Skip to main content
. 2015 Jan 28;35(4):1493–1504. doi: 10.1523/JNEUROSCI.2054-14.2015

Table 1.

Regression statistics

Saccade + perception task Perception-only task
Orthogonal regressions
    Single subject (Figure 2C)
        Slope [95% CI] 1.03 [0.73, 1.44] 1.12 [0.83, 1.53]
        Pearson's correlation r = 0.876, p = 0.00009 r = 0.854, p = 0.0002
    Pool of subjects (Figure 2G)
        Slope [95% CI] 0.98 [0.77, 1.13] 0.83 [0.48, 1.09]
        Pearson's correlation r = 0.942, p = 0.0000 r = 0.833, p = 0.0004
Psychometric functions
    Single subject (Figure 2D)
        Threshold: mean [95% CI] 105.3 [104.0, 106.4] 100.5 [99.3, 101.4]
        Width: mean [95% CI] 291.1 [289.0, 293.7] 208.2 [206.8, 210.0]
        Guess rate 0.022 ± 0.001 0.039 ± 0.001
        Lapse rate 0.084 ± 0.000 0.083 ± 0.000
    Pool of subjects (Figure 2H)
        Threshold: mean [95% CI] 74.4 [73.5, 75.7] 66.0 [63.6, 67.5]
        Width: mean [95% CI] 581.6 [580.6, 582.5] 535.6 [534.5, 536.4]
        Guess rate: mean ± SEM 0.006 ± 0.000 0.005 ± 0.000
        Lapse rate: mean ± SEM 0.023 ± 0.000 0.007 ± 0.000

Confidence intervals for orthogonal regression come from 2000 bootstrap resamplings. To estimate the parameters of the psychometric function [its mean, width, and low (guess rate) and high (lapse rate) asymptotes] with a Bayesian technique, a priori assumptions must be made about the distribution of the parameters (Kuss et al., 2005). We used a prior with a normal distribution, Gauss (μ = 50, σ = 150), for the threshold parameter. (Changing the threshold parameter's a priori μ from −50 to 50 ms changed the threshold value by 3 ms or less.) The width parameter was given a γ distribution prior, γ (shape = 1.01, scale = 2000). The lapse and guess rate were assumed to be small, and were given priors based on the β distribution, β (α = 1, β = 20).