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Abstract

Astrocytic glutamate transporters, the excitatory amino acid transporter (EAAT) 2 and EAAT1 

[glutamate transporter 1 (GLT-1) and glutamate aspartate transporter (GLAST) in rodents, 

respectively], are the main transporters for maintaining optimal glutamate levels in the synaptic 

clefts by taking up more than 90% of glutamate from extracellular space thus preventing 

excitotoxic neuronal death. Reduced expression and function of these transporters, especially 

EAAT2, has been reported in numerous neurological disorders, including amyotrophic lateral 

sclerosis, Alzheimer’s disease, Parkinson’s disease, schizophrenia and epilepsy. The mechanism 

of down-regulation of EAAT2 in these diseases has yet to be fully established. Genetic as well as 

transcriptional dys-regulation of these transporters by various modes, such as single nucleotide 

polymorphisms (SNPs) and epigenetics, resulting in impairment of their functions, might play an 

important role in the etiology of neurological diseases. Consequently, there has been an extensive 

effort to identify molecular targets for enhancement of EAAT2 expression as a potential 

therapeutic approach. Several pharmacological agents increase expression of EAAT2 via NF-κB 

and CREB at the transcriptional level. However, the negative regulatory mechanisms of EAAT2 

have yet to be identified. Recent studies, including those from our laboratory, suggest that the 

transcriptional factor yin yang 1 (YY1) plays a critical role in the repressive effects of various 

neurotoxins, such as manganese (Mn), on EAAT2 expression. In this review, we will focus on 

transcriptional epigenetics, and translational regulation of EAAT2.

Keywords

manganese; EAAT2; GLT-1; single nucleotide polymorphisms; RNA splicing; transcription; 
epigenetic; NF-κB; YY1; HDACs

1. Introduction

Astrocytes are critically involved in neuronal function and survival, as they produce 

neurotrophic factors, such as brain-derived neurotrophic factor (BDNF) and glia-derived 
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neurotrophic factor (GDNF), as well as express two main glutamate transporters responsible 

for the removal of excessive glutamate from the synaptic clefts [1, 2]. Glutamate is the 

major excitatory neurotransmitter in the central nervous system (CNS), playing a major role 

in memory and cognitive function [3], and glutamate transporters as such prevent the 

overstimulation of post-synaptic glutamate receptors that lead to excitotoxic neuronal injury 

[4, 5]. Among the five subtypes of glutamate transporters identified, glutamate aspartate 

transporter (GLAST) and glutamate transporter-1 (GLT-1) [excitatory amino acid 

transporter (EAAT) 1 and 2 in humans, respectively], are predominantly expressed in 

astrocytes. They are responsible for the uptake of excess glutamate from the extracellular 

space [6-8], supported by the fact that knockdown of either GLT-1 or GLAST in mice 

increases extracellular glutamate levels, leading to excitotoxicity related neurodegeneration 

and progressive paralysis [9]. In the adult brain, that EAAT2 accounts for >90% of the 

extracellular glutamate clearance [10-12], since the genetic deletion of both alleles of GLT-1 

in mice led to the development of lethal seizures [13]. On the other hand, EAAT1 plays a 

major role during development [14]. Notably, reduction of EAAT2 expression and function 

is associated with numerous neurological disorders including amyotrophic lateral sclerosis 

(ALS), Alzheimer’s disease (AD), Parkinson’s disease (PD), schizophrenia and epilepsy [2, 

15]. For example, EAAT2 protein expression is decreased in ALS [12] and AD patients 

[16], and cultured astrocytes from AD patients also show reduction of both EAAT1 and 

EAAT2 protein levels along with attenuated glutamate uptake [17]. Accordingly, potential 

drugs that target to enhance the expression and function of these transporters may serve as 

efficient therapeutics modalities to combat these diseases [2, 11].

Dysregulation of EAAT1 and EAAT2 expression and function occurs at multiple levels 

from abnormal genetic coding to altered posttranslational modifications. Genetic 

dysregulation of EAAT2, such as single nucleotide polymorphisms (SNPs) and aberrant 

mRNA splicing of EAAT2 are known to impair EAAT2 expression and function, and are 

linked to several neurological diseases [18, 19]. Several pharmacological agents, such as 

ceftriaxone [20], estrogen [21], tamoxifen [21, 22] and riluzole [23] increase EAAT1 and 

EAAT2 expression at the transcription level via activation of nuclear factor κB (NF-κB) 

[22, 24]. Negative regulatory mechanisms of EAAT1 and EAAT2 at the transcription level 

have been linked to the transcription factor yin yang 1(YY1) [25] and YY2 [26]. Manganese 

(Mn) and tumor necrosis factor-α (TNF-α) decreased EAAT2 via activation of YY1 [27]. 

Herein, we discuss the genetic and transcriptional modulatory mechanisms of EAAT2 linked 

to neurological disorders.

2. Genetic regulation of EAAT2 associated with neurological disorders

2.1. EAAT2 regulation by RNA splicing

Altered EAAT2 splice variants have been found in ALS as well as in other diseases, such as 

AD, and this abnormal splicing of EAAT2 mRNA contributes to the loss of EAAT2 protein 

in these diseases [28, 29]. An AD mouse model expresses altered EAAT2 splice variants in 

response to hypoxia [30]. Treatment with 3-nitropropionic acid (a chemical hypoxic agent) 

prior to deposition of amyloid altered the expression of the 5′-splice forms of mouse 

EAAT2/5UT3, EAAT2/5UT4, and EAAT2/5UT5 in the frontal cortex, hippocampus and 
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cerebellum of the APP23 transgenic mouse model [30]. This indicates that hypoxia 

facilitates alternative splicing of EAAT2 in an AD model, providing a possible molecular 

mechanism linking higher vascular risk to early pathophysiology of AD. The splicing 

variants of EAAT2 mRNA containing a long 5′-UTR are associated with increased EAAT2 

protein expression at the translational level in response to extracellular factors such as 

corticosterone and retinol [31]. Alternative splicing also occurs in the C-terminal of EAAT2, 

resulting in three different variants, referred to as GLT-1a, GLT-1b and GLT-1c [32]. 

GLT-1a is a normal form, containing 11 exons, while GLT-1b and GLT-1c terminate at 

exon 10 by generating a new C-terminus sequence. EAAT2 RNA splicing events regulated 

by 5′-regulatory sequences are impaired in astrocytic tumors [33] as human glioma cells 

U251 express aberrant EAAT2 mRNA, resulting in reduction of EAAT2 protein levels [33]. 

These observations indicate that the alternate RNA splicing variations of EAAT2 are linked 

to several neurological diseases, including ALS, AD and glioma.

2.2. EAAT2 regulation by single nucleotide polymorphisms (SNPs)

The EAAT2 promoter contains consensus sites for several transcription factors (TFs) and 

thus, SNPs in these regions could alter TF bindings to the EAAT2 promoter, resulting in 

dysregulation of EAAT2 expression and function. Nucleotide change from A to C in −181 

position of the EAAT2 promoter transform the consensus sequences of activator protein-2 

(AP-2) (a positive TF) to GC-binding factor-2 (GCF-2) (a negative TF), resulting in 

decreased EAAT2 expression and glutamate uptake [18]. Increased plasma glutamate levels 

associated with this SNP might trigger strokes. Moreover, the same A to C SNPs on −181 

position of the EAAT2 promoter decreases EAAT2 expression and increases plasma 

glutamate levels during relapse in multiple sclerosis (MS) patients [34]. Another study 

conducted in a healthy Japanese population revealed that the −181 A to C SNPs in the 

EAAT2 promoter affects the personality trait of reward dependence [35]. Recently, this SNP 

variant rs4354668 (-181 A to C) in EAAT2 gene has gained more attention regarding its role 

in various neurological disorders. For example, EAAT2 −181 A to C variant that causes 

lower EAAT2 expression and leads to higher prefrontal cortex glutamate levels is associated 

with impaired prefrontal cognitive performance during schizophrenia [36]. Moreover, this 

EAAT2 SNP variant has been reported to be responsible for increased recurrence of 

episodes in bipolar disorder and lower gray matter volumes with poorer working memory 

performance in schizophrenic patients [37, 38]. The SNPs in EAAT2 gene are linked to 

higher susceptibility to schizophrenia in the Japanese population [39]. Another study 

reported the EAAT2 SNP variant rs1885343 in which the GG genotype decreases EAAT2 

protein expression compared to AA or AG genotypes in the nucleus accumbens [40].

On the other hand, polymorphism in coding regions of EAAT2, resulting from replacement 

of the amino acid glycine with arginine (EAAT2 G603A variant), confer vulnerability to 

risk-taking behavior in alcoholics and is also associated with alcoholic cirrhosis [41, 42]. 

DNA demethylation on selective DNA demethylation on selective

3. Transcriptional regulation of EAAT2

The EAAT2 promoter contains cis-elements for several transcription factors, such as NF-

κB, Sp1, N-myc, NFAT and YY1 [44]. Several pharmacological agents, such as epidermal 
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growth factor (EGF), transforming growth factor-α (TGF-α), dibutyryl-AMP increase 

EAAT2 promoter activity, mRNA and protein levels, whereas tumor necrosis factor-α 

(TNF-α) decrease EAAT2 expression in primary human fetal astrocytes [44].

3.1. Positive transcriptional regulation of EAAT2

Several studies have shown that the NF-κB pathway is critical for positive transcription of 

EAAT2. EGF, ceftriaxone and estrogenic compounds including 17β-estradiol as well as 

tamoxifen and raloxifene (selective estrogen receptor modulators [SERMs]) activate the NF-

κB pathway to enhance EAAT2 expression at the transcriptional level [22, 24, 44, 45]. The 

EAAT2 promoter contains at least three NF-κB binding motifs at −583, −272 and −251 in 

the promoter sequences and mutations in any of these sites significantly decrease EAAT2 

promoter activity [22, 46]. EGF enhances expression of EAAT2 mRNA and protein levels 

via activation of NF-κB binding to −583 site of the EAAT2 promoter [46]. EGF increases 

phosphorylation of MEK1/2 rather than activating the conventional IκB pathway in order to 

activate NF-κB and subsequent increase of EAAT2 mRNA levels. Ceftriaxone, a β–lactam 

antibiotic, enhances EAAT2 expression and function in the brain, exerting neuroprotective 

effects in an ALS mouse model [20]. NF-κB binding site at −272 of the EAAT2 promoter is 

critical for the ceftriaxone-induced increase in EAAT2 promoter activity [24]. Ceftriaxone 

activates the conventional NF-κB pathway with degradation of IκBα and nuclear 

translocation of p65 isoform of NF-κB [24]. Moreover, neurons enhance EAAT2 expression 

in astrocytes when they are co-cultured [47, 48]. Although factors released from neurons 

that are responsible for increasing astrocytic EAAT2 expression are not well understood, 

NF-κB appears to be critically involved in neuronal activation of EAAT2 [49]. NF-κB 

binding sites at −583 or −251 of the EAAT2 promoter are important for neuronal activation 

of EAAT2 promoter activity and both NF-κB isoforms, p65 and p50, interact with these 

sites to enhance EAAT2 promoter activity [49]. In addition, the activation of kappa B-motif 

binding phospho-protein (KBPP) is involved in neuronal activation of EAAT2 promoter 

activity [50]. Reduced KBPP expression is correlated with transcriptional dysfunction of 

EAAT2, decreasing EAAT2 mRNA and protein levels. We have reported that 17β-estradiol 

via GPR30 [51] and tamoxifen as well as raloxifene, can all exert neuroprotection [52-56] 

and enhance EAAT2 expression by activation of the NF-κB pathway [22, 27]. These 

observations suggest that NF-κB serves as a critical transcription factor mediating the 

effects of positive modulators of EAAT2. Nonetheless, the disturbed positive NF-κB 

regulation of EAAT2 associated with lower EAAT2 expression under neuropathologic 

condition remains to be established.

Other transcription factors, such as cAMP response element binding protein (CREB) might 

also positively regulate EAAT2 promoter activity. We have reported that CREB plays a 

critical role in tamoxifen-induced up-regulation of EAAT2 in in vitro culture of rat primary 

astrocytes [22]. Mutation of CREB binding site at −308 of the EAAT2 promoter 

significantly decreases EAAT2 promoter activity. Tamoxifen activates both NF-κB and 

CREB to increase EAAT2 promoter activity, establishing that both factors are critical in 

tamoxifen-induced enhancement of EAAT2 expression [22].
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PI3K/Akt is also positively modulating transcriptional regulation of EAAT2 [44, 57]. 

Overexpression of Akt increases EAAT2 mRNA levels and mediates EGF-enhanced 

EAAT2 expression [57]. The protein kinase A (PKA) also mediates dbcAMP- and 

tamoxifen-enhanced EAAT2 promoter activity [22, 44].

3.2. Negative transcriptional regulation of EAAT2

Most of the studies on the mechanisms of EAAT2 regulation have been directed at positive 

regulation. Few have addressed negative regulatory mechanisms of EAAT2 expression. One 

such study reported that a negative regulatory mechanism of EAAT2 is mediated by TNF-α 

where the latter decreases EAAT2 mRNA expression by co-activation of both NF-κB and 

N-myc concurrently [46].

The transcription factor yin yang 1(YY1) is a critical negative regulator of astrocytic 

glutamate transporters. YY1 is a multifunctional transcription factor, acting as a 

transcriptional initiator, activator or repressor, depending on its interaction with available 

cellular co-factors [58]. YY1 is a critical transcription factor in regulating a variety of 

biological processes such as cell proliferation and differentiation, DNA repair, and apoptosis 

[59], regulating multiple genes involved in cell cycle transitions, many of which are 

oncogenes and tumor-suppressor genes [58]. YY1 also plays an important role in the brain, 

as it is involved in neural development, neuronal function, developmental myelination, yet it 

may also contribute to neurological diseases [60]. For example, YY1 might be involved in 

the pathogenesis of AD by beta-site precursor protein-cleaving enzyme 1 (BACE1) 

promoter in neurons and astrocytes [61]. BACE1 cleaves amyloid precursor protein (APP) 

to produce β-amyloid, which deposits in the AD brain and is one of the major hallmarks of 

AD. YY1 has also been reported to play a role in the regulation of genes that are involved in 

heritable neurodegenerative disease Charcot-Marie-Tooth disease and in a severe 

neurodevelopmental disorder called Rett syndrome [62, 63]. In addition, a role for YY1 in 

the negative regulation of EAAT2 has been implicated given its ability to serve as a co-

repressor of astrocyte elevated gene-1 (AEG-1) to repress EAAT2 at the transcriptional 

level, resulting in reduced glutamate uptake in astrocytes [26]. We have also reported that 

YY1 is a critical repressor of the EAAT2 promoter, as overexpression of YY1 decreases, 

whereas knockdown of YY1 or mutation of YY1 binding site in the EAAT2 promoter 

increases EAAT2 promoter activity [27].

4. Epigenetic deregulation in neurological disorders

Epigenetic modifications such as methylation or acetylation of histones and methylation of 

DNA are altered in several genes including GLT-1 (EAAT2) associated with 

neurodegeneration [64]. Epigenetic DNA methylation involve DNA methyltransferases 

(DNMT), an enzyme transferring a methyl group from S-adenosyl-l-methionine to the 

carbon 5 position of cytosine resulting in gene silencing [65]. Methylation of the SNCA 

gene, coding for alpha-synuclein, which is involved in formation of Lewy body in PD, is 

known to take place, leading to a decrease of gene expression in PD patients [66]. DNA 

methylation modification is also found in postmortem frontal cortex tissue derived from 

bipolar disorder (BD) and AD patients, showing hypomethylation of cyclooxygenase-2 

(COX-2) and hypermethylation of the BDNF promoter regions in these patients [67]. 
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DNMT mRNA expression is altered in suicide brains, and this change is associated with 

increased methylation of a gamma-aminobutyric acid (GABA) A type receptor (GABAA) 

alpha1 subunit gene whose mRNA expression is reduced in the cortex [68]. Human subjects 

who experience childhood abuse show increased methylation of a stress responder the 

glucocorticoid receptor (GR) promoter along with reduced expression of GR mRNA levels 

in the hippocampus [69]. Chronic social stress induces histone modifications in the BDNF 

promoter along with reduced BDNF mRNA levels [70]. These observations suggest that 

alteration in epigenetic regulation mechanisms are closely associated with altered gene 

expression in neurological disorders.

4.1 Epigenetic dysregulation of EAAT2

Histone modification by acetylation also plays a major role in the epigenetic regulation of 

EAAT2 expression. Histone acetylation modification is characterized by the addition and 

removal of acetyl moiety from acetyl-coenzyme A to the ε-amino group of lysine residue; 

this reaction is carried out by two enzymes, histone acetyltransferases (HATs) and histone 

deacetylases (HDACs) [71]. Histone deacetylases (HDACs) inhibitors, such as TSA and 

valproic acid (VPA) increase EAAT2 mRNA and protein levels, indicating the role of 

acetylation in regulating EAAT2 expression [64, 72, 73]. In addition, CREB-binding protein 

(CBP), a HAT, has been reported to contribute as a co-repressor of YY1 in the negative 

regulation of EAAT2 [26].

DNA demethylation on selective CpG sites of the GLT-1 (EAAT2) promoter is highly 

correlated to increased GLT-1 mRNA levels in mouse brain astrocytes in response to 

neuronal stimulation [74]. However, low level of methylation was found on CpG sites of 

EAAT2 promoter from postmortem motor cortex of human ALS patients. Nonetheless, the 

limitations of using human postmortem tissues could compromise the methylation analysis 

of EAAT2 promoter for several reasons; (1) detection of the methylation changes in bulk 

tissue may not represent the loss of EAAT2/GLT1 in the limited area in patient with ALS or 

transgenic rodent models of ALS, (2) quantification of EAAT2 mRNA may not be accurate 

due to the repeated freeze-thaw cycle for tissue sample storage which might lead to unstable 

RNA, and (3) a small sample size for control and patients with ALS. The same authors 

suggested that a large-scale whole genome DNA methylation analysis of the pathological 

tissues of larger number of patients with ALS and controls is warranted to reveal the 

possible epigenetic changes involved in ALS astrocytes in the future [74].

Moreover, DNA methylation analysis in human glioma cell lines and human brain tissue has 

shown that increased methylation in the EAAT2 promoter is associated with reduced 

EAAT2 expression [75]. The inhibition of DNMT restores EAAT2 transcription, suggesting 

a role for methylation in reduction of EAAT2 transcription [75]. Region-specific expression 

of EAAT2 appears to be associated with the methylation status of the EAAT2 promoter, 

since higher methylation is detected in the cerebellum compared to the cortex, and is 

inversely correlated with the region-specific EAAT2 expression [76]. Dexamethasone 

increases EAAT2 expression in the cortex, but its effect in the cerebellum is minimal due to 

hypermethylation of EAAT2 in that region [77]. Moreover, neuronal regulation of EAAT2 
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expression in neuronal-astrocyte co-cultures induces hypomethylation of CpG sites on the 

EAAT2 promoter, resulting in increased EAAT2 mRNA levels [62].

5. Post translational deregulation of EAAT2

Palmitoylation is one of the posttranslational modifications of proteins in which palmitate is 

attached to cysteine residues via a thioester linkage by palmitoyl acyl transferases (PATs) 

(reviewed in [78]). Palmitoylation at cysteine38 (C38) is required for normal EAAT2 

(GLT-1) function [79], thus inhibition of palmitoylation severely impairs glutamate uptake. 

Palmitoylation of EAAT2 (GLT-1) has been shown to be reduced in the YAC128 HD 

mouse model along with decrease of glutamate uptake, suggesting the role of palmitoylation 

in EAAT2 (GLT-1) function [79].

Sumoylation is also playing a role in EAAT2 posttranslational modulation. Sumoylated 

EAAT2 localizes to intracellular compartments, while non-sumoylated EAAT2 resides on 

the plasma membrane, consistent with the results that desumoylation increases EAAT2-

mediated glutamate uptake in primary astrocytes [80]. Moreover, caspase-3 cleaved EAAT2 

generates sumoylated proteolytic fragment (CTE), followed by intracellular accumulation of 

sumoylated CTE in organelles, such as the nucleus and endosome in spinal cord astrocytes 

of ALS mice [80, 81]. Prolonged nuclear accumulation of CTE induces neuronal toxicity by 

axonal growth impairment in primary motor neurons, suggesting that sumoylated proteolytic 

fragment of the astroglial glutamate transporter EAAT2 could participate to the pathogenesis 

of ALS [81]. Based on these recent findings, sumoylation has been considered as an 

important pathway in ALS [82].

Ubiquitination of the C-terminal tail of EAAT2 (GLT-1) has also been reported. 

Ubiquitination mediates internalization and degradation of EAAT2 (GLT-1) via PKC, 

resulting in decrease of glutamate uptake in C6 glioma cells or primary cortical cultures, 

suggesting that this ubiquitin-mediated PKC-dependent degradation of EAAT2 might 

possibly increase under pathological conditions [83]. Activation of PKC increases the 

ubiquitination of EAAT2 (GLT-1) both in vitro and in vivo experimental conditions, leading 

to accumulation of ubiquitinated EAAT2 (GLT-1) in the intracellular compartment [84]. 

Accordingly, inhibition of the ubiquitin-activating enzyme E1 promotes the retention of 

GLT-1 at the plasma membrane. The translocation of EAAT2 (GLT-1) from the recycling 

endosomes to the plasma membrane is blocked by inhibition of the deubiquitinating enzyme 

(DUB) ubiquitin C-terminal hydrolase-L1, suggesting the existence of specific 

ubiquitination/deubiquitination cycles in regulating optimal concentrations of GLT-1 at the 

cell surface [85].

6. Mn-induced transcriptional reduction of EAAT2

Manganese (Mn) is well known to decrease expression of EAAT1 as well as EAAT2 with 

consequential reduction of glutamate uptake [45, 53, 86, 87]. However, the mechanisms of 

Mn-induced reduction of EAAT1 and 2 at the transcriptional level remain to be established. 

We have reported that YY1 might be the critical transcription factor in mediating Mn’s 

effect on reduced EAAT2 expression and function [27].
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6.1. Role of YY1 in Mn-induced repression of EAAT2

Although Mn is an essential trace element in the body, serving as a cofactor for enzymes 

such as MnSOD and glutamine synthetase, its chronic excessive accumulation in the brain 

from environmental or occupational sources leads to a neurological disorder called 

manganism that shares similar pathological features with PD [88, 89]. Moreover, Mn 

neurotoxicity is also known to contribute to the development of multiple neurodegenerative 

disorders including AD, PD, ALS and Huntington disease (HD) [90]. Despite of its 

significant impact on multiple neurodegenerative diseases, the mechanisms of Mn-induced 

neurotoxicity are not completely understood. Several mechanisms, including oxidative stress 

and mitochondrial impairment have been reported [91-93]. Mn-induced excitotoxic neuronal 

injury is also considered to be a critical mechanism involved in Mn neurotoxicity. MK801, 

an N-methyl-D-aspartate (NMDA) antagonist blocks excitotoxic lesions in the striatum of 

Mn-injected rats [94]. Moreover, Mn decreases the expression and function of both 

astrocytic glutamate transporters, EAAT1 and EAAT2 [45, 53, 86, 87], representing a 

critical mechanism for Mn-induced neurotoxicity. Since there is no direct binding sites for 

Mn at the DNA levels identified, it is likely that Mn-induced oxidative stress [95] and 

inflammation [96] might mediate its repressive actions on glutamate transporters. We have 

found that YY1 mediates Mn-induced inhibitory effects on EAAT2. Mn increases YY1 

promoter activity, mRNA and protein levels [27]. Mn enhances YY1 binding to its 

consensus sites in the EAAT2 promoter and accordingly, mutation of YY1 binding sites 

attenuate the Mn-induced decrease in EAAT2 promoter activity, indicating that YY1 is a 

critical transcriptional mediator in Mn-induced repression of EAAT2 [27].

6.2. Mechanism of Mn-induced repression of EAAT2 via YY1

Mn likely activates YY1 via proinflammatory mediators, as it potentiates the release of 

several inflammatory molecules including prostaglandins, cytokines, such as TNF-α, 

interleukin (IL)-6, IL-1β, as well as nitric oxide from activated glial cells [96-99]. TNF-α 

and IL-1β are negative regulators of EAAT2 and they decrease EAAT2 mRNA and protein 

levels in astrocytes [44, 46, 100-102]. Findings from our studies indicate that Mn increases 

production of TNF-α which, in turn, increases YY1 promoter activity, mRNA and protein 

levels in astrocytes [27], suggesting that TNF-α mediates Mn effects on reduction of 

EAAT2 expression via YY1.

NF-κB is involved also in Mn-induced repression of EAAT2 via YY1. Although NF-κB is a 

major positive regulator of EAAT2, resembling other inflammatory cytokines, such as TNF-

α, Mn activates the NF-κB pathway [103], it represses EAAT2. We have shown that Mn 

activates YY1 via activation of NF-κB, and moreover, Mn-induced activation of the YY1 

pathways is dominant over its activation of NF-κB, overriding the positive effects of NF-κB 

on EAAT2 [27].

7. Conclusion

The reduced expression and function of astrocytic glutamate transporter EAAT1 and 

EAAT2 has been associated with numerous neurodegenerative diseases. Accordingly, 

understanding the precise molecular mechanisms involved in the transcriptional and 

Karki et al. Page 8

Neurochem Res. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



translational dys-regulation of EAAT2, as well as other altered genetic regulatory 

mechanisms, such as SNPs and epigenetics is critical for the development of efficacious 

drugs for treatment of the neurological disorders associated with impairment of EAAT2 

expression (Fig. 1). At the transcriptional level, the NF-κB and CREB pathways play critical 

roles in enhancing EAAT2 expression, mediating the effects of positive modulators of 

EAAT2. In addition, delineating the negative regulatory mechanisms of EAAT2 will be 

highly beneficial, because targeting this pathway can rescue and reverse the reduced 

expression and function and potentially delay the progression of neurodegenerative diseases. 

The YY1 pathway contributes to negative regulation of EAAT2, mediating TNF-α- and Mn-

induced inhibitory effects on EAAT2 expression and function. Taken together, 

understanding positive and negative regulatory mechanisms of EAAT2 expression will offer 

novel therapeutic approaches to treat neurological disorders associated with excitotoxic 

neuronal injury.
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Fig. 1. Proposed mechanisms of dysregulated EAAT2 expression and function that lead to 
excitotoxic neurodegeneration at multiple gene regulation levels
At genetic level, altered RNA splicing and SNPs play, while at transcriptional level, YY1 

and NF-κB as a repressor and an activator of EAAT2, respectively. Moreover, YY1 

mediates the inhibitory modulation of EAAT2 induced by TNF-α as well as Mn as a part of 

its neurotoxicity mechanism. Epigenetic modifiers such as HDACs and post-translational 

modulators such as ubiquitin also play roles in the modulation of EAAT2 expression and 

function. The dysregulation of any of aforementioned mechanisms might lead to a decrease 

of EAAT2 expression and function resulting in triggering the excitotoxic neuropathological 

changes in many neurological disorders.
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