Q(t)Δt, for small Δt. On the other hand, it is natural 

to assume that the number of transitioning cells should be proportional to the difference of 

the desired and current states:

(12)

by equation (11). The positive part is there to ensure that we do not take a negative number 

of cells, i.e., that once a cell is dividing, it cannot return to quiescence without successfully 

completing mitosis. Assuming all cells react to the disparity between Np,desired(t) and Np(t) 

at the same constant rate c, (12) can be written as

(13)

or equivalently, equation (6), which is the desired expression for αp(t), and will be the 

transfer rate of one cell from compartment Q to compartment P during [t, t + Δt]. If the 

population becomes so small that Nq(t) = 0 for some time t, then no cells can transfer, and 

hence we must augment the expression for αp(t) as

(14)

It will be understood that all other rates (αap(t) and αaq (t) in (7) and (8), respectively) have 

similar piecewise definitions, which we omit stating explicitly because we believe it will 

cause no confusion to the reader. We also note that in the simulations for this work, the 

fraction of dying cells is small enough (≤ 5%) to prevent any cell compartment from 

becoming extinct. This is described in Section 4.

In an analogous way we defined the rates from P to A and from Q to A, which are denoted 

by αap(t) and αaq (t), respectively. However, Figure 2(b) represents the total number of cells 

entering A, from both compartments P and Q. To separate the transitions between these 

compartments, we assumed that the relative number of cells transferring between P and Q 

differs by a constant. Hence, assuming cells respond with the same rate c as above, the death 

rates can be written as (7) and (8), where 0 ≤ γ ≤ 1 represents the arrival difference factor. 
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Furthermore, we assume that dividing cells are more prone to cell death than quiescent cells 

[13], i.e. . Note that (7) and (8) are indeed the correct expressions in our framework, 

since in a small time Δt, the total number of cells transitioning into compartment A is given 

approximately by

(15)

which is the desired total number of cells.

2.3. ABM Algorithm

We include a brief outline of the steps involved in the algorithm. Suppose at time t we have 

N(t) cells, each residing in one of the three compartments Q, P, or A, with total cell counts 

Nq(t), Np(t), and Na(t), respectively. We update the system to time t + Δt by the following 

steps:

1. Choose a uniformly random order  of the cells.

2. Update each cell according to :

a. If the cell is in compartment Q, do one of the following:

i. Enter P with probability αp(t)Δt and choose LP via equation (1).

ii. Enter A with probability αaq (t)Δt and choose LA via equations (49) 

and (50).

iii. Remain in Q with probability 1 − αp(t)Δt − αaq (t)Δt.

b. If the cell is in compartment P, do one of the following:

i. Enter A with probability αap(t)Δt and choose LA via equations (49) 

and (50).

ii. If the elapsed time of the cell-cycle is LP, then with probability 1 − 

αap(t)Δt, the cell and its daughter move to compartment Q.

iii. If the elapsed time of the cell-cycle is less than LP, then with 

probability 1 − αap(t)Δt, the cell-cycle age increases by Δt.
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c. If the cell is in compartment A, do one of the following:

i. If the elapsed time of the apoptosis-cycle is LA, then the cell is 

removed from the simulation.

ii. If the elapsed time of the apoptosis-cycle is less than LA, then the 

apoptosis-cycle age increases by Δt.

3. Update all cell counts to Np(t + Δt),Na(t + Δt),Nq(t + Δt), and N(t + Δt).

3. Integro-Differential Equation Model

In this work, we study the dynamic mechanisms of cell growth, assuming variations in the 

cell-cycle and apoptotic periods. The entire system dynamic results from the interactions and 

decisions of individual cells, which could potentially lead to significant deviations from 

mean values. However, it is well-known that despite the presence of intrinsic fluctuations, 

the dynamics of a system with a size that is sufficiently large may be captured by 

deterministic equations that reflect mean field limits [6, 16, 18]. Thus, we approximate the 

ABM with a system of integro-differential equations (IDEs) that approximate the expected 

values of the cellular compartment sizes in time. Details on the derivation and validity of the 

following system can be found in Section 3.2.

3.1. Approximation of Expected Values

We make the notational convention for mean values: ·] ≔ 〈·〉. Following the above 

discussion, a set of IDEs which approximate the expected value of the ABM random 

variables is formulated, with corresponding rates evaluated at expected values:

(16)

(17)

for example. Note that , in general. The IDE system which approximates the 

mean fields of the three compartment cellular ABM is given below:

(18)

(19)

(20)

Here fp(·; μ, σ) and fa(·) denote the probability density functions (PDFs) for the cell-cycle 

and apoptotic process length random variables, LP and LA, respectively. Recalling equations 

(1) and (2), fp(·; μ, σ) and fa(·) are
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(21)

(22)

where Γ(·) is the gamma function.

Equations (18)–(20) represent a system of delay differential equations (DDEs), where the 

delay is captured by integrals over time. However, instead of possessing a fixed value, we 

see that the delays are distributed, with relative contributions to the flow determined by the 

densities fp(·; μ, σ) and fa(·).

3.2. The Derivation of the IDE

Consider the ABM introduced in Section 2. Fix a small time-step Δt > 0 and a time t ≥ 0. 

Consider the system update from t to t + Δt in the, say, cell-cycle compartment P. We can 

decompose the random variable Np as follows:

(23)

where ap(t,Δt) is the number of cells entering P from Q in the time interval [t, t+Δt], aap(t,Δt) 

is the number of cells exiting P and entering A in [t, t+Δt], and x(t,Δt) is the number of cells 

exiting P and entering Q in [t, t + Δt] through successful divisions. Taking the expectation of 

(23) and using linearity we obtain

(24)

We continue by finding expressions for the terms on the right-hand side (RHS) of (24).

Consider 〈ap〉(t,Δt). Using the Poisson interpretation of the ABM, the number of cells 

transitioning from Q to P in [t, t + Δt] is given by the product of the expected probability of 

transition of one cell and the expected number of cells currently residing in compartment Q:

(25)

Our goal is to simplify the above expression, so as to obtain a closed system of equations; 

otherwise we must perform Monte-Carlo simulations to compute the above expectations, 

which would render the deterministic model ineffective. A natural step would then be to 

reverse the order of the nonlinearity and expectation, while incurring an error, as 〈f(X)〉 ≠ 

f(〈X〉) for a nonlinear f and a random vector X, in general. However, we recall from Figures 

6(c) and 6(d) that the variances in the ABM are small, and hence we expect the error of 

approximating X with its mean to also be small, even through the function f. Indeed, we can 

expand a general f(X) in a Taylor series about the mean value of X as
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(26)

where D2f denotes the Hessian of f. Upon taking expectations and retaining only these first 

three terms, we obtain

(27)

Recall that Df(〈X〉), D2f(〈X〉) are constants with respect to the expectation operator. 

Furthermore, the last term in (27) is obtained from the quadratic form appearing in (26) (see 

[11]). Hence, assuming f is sufficiently smooth, our previous variance calculations imply 

that 〈f(X)〉 ≈ f(〈X〉) [2]. To justify the smoothness condition, note that here, f = αp, where αp 

is given by equation (6). The Q = 0 case is not an issue since, as discussed in Section 2.2, 

cell fractions do not become extinct. The only other points where αp could violate 

smoothness are times such that αp(t) = 0, since the positive part function is non-

differentiable here. Hence, it is sufficient to verify that αp(t) is bounded away from 0 for all 

times t. Thus, we ran 1000 Monte Carlo simulations of the ABM, and calculated the mean 

and standard deviation of αp(t) at each time point; see Figure 3 (a). All parameters values 

were as in Section 4.2 below. Note that for each initial condition (ρ(0) = 0.1 and ρ(0) = 0.8), 

the standard deviation is approximately one order of magnitude smaller than that of the 

mean. As the mean is bounded away from zero, the law of large numbers implies that αp(t) = 

0 is statistically improbable, for most times t. The same conclusions can be verified for the 

other rates αap(t) and αaq (t). Our statement is about “most times” due to the observation 

that there is a region in Figure 3 where the the standard deviation is larger than the mean, 

and hence αp(t) can be 0 with non-zero probability. Indeed, this is observed in realizations. 

However, this timescale is short and transient, which implies that switching the order of the 

expectation and the nonlinearity is a valid approximation. We also compare the 

approximation directly in Figure 3(b), and note that for all times, the error is smaller than 

10−3. Furthermore, comparing the stochastic ABM to the obtained continuous DEs is 

another form of validation (see Section 4.3).

Using equation (25), the previous justification allows us to approximate 〈ap〉 (t,Δt) as

(28)

where  is defined as αp evaluated at the expected values of the compartment 

populations. In the same way, we obtain an approximation for 〈aap〉(t,Δt):

(29)

Here  is defined analogously to . From this point forward, we drop both the 

expectation brackets and bars so that, for example, Np(t) denotes the expected population of 

the dividing cells at time t, and αp(t) denotes the transition rate of a cell to compartment P 
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from compartment Q at time t, where the compartment populations are given by their means. 

This should cause no confusion with realizations of the ABM, and when comparisons are 

made, it should be understood that the deterministic results represent expectations. Using 

this notation and the approximations in (28) and (29) as equalities, equation (24) becomes

(30)

To determine 〈x〉(t,Δt), the expected number of cells that complete cell division in the time 

interval [t, t + Δt], we note the following conditions that must hold for such a cell:

1. It must enter P at some time t* ≤ t + Δt.

2. Its length of division ℓ must satisfy t ≤ t* + ℓ ≤ t + Δt, or equivalently, t − t* ≤ ℓ ≤ t 

− t* + Δt.

3. It must not enter the apoptotic cycle A at any time in the interval [t*, t + Δt].

In our model formulation, all three of the above events are independent. Thus, to determine 

〈x〉(t,Δt), we must add up (i.e. integrate over) all times t*, where 0 ≤ t* ≤ t+Δt, the product of 

the expected number of cells that enter P at t* and the probability of a cell choosing the 

correct division length ℓ while not entering A during [t*, t + Δt]. We recall that the division 

length is distributed according to (1), with corresponding Gaussian probability density 

function (PDF) fp(·; μ, σ). The expected number of cells that enter P from Q between times 

t* and t* +Δt* for small Δt* is given approximately by αp(t*)Nq(t*)Δt*, and hence the 

expected number yielding the correct division length is approximately

(31)

However, we must take only the fraction of these cells that remain in P during [t*, t + Δt], 

which we obtain by multiplying (31) by the probability  of a cell not entering A throughout 

[t*, t + Δt]. Again, an independence assumption between cell-cycle length and the event of 

entering the apoptosis cycle is used. To calculate , we note that

(32)

where ′ is the probability of entering A at some point during [t*, t+Δt]. Dividing [t*, t+Δt] 

into non-overlapping subintervals  via small , the event 

corresponding to ′ can be realized as the disjoint union of sub-events, where each sub-

event corresponds to entering A in a subinterval  with 

corresponding probability . Mutual exclusivity and the fact that 

these sub-events cover the event corresponding to ′ implies that

(33)
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where in the limit , the expression becomes exact. Here n ∈ ℤ is such that t* + (n 

− 1)Δt*. Combining (31), (32), and (33) yields an approximation for the number of cells that 

enter at a fixed t* and carry out a division in [t, t + Δt]:

(34)

Adding contributions from every 0 ≤ t* ≤ t+Δt produces 〈x〉(t,Δt). In the limit as Δt* → 0+, 

the summation becomes an integral, and we obtain

(35)

Note that in this limit, (35) is exact. Substituting this expression into (30) yields, upon 

rearrangement and division by Δt,

(36)

Taking the limit of (36) as Δt → 0+, we have, via the Fundamental Theorem of Calculus,

(37)

Equation (37) is an integro-differential equation (IDE), where a delay is represented by the 

integral terms. Indeed, if cells divided after a fixed length of time ℓ, instead of randomly, 

then fp takes the form of a δ-function, and (37) reduces to a delay-differential equation 

(DDE):

(38)

Hence, (37) represents the expected value of system of DDEs with distributed time delays.

We can similarly derive equations for the expected value of Na(t) and Nq(t):

(39)

and

(40)

where fa(·) is a gamma PDF for the apoptotic process length (see Section 4.1 and Figure 

5(d)). Note that there is no inner integral in (39) since we assumed that once cells enter 

apoptosis, they cannot escape eventual cell death. Also, a factor of two appears in (40), since 

the original cell and its daughter both re-enter state Q from P. We can also write an equation 
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for the expected number of the total number of cells, N(t), by summing all of (37), (39), and 

(40):

(41)

Equations (37), (39), and (40) correspond to the system of equations presented in Section 

3.1. Standard theory implies existence and uniqueness of these equations [9].

3.3. Numerical Methods

We provide a brief outline of the numerical algorithm used in solving (18)–(20). The scheme 

used was the four-step explicit Adams-Bashforth method [3], which for a general system

(42)

discretizes via interpolation of f through four previous points, and hence generates a fourth 

order accurate method. For an explicit, uniform time-step Δt, the method takes the form

(43)

where tn ≔ nΔt, yn ≔ y(tn), and fn ≔ f(tn, yn). For the first 3 steps, (43) is augmented with 

standard initializations of lower degree Adams-Bashforth methods.

Regarding the calculation of the integrals appearing in (18)–(20), we consider integrals of 

the form

(44)

for arbitrary functions h1 and h2 and time t. These integrals are discretized with the same 

step-size Δt used in the numerical algorithm described previously. Denoting the inner 

integral in (44) by I(t, t*), I(t + Δt, t*) is related to I(t, t*) via the approximation

(45)

Using (45) to calculate the inner integral requires only one function evaluation and no 

quadrature, and hence is more numerically efficient than re-integration. Note that we must 

store values of I(t, ·) at all time points in the discretization. To calculate the complete 

integral (44), the composite trapezoidal rule with uniform grid spacing Δt was used:
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(46)

where tk is the kth point, and N is the size of, the discretization. Updating the expression 

from t → t+Δt requires this calculation at each step, because here, unlike h2, h1 depends 

explicitly on t, and thus prevents an approximation analogous to (45). Equations (45) and 

(46) give a complete characterization of the calculation of all integrals appearing in this 

work.

4. Results

Cell survival is determined by many factors, including the ability of the cell to transition 

between the cell-cycle and quiescence, and vice versa. These dynamics can be described 

mathematically, as both an ABM and a system of IDEs, as discussed previously. Using the 

OVCAR-8 cell line as a model, we performed three fundamental biological experiments, 

and estimated the following: 1) cell growth and density over 4 days (i.e. ρ(t)), 2) cell 

proliferation fraction as a function of cell density after 24 hours (i.e. β(ρ)), and 3) cell death 

fraction as a function of cell density after 24 hours (i.e. d(ρ)). See AppendixB for details and 

the experimental results.

To describe the biological results, we introduce two mathematical models: an ABM and a 

set of IDEs. Detailed descriptions of our methods can be found in Sections 2 and 3. The 

ABM is specified on the level of the cell, which can reside in one of three compartments: 

proliferative (P), apoptotic (A), and quiescent (Q), with corresponding populations Np,Na, 

and Nq (see Figure 1). Transitions between the compartments are dictated by both the rates 

αp, αap, and αaq, and the amount of time spent in the the cell-cycle and the apoptotic 

process. The rate functions depend on the total cellular density ρ and the equilibrium 

distributions α(ρ) and d(ρ), while the time spent in P is assumed to be a normal random 

variable with mean length μ hours, and standard deviation σ hours. Similarly, the amount of 

time spent in A is modeled with a gamma distribution, with shape parameter ω and rate 

parameter λ per hour. The IDE system is a set of three equations governing the dynamics of 

approximations to the expected values of the compartment populations.

4.1. Distribution of Cell-Cycle and Apoptotic Lengths

To calculate the mean length of the cell-cycle μ, we used the experimental data appearing in 

Figure 4. See AppendixB.1.2 for details. We observed essentially exponential growth from 

day 2 to day 4 in the low density seeding (denoted ρlow). Standard least-squares techniques 

fit

(47)

to the data in this region, and k was related to the mean length of the cell-cycle via the 

doubling time:
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(48)

See the red curve in Figure 4 for the results of the calculation, which include μ = 24.4416 

hours.

The calculation of the distribution of LA was based on the results of [12]. In their work, 

Messam and Pittman observed that apoptosis could be characterized by three morphological 

phases. In particular, once apoptosis is triggered, cells begin by exhibiting normal 

morhphology (phase 1), then plasma membrane bubbling (phase 2), and finally whole cell 

body blebbing and apoptosis execution (phase 3). Furthermore, the authors obtained 

experimental results, in the form of frequency distributions, for how long cells remain in 

each of these three phases. Using their frequency distributions, we fit gamma distributions to 

each phase, and then independently sum the distributions to obtain the overall apoptosis 

process length LA as a random variable. Denoting the length of phase i (i = 1, 2, 3) by LAi, 

this becomes

(49)

(50)

Here ωi and λi are the shape and rate parameters of phase i, respectively. To find the 

distributions of each phase, we used the MATLAB function “fitdist.m,” which uses standard 

maximum likelihood estimation, to find the parameters characterizing the distribution. 

Moreover, we restricted the search domain to gamma distributions. The results of this, along 

with the experimental results appearing in [12], can be found in Figure 5. With these 

computations, we find a probability density function (PDF) for each LAi, and via equations 

(49) and (50), are able to realize a value for LA for each cell entering A. We are further able 

to fit a gamma distribution to 105 realizations of (50), which yields (2) with ω = 4.9436 and 

λ = 0.19117 (Figure 5(d)).

4.2. ABM Simulation

We provide a sample experiment of the ABM, which demonstrates the behavior of the 

model. We used β(ρ) and d appearing as the red curves in Figures 2(a) and 2(b) respectively, 

σ = 3 hours, c = 1 cell per hour, and γ = 0.70. We emphasize that these parameters are not a 

fit to the experimental data appearing in Figure 4. Before computing, we specify the initial 

conditions, which are used in the models throughout this work, unless explicitly stated 

otherwise. Experimentally, all cells are initially synchronized as quiescent, so we define

(51)

Using the data from Figure 4 as motivation, we simulate two sets of initial conditions, 

ρlow(0) = 0.1 and ρhigh(0) = 0.8. Equations (10) and (51) imply that
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(52)

One thousand Monte Carlo simulations were then performed, the results of whose mean and 

variance calculations appear in Figure 6. The main aspect to note is the expected density 

dynamics in Figure 6(a), with faster growth for smaller population values coupled with a 

flattening as ρ approaches 1. In the same figure, we also observe periodic prominences of 

density increase located approximately 24 hours apart, which coincide with the mean 

division time μ. In Figure 6(b) we see periodic population fluctuations between the 

compartments Q and P, as cells complete division and reenter quiescence. A larger fraction 

of cells migrate to compartment P initially in the simulation satisfying ρlow(0) = 0.1, as β is 

larger here at time t = 0. We also do not observe much fluctuation in compartment A, which 

is due to the fact that d(ρ) is taken as a constant. Figures 6(c) and 6(d) are included mainly to 

quantify the stochasticity in the model (on the order of 10−6). We note that the small 

variation between realizations is due to the large number of cells in the computation (

(105)). Note also that at time t = 0 the variances evaluate to machine 0, as the initial 

conditions are identical in every realization.

4.3. Stochastic and Deterministic Comparison

We investigate the relationship between realizations of the ABM and the IDE. Due to the 

large number of cells in the simulation, the small variances observed in Figures 6(c) and 

6(d) imply that individual ABM simulations can be approximated well by their mean value, 

and the derivation in Section 3.2 (together with Figure 3) further implies that the mean value 

can be approximated by the solution of the system of IDEs appearing in Section 3. Here, we 

quantify these approximations. Data from the ABM simulations appearing in Section 4.2 is 

compared to the numerical solution of the IDE system (18)–(20) with corresponding 

parameter values and initial conditions. The results appear in Figure 7. The system of IDEs 

is solved using a four-step explicit Adams-Bashforth method. For more details, see Section 

3.3.

Figure 7(a) demonstrates the growth of the global cell density ρ for both the low and high 

density seedings. All 1000 ABM realizations are plotted (blue), together with the IDE 

solution (black). Here, we observe both the small variance in the ABM simulations and the 

accuracy of the IDE approximation. Measuring the error ℰIDE,mean of the IDE to the ABM 

mean via the maximum of the distances induced by the supremum norm ‖ · ‖∞ for each 

initial condition, we obtain

(53)

As observed in Figures 6(c) and 6(d), ρ has a variance on the order of 10−6, and hence a 

standard deviation on the order of 10−3. By Chebyshev’s inequality [8], 93.75% of the 

realizations lie within four standard deviations of the mean; thus the incurred error between 

the IDE and such a realization can be bounded by
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(54)

Furthermore, this is a conservative estimate, as the sample expectation of the LHS of (54) at 

any time t is computed to be 0.003. Similar conclusions are drawn in regards to the 

compartment populations appearing in Figures 7(b)–7(c). These calculations justify using 

the deterministic IDE system in the remainder of the work when performing numerical 

experiments and determining parameter values. We lastly note that for simulations involving 

small populations, a much higher variance is observed, and the IDE is no longer a valid 

approximation to ABM realizations. This was investigated by varying the plate size K in 

both the ABM and IDE simulations. We found that a small number of cells (e.g. K ≈ 100) 

ensures a small error between the IDE and the expected value of the ABM. More precisely, 

we observe the L∞ norm (with respect to time) of the error to be bounded above by 0.0216. 

However, to guarantee that the expected value accurately approximates individual 

realizations of a stochastic experiment, a larger number of cells is required. For simulations 

with K = 100, we calculated a relative standard deviation of the ABM simulations to be on 

the order of 0.14, while for K = 1000, this value decreases to 0.035. Thus we conclude that 

this system requires K to be on the order of 1000 cells for the IDE to accurately approximate 

individual ABM realizations.

4.4. Parameter Estimation and Variation

To calculate parameter values that model the measured cellular growth dynamics (Figure 4), 

we minimized the distance between the experimental data and the deterministic IDE. 

Denoting the vector of parameters p ≔ (c, γ, d, βm, ρm, ε, σ) and defining

(55)

we used MATLAB’s nonlinear least-squares solver “lsqnonlin.m” to minimize the ℓ2 norm 

of (55) at all measured times:

(56)

Here t is measured in hours. The minimization of (56) is performed over the parameter set p, 

using a constrained trust region algorithm. The constraints were generated both from 

biological interpretations and also experimental data; they appear below in Table 1, together 

with their justification. As the routine locates only local minima, 100 random initial 

parameter sets were used to seed the algorithm, yielding 100 (non-unique) local minimizing 

parameter sets. The results of this computation appear partially in Figure 8(a)–8(b).

Figure 8(a) displays the low and high density cultures, together with the IDE simulations 

corresponding to four local minimizing parameter sets calculated in the numerical 

experiment; Figure 8(b) plots the corresponding equilibrium division fraction distributions 

β(ρ). The four sets are selected as minima of the local minima which display qualitatively 
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different behavior while producing an ℓ2 norm of (56) in [0.0583, 0.0980]. Hence we 

conclude that no global minimum can be determined, as disparate parameter sets produce 

equally valid solutions. Indeed, as there are only 8 true data points (initial conditions are 

constrained) and 7 parameters, uniqueness should not be expected.

Nevertheless, we can still draw biological and experimental conclusions from the results. 

We observe that the most important parameter which dictates the qualitative structure of the 

population growth dynamics is the standard deviation of the cell-cycle length σ. For σ = 0.03 

hours, the dynamics are essentially piecewise-constant, with steps of growth occurring at 

multiples of the mean cycle length μ = 24.4416 hours. As σ increases, these steps become 

smoother, with σ = 8.92 hours showing no visible step structure. See Figures 8(c)–8(d) for 

further elucidation of the σ dependence. Biologically this dependence on σ is intuitive, since 

as the population becomes more homogeneous (σ decreases), the overall structure should 

increase, resulting in more regular growth patterns. Lastly, we note that σ = 0.03 hours 

seems biologically improbable, as the density curve exhibits a large sensitivity to the 

measurement time. Indeed, for cells governed by such a σ, differing the measurement time 

by less than half an hour could yield an approximate 100% change in the measurement 

value, which is an unrealistic observation.

Other parameter values were determined with more certainty. Examining Figure 8(b), we 

observe that the optimal parameter sets yield a maximal dividing fraction of βm ∈ [0.78, 

0.80] at a density of ρm ∈ [0.19, 0.20], both lying in small upper regions of their constraints 

(see Table 1). γ ∈ [0.50, 0.52] and d ∈ [0.01, 0.03] consistently, with d ≈ 0.01 in most cases. 

The rate of cellular transfer c and the division fraction parameter ε are more varied, and we 

investigated the dependence of the model on these parameters; the results appear partially in 

Figures 9 and 10. Here we vary only the parameter of interest, while leaving the others 

fixed. In Figure 9(a), we see minimal variation in the cellular growth as c varies over a large 

range. In particular, we observe that as long as c is not sufficiently small (c > 1 cell per 

hour), the overall growth dynamics do not vary substantially, and that c’s principal effect is 

on the rate which cells migrate into the division compartment P (Figure 9(c)). Note that for 

larger c, the earlier transitions into P occur; however after this initial variation, all 

parameterizations are relatively synchronized. Contrast this with Figure 10, where the ε 

dependence is examined. We observe a large variation in the dynamics for small variations 

in ε, especially in regards to high density growth.

5. Conclusion

Understanding the mechanisms of cellular growth is an essential step in studying cancer 

progression and the evolution of drug resistance; thus, it is the subject of the current work. 

Our main hypothesis is that variations in both the cell-cycle and the apoptotic lengths are 

central contributing factors to the overall dynamics. We postulate that intrinsic 

heterogeneity, in the form of distributed cell-cycle and apoptotic process lengths, are 

fundamental aspects of cell growth, and cannot be ignored. Here, we introduced an ABM, 

and demonstrated the best approximation of the model to the data. An ABM permits a 

straightforward procedure for introducing an age-structure on a population, while 

simultaneously avoiding the technical details of macroscopic limits and population sizes, 
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and hence continuum, age-structured models. Furthermore, our understanding of the biology 

is cell-driven, so it is natural to specify behavior on the cellular level, as opposed to the 

population as a whole. Such models are also quite exible and can take into account complex 

cell-cell and cell-environment interactions in a straightforward manner, which will be the 

subject of future work.

Formulating an ABM requires information of a cell behavior as a function of the 

environment. In our model it requires specific transition rates based on a given 

environmental condition. Our experimental results yield information on the distribution of 

cells in the cell-cycle and apoptosis process at various global densities, but do not include 

explicit information on the desired rates. A novel feature of this work is the manner in which 

the experimental results were incorporated into the ABM, translating the experimental 

distributions into probabilistic transitions on the cellular level.

It is a difficult task to fit a stochastic model, such as an ABM, to biological data, as different 

realizations produce different results. However, since the population size is relatively high, 

we observed that the overall variance of all random variables is small. Thus, the model can 

be viewed as essentially deterministic, with realized values that are given by their 

corresponding means. Hence, a system of IDEs which describe the expected values of the 

dynamic compartment populations was derived. Using this IDE system, we performed 

standard optimization on these deterministic variables to calculate the model parameters in 

the least-squared sense. Our results suggest that the IDE accurately describes the dynamics 

of the ABM, and both models emulate the experimental data for a large range of parameters.

The application of our framework to cancer research is expected to lead to the development 

of systematic methods for determining treatment strategies, where cellular behavior is 

governed by random, as opposed to deterministic, events. Furthermore, an expanded model 

that includes drug effects will allow us to revisit the mechanism of multi-drug resistance by 

studying the spatiotemporal mechanisms of intratumoral heterogeneity. Intratumoral 

heterogeneity includes many tumor sub-populations with different cellular dynamic 

characteristics, such as proliferation rates. Each sub-population may include intrinsic and/or 

induced heterogeneity mechanisms. Our work may be expanded to incorporate and study the 

differences between induced vs. intrinsic heterogeneity, and their effects on the resistance 

level, so that a global understanding and estimation of the total tumor evolution may be 

achieved.
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AppendixA

Table A1

List of parameters and variables

Variable/
Parameter

Range (units) Interpretation

t [0, 96] (hours) Time

Δt 0.1 (hours) Time step used in ABM simulations

Nq(t) [0, ∞) Number of cells in quiescence at time t

Np(t) [0, ∞) Number of cells in cell-cycle at time t

Na(t) [0, ∞) Number of cells in apoptosis at time t

N(t) [0, ∞) Total number of cells at time t

μ 24.4416 (hours) Mean length of cell-cycle

σ [0, 10] (hours) Standard deviation of cell-cycle

ω1 5.0289 Shape parameter of apoptosis phase 1

λ1 0.6534 (per hour) Rate parameter of apoptosis phase 1

ω2 1.2869 Shape parameter of apoptosis phase 2

λ2 0.23173 (per hour) Rate parameter of apoptosis phase 2

ω3 12.2679 Shape parameter of apoptosis phase 3

λ3 10.3643 (per hour) Rate parameter of apoptosis phase 3

ω 4.9436 Shape parameter of entire apoptosis process

λ 0.19117 (per hour) Rate parameter of entire apoptosis process

ρ(t) [0, ∞) Density of cells at time t

K 40401 Number of cells defining full plate (ρ = 1)

d(ρ), d [0.01, 0.05] Fraction of cells in apoptosis as a function of plate density

β(ρ) [0, 1] Fraction of cells in cell-cycle as a function of plate density

βm [0, 1] Relaitve/absolute maximum of β(ρ)

ρm [0, 1] Maximizing density of β(ρ)

ε (0, ∞) Parameter governing shape of β(ρ)

αp(t) [0, ∞) Rate of transition from Q to P

αap(t) [0, ∞) Rate of transition from P to A

αaq (t) [0, ∞) Rate of transition from Q to A

c [0, ∞) (per hour) Cellular reaction rate

γ [0, 1] Rate difference between αap and αaq

fp(·; μ, σ) [0, ∞) PDF of (μ, σ2) cell-cycle length

fa(·) [0, ∞) PDF of Γ distributed apoptosis process length

Eρ (−∞, ∞) Error vector between IDE and experimental data

AppendixB

AppendixB.1. Experimental Design

This work is aimed at studying the heterogeneity arising from the variation in the cell-cycle 

and apoptosis length. With this in mind, three sets of experiments were performed: a study 
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of cell growth and density, an analysis of cell proliferative percentage, and an analysis of 

cell apoptotic percentage. The results of these experiments appear in Figure 2.

AppendixB.1.1. Analysis of Proliferation Percentage

One goal is to understand the role of global density on cellular division. The results appear 

as means and standard deviations in Figure 2(a). We assume that, for a given cell density, 

there exists an equilibrium distribution of cells in the cell-cycle, which we define as β(ρ). To 

determine β(ρ), two series of cell-cycle arrest experiments were performed, each followed 

by KI-67 measurements.

Cell-Cycle Arrest—OVCAR-8 cells were seeded in different cell densities (see Figure 

2(a)) on a 6-well plate with culture medium (RPMI-1640 medium + 10%FBS + 100U/ml 

Penicillin-Streptomycin + 2 mM Glutamine) for 24 hours prior to cell cycle arrest. To arrest 

the cells, 2 experiments were performed by changing the starvation medium and the 

starvation duration. In both experiments, cells were washed 3 times with 1× PBS and 

replenished with starvation medium. Experiment 1) The medium of RPMI-1640 without 

Penicillin-Streptomycin, and Glutamine was used for cell cultured in 37°C + 5% CO2 for 24 

hours. The data set from this experiment was referred in the text and figures as “Data 1”. 

Experiment 2) The medium of RPMI-1640 without Glucose, Penicillin-Streptomycin, and 

Glutamine was used for cell cultured in 37°C + 5% CO2 for 48 hours. The data set from this 

experiment was referred in the text and figures as “Data 2”. Arrested cells from both 

experiments were allowed to re-enter cell cycle by washing the cells with PBS 3 times and 

then replenished with culture medium for 16 hours. The materials: Roswell Park Memorial 

Institute (RPMI)-1640 medium, Fetal Bovine Serum, Penicillin-Streptomycin, and 

Glutamine, were purchased from Life Technologies (Grand Island, NY).

Cell-Cycle Analysis by Ki-67 Immunolabeling—OVCAR-8 cells were seeded on 6-

well plate with culture medium. Cells were harvested by trypsinization and re-suspended 

with PBS. Diameter of individual cells was measured by Nexcelom Cellometer (Lawrence, 

MA). To permeabilize cells, 106 cells were washed with 1× PBS and incubated with −20°C 

ethanol overnight. For Ki-67 labeling, cells were centrifuged and re-suspended with warm 

1× PBS for 15 minutes. Then, cells were incubated with IMDM medium supplemented with 

5% FBS and IgG2a-FITC (0.06 µg) or Ki-67-FITC (0.06 µg) at 37°C for 30 minutes. The 

fluorescence intensity of labeled cells was analyzed by Flow cytometry (BD Biosciences, 

San Jose, CA). Results were analyzed by FlowJo version 7.6.4 (Ashland OR). IgG2a-FITC 

and Ki67-FITC were purchased from eBioscience (San Diego, CA), and Iscove’s Modified 

Dulbecco’s Medium (IMDM) was purchased from Life Technologies (Grand Island, NY).

AppendixB.1.2. Evaluation of Cell Growth and Density

A second goal is to understand the individual cellular mechanics that govern the 

macroscopic dynamics in cancer cells. Thus, time series data is needed. Experiments were 

performed which measure the global cellular density over a period of 96 hours in two 

different seedings: low and high density. See Figure 4 for the results. All experiments were 

performed using the parental OVCAR-8 and the OVCAR-8-DsRed2 human ovarian 

carcinoma cell lines [5]. In this study, all of our applicable cell-based assays utilize timelines 
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of 96 hours or less. The cell density curves were generated by randomly seeding 104 and 105 

cells per well on 24-well plates and culturing 24 hours prior to the first imaging. The plates 

were imaged on a Zeiss 710 Confocal microscope on both green and red fluorescent 

channels, and images were captured every 24 hours for 96 hours. The estimated density 

percentage is based on the average of two complete wells.

AppendixB.1.3. Analysis of Apoptosis Percentage

As in AppendixB.1.1, we hypothesize that an equilibrium distribution d(ρ) exists for the 

fraction of cells in the apoptosis process. An analogous experiment was conducted in the aid 

of determining d(ρ). Percentage of apoptosis-mediated cell death as a function of cell density 

was measured by a double staining method using the Dead Cell Apoptosis Kit with Annexin 

V Alexa Fluor® 488 & PI (Invitrogen) according to the manufacturer’s instructions. 104 and 

105 parental OVCAR-8 cells were randomly seeded on 24-well plates in drug-free medium 

and incubated at 37°C for 24 hours to allow cells to attach. The percentages of apoptosis and 

necrosis were then evaluated by FACS (LSR II). Data from 20, 000 gated events per sample 

were collected. Cells in early stages of apoptosis were positively stained with Annexin V, 

whereas cells in late apoptosis and necrosis were positively stained with both Annexin V 

and PI. The number of cells positively stained with Annexin V was used to estimate the 

death rate. Experiments were repeated three times; see Figure 2(b) for the results.
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Figure 1. 
Model dynamics. Diagram of transitions between the three cellular compartments in the 

ABM. Q denotes the quiescent compartment with Nq(t) cells at time t, P denotes the 

proliferation compartment with Np(t) cells at time t, and A denotes the apoptosis 

compartment with Na(t) cells at time t. Note that Nq(t),Np(t), and Na(t) are all stochastic 

processes. The explicit transition rates between the compartments are shown in solid lines, 

and are labeled as αp(t), αap(t), and αaq(t). The implicit transition rates, due to the 

completion of cellular cycles, are shown in dotted lines, and have no closed-form 

expression. For example, ΣP→Q corresponds to the rate of cell-cycle completion. The line 

originating from compartment A indicates cells that are removed from the simulation.
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Figure 2. 
Experimental results with functional forms for cell-cycle and apoptosis fractions. 

Experimentally (blue and black), OVCAR-8 cells are allowed to attach to the plate for 

twenty-four hours, and then are incubated for a subsequent twenty-four hours. After this 

incubation, the cells were stained to determine which percentage of cells reside in the 

proliferation and apoptosis stages. The experiment was performed using two different 

techniques for cell synchronization: Data 1 and Data 2 (see AppendixB.1.1 for details). The 

functional forms (red) correspond to equations (4) and (3), with free parameters taking 

values βm = 0.75, ρm = 0.15, ε = 1, and d = 0.03. (a) Fraction of cells in division stage (P) as 

a function of the population density on the plate; (b) Fraction of cells in apoptosis stage (A) 

as a function of the population density on the plate. Note that we allow ρ > 1.
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Figure 3. 
(a) The mean and standard deviation of αp(t) over all times t ∈ [0, 96] hours, for 1000 

Monte Carlo simulations. β and d appear as the red curves in Figures 2(a) and 2(b) 

respectively, and σ = 3 hours, c = 1 cell per hour. See equations (51) and (52) for the two 

sets of initial conditions. Note that the standard deviations are roughly an order of magnitude 

smaller than the mean values, for most times. (b) Error obtained in using the first term on the 

RHS in equation (27) as an approximation for αp(t)
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Figure 4. 
Growth dynamics of OVCAR-8 human ovarian carcinoma cell line. Global density is 

measured on the vertical axis as a function of time. Both initial densities (ρ(0) = 0.1 and ρ(0) 

= 0.8) were generated by random seeding on a 24-well plate and cultured 24 hours prior to 

the first image. Data was collected every 24 hours, as indicated by stars. No data exists 

between the points, and the connecting line segments are added merely for viewing 

elucidation. The estimated density percentage is based on the average of two complete wells. 

The red curve represents a least-squares fit to the region of exponential growth, with 

doubling time μ = 24.4416 hours.
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Figure 5. 
Frequency distributions for the apoptosis process. The x-axis represents the time in the 

respective phase, while the y-axis labels a fraction of cells. For the experimental results 

(histogram in (a)–(c)), the x value indicates a range of times, so that for x = i hours, the 

corresponding y-value (height of the bar) counts the relative frequency of cells with phase 

length between i − 1 and i+1 hours. For the theoretical distribution (black curve), we 

allowed the phase length to be a continuous random variable, and fitted a gamma 

distribution with probability density function (PDF) using MATLAB’s “fitdist.m” function. 

In (d), we used the PDFs obtained in (a)–(c) to obtain a single gamma distribution for the 

entire apoptotic process. (a) Phase 1, with n = 56 total cells measured; (b) Phase 2, with n = 

47 total cells measured; (c) Phase 3, with n = 49 total cells measured; (d) Total length of 

time spent in apoptosis, using n = 105 simulations of (50).

Greene et al. Page 28

J Theor Biol. Author manuscript; available in PMC 2016 February 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 6. 
First and second moments of the ABM. Shown are the temporal dynamics of the mean and 

variance of 1000 Monte Carlo simulations. β and d appear as the red curves in Figures 2(a) 

and 2(b) respectively, and σ = 3 hours, c = 1 cell per hour, γ= 0.70. Note that these 

parameters do not yield an optimal fit. See equations (51) and (52) for the two sets of initial 

conditions. In (b), the values of Na for both sets of initial conditions essentially overlap, 

making them difficult to distinguish. The same is true for the variances of Np and Nq in (c) 

and (d). (a) Sample means for the population density; (b) Sample means for the three 

cellular compartments; (c) Variances for simulations that satisfy ρ(0) = 0.1; (d) Variances 

for simulations that satisfy ρ(0) = 0.8.
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Figure 7. 
Comparison of ABM and IDE simulations. 1000 Monte Carlo realizations are plotted 

together with the corresponding IDE. β and d appear as the red curves in Figures 2(a) and 

2(b) respectively, and σ = 3 hours, c = 1 cell per hour, γ= 0.70. (a) Cellular density for both 

sets of initial conditions (ρ(0) = 0.1 and ρ(0) = 0.8); (b) Compartment fractions for ρ(0) = 

0.1; (c) Compartment fractions for ρ(0) = 0.8.
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Figure 8. 
Cellular growth dynamics for varying parameter sets. (a) A nonlinear least-squares 

algorithm was used to locate parameter values which minimize the difference between the 

experimental data and the IDE (equations (18)–(20), together with (9)–(10)). Due to the 

sparsity of the data (red), multiple local minimums were found. We note that all curves 

plotted have residuals with ℓ2 norm ∈ [0.0583, 0.0980], and are displayed in descending 

order by this measure. Similar plot styles in (a) and (b) correspond to the same parameter 

set. (a) Growth of cellular density in time; (b) Division (β) and death fractions (d = β(1)) for 

the fitted parameter sets.

(c)–(d) Dependence of IDE solutions on cell-cycle standard deviation σ. σ is varied, while 

all other parameters are fixed from a local minimizing set located in (a) and (b). We plot the 
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global density growth and cell-cycle fraction for each case. (c) Cellular density ρ for σ 

variation; (d) Proliferative compartment for σ variation.
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Figure 9. 
Dependence of IDE solution on c. All parameters, excluding c, are fixed and obtained from 

an optimization appearing in Figure 8 (green curves). The parameter values are βm = 0.8, ρm 

= 0.2, ε = 0.33, d = 0.01, γ = 0.5 and σ = 8.92 hours. The black curve represents the local 

minimizer. (a) Cellular density ρ; (b) Proliferative compartment; (c) Magnification of t = 0 

dynamics of proliferative compartment; (d) Apoptotic compartment; (e) Quiescent 

compartment.
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Figure 10. 
Dependence of IDE solution on ε. All parameters, excluding ε, are fixed and obtained from 

an optimization appearing in Figure 8 (green curves). The parameter values are c = 12.19 

cells per hour, βm = 0.8, ρm = 0.2, d = 0.01, γ = 0.5 and σ = 8.92 hours. The black curve 

represents the local minimizer. (a) Cellular density ρ; (b) Proliferative compartment; (c) 

Apoptotic compartment; (d) Quiescent compartment.
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Table 1

List of minimization parameters and ranges

Parameter Min. Value Max. Value Comments

c 0 ∞ Rate of transition is always non-negative

γ 0.5 1 See Section 2.2

d 0.01 0.05 See Section 2.1

βm 0.3 0.8 See Figure 2(a)

ρm 0.05 0.2 See Figure 2(a)

ε 0 ∞ Ensures β(ρ) has a relative maximum

σ 0 10 Lower bound: standard deviation is non-negative
Upper bound: essentially excludes possibility of negative cell-cycle length
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