Skip to main content
. Author manuscript; available in PMC: 2016 Jan 1.
Published in final edited form as: Alcohol Clin Exp Res. 2014 Dec 16;39(1):73–78. doi: 10.1111/acer.12599

Table 2.

Bayesian conditional autoregressive Poisson models of counts of alcohol outlets within towns in rural Victoria (n = 353)*

Model 1 (Bars) Model 2 (Restaurants) Model 3 (Off Premise)

Variable median 2.5% 97.5% median 2.5% 97.5% median 2.5% 97.5%
Demand
  Resident population (×10,000) 1.288 1.213 1.372 1.538 1.349 1.757 1.339 1.263 1.424
  Commuters (×10%) 1.191 1.103 1.289 1.261 1.074 1.487 1.151 1.063 1.247
  Visitors (×10%) 1.172 1.047 1.314 1.468 1.181 1.835 1.032 0.883 1.187
  Spatial interaction (×10,000 units) 0.833 0.727 0.950 0.752 0.589 0.953 0.929 0.823 1.048
Median Household Income
  Local (× $10,000) 0.798 0.716 0.887 0.751 0.603 0.927 0.811 0.717 0.907
  Lagged (× $10,000) 1.233 1.082 1.412 1.697 1.355 2.198 1.304 1.135 1.499

Proportion of SA1 variance explained by CAR random effect 0.025 0.001 0.345 0.001 0.000 0.068 0.003 0.000 0.043
SD of CAR random effect 0.109 0.017 0.428 0.037 0.014 0.408 0.035 0.014 0.141
SD of noise random effect 0.669 0.545 0.787 1.546 1.315 1.825 0.681 0.562 0.814

Global Moran’s I for CAR random effect 0.855 0.805 0.725
*

Intercept suppressed from table; bolded odds ratios denote a 95% credible interval that does not include 1.000, thereby indicating support for an association between the corresponding independent variable and counts of alcohol outlets.