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As humans age, a characteristic pattern of widespread neocortical dendritic disruption coupled with compensatory effects in hippocam-
pus and other subcortical structures is shown in postmortem investigations. It is now possible to address age-related effects on gray
matter (GM) neuritic organization and density in humans using multishell diffusion-weighted MRI and the neurite-orientation disper-
sion and density imaging (NODDI) model. In 45 healthy individuals across the adult lifespan (21– 84 years), we used a multishell diffusion
imaging and the NODDI model to assess the intraneurite volume fraction and neurite orientation-dispersion index (ODI) in GM tissues.
We also determined the functional correlates of variations in GM microstructure by obtaining resting-state fMRI and behavioral data. We
found a significant age-related deficit in neocortical ODI (most prominently in frontoparietal regions), whereas increased ODI was
observed in hippocampus and cerebellum with advancing age. Neocortical ODI outperformed cortical thickness and white matter
fractional anisotropy for the prediction of chronological age in the same individuals. Higher GM ODI sampled from resting-state net-
works with known age-related susceptibility (default mode and visual association networks) was associated with increased functional
connectivity of these networks, whereas the task-positive networks tended to show no association or even decreased connectivity. Frontal
pole ODI mediated the negative relationship of age with executive function, whereas hippocampal ODI mediated the positive relationship
of age with executive function. Our in vivo findings align very closely with the postmortem data and provide evidence for vulnerability and
compensatory neural mechanisms of aging in GM microstructure that have functional and cognitive impact in vivo.
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Introduction
Dendrites are key sites for synaptic integration and neuronal con-
nectivity in the brain (Spruston, 2008). Postmortem studies have
demonstrated that morphological alterations in dendritic struc-
tures are hallmarks of aging in gray matter (GM) (Dickstein et al.,
2013) characterized by reduced complexity and regression of the
dendritic tree in the neocortex (de Brabander et al., 1998; Duan et
al., 2003). In contrast, dendritic growth and increased dendritic

complexity occur within paleocortex (parahippocampal gyrus)
and archicortex (hippocampus) in successful human aging (Buell
and Coleman, 1979; Flood et al., 1985) and senescent animals
(Pyapali and Turner, 1996).

GM structure has been extensively assessed in vivo at a mac-
roscopic scale. However, in humans, the evaluation of GM mi-
crostructure, and dendritic organization in particular, is typically
limited to postmortem tissue. These studies are generally con-
founded by progressive alterations that occur during the post-
mortem interval before tissue fixation (Penzes et al., 2011). In
addition, postmortem studies typically obviate any possibility of
meaningfully studying structure–function relationships.

Recent advances in diffusion-weighted MRI have opened new
vistas to examine brain tissue microstructure in vivo (Assaf et al.,
2013). These techniques use the diffusion properties of water
molecules to estimate underlying cellular microstructural prop-
erties of brain tissue in the context of specific biophysical models.
Neurite-orientation dispersion and density imaging (NODDI) is
a recently proposed model that extends application of diffusion
imaging from white matter (WM) to the GM tissue microstruc-
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ture (Zhang et al., 2012). NODDI indexes neuritic density and
dispersion of neurites in the brain tissue with intraneurite volume
fraction (�IN) and orientation dispersion index (ODI), respec-
tively. These indices can be used to assess dendritic organization
in vivo (Jespersen et al., 2007; Zhang et al., 2012). Others have
attempted to investigate different aspects of GM microstructure
using myelin mapping (Glasser and Van Essen, 2011; Grydeland
et al., 2013) and diffusion tensor imaging (DTI) (Ball et al., 2013;
Pereira et al., 2014) and, more recently, NODDI indices (Win-
ston et al., 2014). However, the NODDI model (unlike DTI) fully
accounts for effects of free-water contamination, which is of par-
ticular relevance in aging (Rathi et al., 2014).

As a primary aim, we sought to investigate regional patterns of
GM microstructure in healthy humans across the adult life. We
adopted a GM-based spatial statistics (GBSS) approach (Ball et
al., 2013) for voxelwise analysis of NODDI-derived indices
within the GM, including enhanced registration steps and cus-
tomization to take full advantage of the NODDI model. We hy-
pothesized that consistent with the postmortem data neocortical
vulnerability and compensatory effects in hippocampal GM mi-
crostructure would be observed. In addition, recent evidence
suggests that there is a close coupling between dendritic activity
and blood-oxygen-level-dependent signal variation (Viswana-
than and Freeman, 2007). Many studies find effects of age in
brain networks using resting-state functional connectivity; how-
ever, whereas certain networks show age-related differences more
often than others, there is no established consensus regarding the
network or networks that are consistently affected (Ferreira and
Busatto, 2013). Therefore, we also aimed to uncover the func-
tional consequences of age-related GM microstructural variation
using fMRI approaches as well as assessment of cognitive perfor-
mance in the same individuals.

Materials and Methods
Participants. Forty-five healthy participants across the adult lifespan
(21– 84 years of age; female/male: 24/21) were recruited at the Centre for
Addiction and Mental Health (CAMH) in Toronto, Canada via referrals,
study registries, and advertisements. All participants completed the Struc-
tured Clinical Interview for DSM-IV Disorders, the Mini-Mental Status Ex-
amination, and a urine toxicology screen. Exclusion criteria were any history
of a mental disorder (including a dementia, current substance abuse, or a
lifetime substance dependence, except for simple phobias); positive urine
toxicology, a first-degree relative with a history of psychotic mental disorder,
a history of head trauma with loss of consciousness, seizure, or another
neurological disorder. Participants were characterized with the Wechsler
Test for Adult Reading (WTAR); Edinburgh handedness inventory (Old-
field, 1971); Hollingshead index; Clinical Illness Rating Scale for Geriatrics
(CIRS-G) (Miller et al., 1992); weight, height, and blood pressure (Table 1).
The study was approved by the Research Ethics Board of CAMH and all
participants provided written informed consent.

All participants underwent a battery of cognitive testing. Raw cog-
nitive scores were converted to z-scores. Performance in working

memory/processing speed was computed as the average of standard-
ized scores from: Stroop ratio index (ratio of color–word time score to
color time score; Trenerry et al., 1989), Trail-Making Test B (Reitan
and Wolfson, 1985), and the Letter-Number Sequencing Test
(Wechsler, 1997).

Imaging protocol. Diffusion, structural, and functional images were
acquired for all participants on a 3 T Discovery MR750 system (Gen-
eral Electric) equipped with an 8-channel head coil. High-resolution
T1-weighted anatomical images were acquired using a 3D inversion-
prepared fast spoiled gradient-recalled echo acquisition, FSPGR-
BRAVO (TE/TR � 3/6.7 ms) with an isotropic voxel size of 0.9 � 0.9 �
0.9 mm 3. For the diffusion imaging, a multishell protocol was acquired
along 30 noncollinear directions at 3 b-values (1000, 3000, 4500 s/mm 2)
in addition to 15 interspersed b � 0 images using a single-shot echopla-
nar sequence. To increase the signal-to-noise ratio, the high b-value im-
ages (b � 4500 s/mm 2) were acquired with NEX � 2. The acquisition
parameters were as follows: TE/TR � 108/12,000 ms, voxel dimension of
2 � 2 � 2 mm 3, 82 slices. Resting-state functional scans were acquired
using an axial spiral fMRI acquisition with the following parameters:
TE/TR � 30/2000 ms, 210 volumes, voxel dimension of 3.4 � 3.4 � 5
mm 3, 31 slices. During the resting-state fMRI, participants were re-
quested to close their eyes and let their mind wander.

Diffusion MRI processing. Eddy current-induced distortions and
motion-related misalignment of diffusion images were corrected using
FMRIB’s Software Library (FSL) version 5.0.6 (Jenkinson et al., 2012).
After brain extraction (Smith, 2002), the diffusion tensor model was
fitted in each voxel using the dtifit function to estimate fractional anisot-
ropy (FA) maps.

In the NODDI model, three microstructural environments are distin-
guished (intracellular, extracellular, and CSF compartments; Zhang et
al., 2012). The intracellular component models dendrites and axons as a
set of sticks with restricted diffusion perpendicular to neurite axes and
unhindered diffusion along them (Sotiropoulos et al., 2012). NODDI
adopts the Watson distribution to model distribution of these sticks
(neurites), which permits modeling of highly dispersed neuritic struc-
tures such as dendritic trees in the GM tissue (Zhang et al., 2012).
NODDI generates five independent parametric maps, three of which
were used in this study: (1) ODI, which is the dispersion coefficient of the
sticks (neurites) and ranges from 0 for no dispersion to 1 for fully dis-
persed; (2) �IN, which indexes the fraction of tissue volume restricted
within neurites, (3) fraction of CSF (fCSF), which indexes percentage of
the volume in each voxel that is occupied by free water. The NODDI
model was fitted using the NODDI toolbox (https://www.nitrc.
org/projects/noddi_toolbox/) in the MATLAB environment.

GM-based spatial statistics. We adopted GM-based spatial statistics
(GBSS) methodology (Ball et al., 2013) to investigate effects of age on GM
in a voxelwise fashion. As discussed below, the registration steps were
enhanced and customized to exploit the potential of the NODDI mod-
eling. The processing pipeline is summarized in Figure 1. As in other
voxel-based approaches, accurate cross-subject alignment of anatomi-
cally related regions is of paramount importance. This issue is even more
critical with diffusion imaging analysis of the cortical regions (cerebellar
and cerebral cortex), given the relatively thin cortical structures and
sensitivity of diffusion metrics to partial volume contamination (Koo
et al., 2009). To overcome these caveats, GBSS adapts the tract-based
spatial statistics (TBSS) (Smith et al., 2006) framework for GM anal-
ysis by skeletonizing the GM and projecting diffusion metrics (e.g.,
FA) from the most probable local GM voxel on to the skeleton for
group comparison.

Unlike the original GBSS pipeline, in which tissue classification takes
place in the structural images (Ball et al., 2013), we directly segmented
brain tissues using the diffusion data as follows: (1) CSF partial volume in
each voxel was directly estimated using the NODDI model parameter,
fCSF (Zhang et al., 2012); (2) WM segmentation was performed on the FA
images using Atropos (Avants et al., 2011a) for two class classification
(WM/non-WM) to derive fraction of WM (fWM) (it has been previously
shown that FA images can be used to robustly classify WM tissue; Liu et
al., 2007; Kumazawa et al., 2010); and (3) fraction of GM ( fGM) in each

Table 1. Demographic characteristics of participants (n � 45)

Age (y), range 53.9 (18), 21– 84
Sex (F/M) 24/21
Handedness (R/L) 43/2
Education (y) 15.5 (2.4)
WTAR IQ 118.2 (7.7)
MMSE 29.3 (1.0)
Diastolic BP (mmHg) 74.7 (9.6)
Systolic BP (mmHg) 122.4 (15.8)
BMI 26.2 (5.8)
CIRS-G (ratio score) 1.61 (0.58)

MMSE, Mini-Mental State Examination; BP, blood pressure; BMI, body mass index. Data are presented as mean (SD).
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voxel was determined by simply subtracting fractions of CSF and WM
from 1 as follows:

fGM � 1 � � fCSF � fWM�

Diffusion parameter maps do not have sufficient gray/white/CSF con-
trast to allow for accurate registration of cortical GM. Therefore, we
generated maps with a contrast similar to T1 images (pseudo-T1 images)
by multiplying partial volume estimations of each tissue class by their
corresponding contrast (contrasts for CSF � 0, GM � 1, WM � 2). For
groupwise nonlinear registration, we used the buildtemplateparallel.sh

script in the ANTS software package version 1.9 (Avants et al., 2011b),
which has recently been shown to significantly improve registration of
diffusion images (Schwarz et al., 2014). Aligned GM probability maps
were averaged across individuals and thinned (skeletonized) so that the
skeleton represents the center of highly probable GM voxels. Each sub-
ject’s (aligned) ODI, �IN, and fGM image were then projected onto the
skeleton. This is achieved, for each skeleton voxel, by searching perpen-
dicular to the skeleton structure for the most probable local GM voxel
(Ball et al., 2013). Only voxels with fGM �0.7 in �75% of the subjects
were retained in the skeleton. The remaining voxels with nonsatisfactory

A

B

Figure 1. Overview of the pipeline proposed in this study. A, Diffusion image processing steps. FA maps were created by fitting the DTI model (orange box); the CSF fraction, ODI, and neurite
density (�IN) images were generated by applying the NODDI model to the diffusion images (green boxes). WM and GM fraction were estimated indirectly. Finally, images with a pseudo-T1 contrast
were generated for registration steps. B, Registration and skeletonization of GM. A norm-template was created by iterative nonlinear registration of pseudo-T1 images.
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fGM �0.7 were excluded from the analysis using the setup_masks script,
implemented in FSL.

Region of interest analysis. Lobar (frontal, occipital, parietal, temporal),
striatal, and cerebellar regions of interest (ROIs) from the MNI atlas,
along with hippocampal mask from the Harvard Oxford subcortical atlas
(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases) were transformed to indi-
vidual diffusion spaces by applying inverse warp fields generated during
ANTS nonlinear registration step. The fGM images in the diffusion native
space were thresholded at 0.7 and binarized. The resulting GM masks
were multiplied by the transformed ROIs. Finally, average ODIs were
extracted separately from each ROI.

To control for the effects of cortical thickness and subcortical volume,
cortical surface reconstruction, cortical thickness measurement, and
subcortical segmentation were performed on structural T1 images using
the FreeSurfer toolkit version 5.1 (Dale et al., 1999; Fischl and Dale, 2000;
Fischl, 2012). Average lobar cortical thickness and subcortical volume
were recorded for each individual.

For WM analysis, all FA images were nonlinearly transformed to the
MNI space and then averaged to create the mean FA map. Next, a skel-
etonization procedure was applied to the resulting mean FA image
(Smith et al., 2006). Non-WM voxels were discarded from the skeleton
by thresholding the skeletonized mean FA (FA �0.2) (Smith et al., 2006).
To account for residual misalignments and to facilitate groupwise com-
parison, each individual’s FA image was searched orthogonal to the skel-
eton to find the local maxima. These local maxima were then projected
back onto the skeleton. Finally, average FA was extracted from each
skeletonized lobar ROI.

Resting-state fMRI analysis. Functional image preprocessing and anal-
ysis were conducted using FSL version 5.0.6 (Jenkinson et al., 2012).
Functional data preprocessing included: discarding the first 5 volumes,
motion correction with MCFLIRT, brain extraction using BET (Smith,
2002), spatial smoothing with a Gaussian kernel (� � 4 mm), and high-
pass temporal filter with a 100 s cutoff. fMRI volumes were linearly
registered to the individual’s structural scan and nonlinearly trans-
formed to the MNI space images using FNIRT. Next, functional images
were denoised using FMRIB’s independent component analysis (ICA)-
based Xnoiseifier (FIX) version 1.0.6 (Griffanti et al., 2014; Salimi-
Khorshidi et al., 2014). This algorithm provides an automatic solution
for denoising fMRI data via accurate classification of components de-
rived from ICA (Salimi-Khorshidi et al., 2014). Each individual’s prepro-
cessed functional volumes were submitted to single-session ICA using
FSL MELODIC version 3.14 (Beckmann and Smith, 2004; Beckmann et
al., 2005). The FIX algorithm was trained using a library of noise com-
ponents (manually classified in 10 randomly selected subjects). Finally,
the entire functional dataset was denoised by automatically classifying
artifactual components.

For voxelwise comparisons of resting-state functional connectivity
among subjects, we used the “dual regression” approach implemented in
FSL (Filippini et al., 2009). Denoised functional data containing 205 time
points for each subject were temporally concatenated across subjects.
The resulting 4D dataset was submitted to groupwise ICA (http://fsl.
fmrib.ox.ac.uk/fsl/fslwiki/MELODIC) with a dimensionality of 25. The
components that corresponded to previously described functional net-
works that involve neocortical regions were selected for further analysis
(Smith et al., 2009). Six resting-state networks were identified. These
included the primary visual network (corresponding to components 120

and 220 of 20-dimensional ICA resting-fMRI components available on
http://www.fmrib.ox.ac.uk/analysis/brainmap�rsns), visual association
network (corresponding to component 320), default mode (DMN, cor-
responding to component 420), sensorimotor network (corresponding to
component 620), right frontotemporal network (corresponding to com-
ponent 920), and left frontotemporal network (corresponding to compo-
nent 1020) (Smith et al., 2009). Next, temporal dynamics for each
independent component for each individual subject was determined us-
ing spatial regression. Finally, using temporal regression, the resulting
time courses were regressed into the same 4D dataset to get a subject-
specific set of spatial connectivity maps.

For each of these networks, average neocortical ODI was extracted
using a similar approach as described above for ROI analyses. Resting-

state networks were thresholded at z � 3, binarized, nonlinearly trans-
formed to the diffusion space, and multiplied by the cortical mask
derived from the Harvard-Oxford atlas.

Statistical analyses. Cross-subject voxelwise analyses were performed
nonparametrically using Randomise (part of FSL, 5000 permutation;
Nichols and Holmes, 2002) to test the effects of age independent of sex on
GM microstructure (GBSS), the effects of ODI extracted from resting-
state networks on functional connectivity of the corresponding network
while controlling for effects of age and sex (dual regression), and the
effects of age on functional connectivity of each resting-state network
while controlling for sex (dual regression). Threshold-free cluster
enhancement was used to provide brain-wide significance without
defining an arbitrary cluster-forming threshold (Smith and Nichols,
2009). A familywise error (FWE)-corrected p ( pFWE) �0.05 was con-
sidered significant for GBSS. For dual regression analyses, statistical
thresholds were determined by application of Bonferroni correction
for 6 resting-state networks, where pFWE �0.0083 (0.05/6) was con-
sidered significant.

To investigate the effect of age on regional ODI, ROI analyses were
performed using general linear models in the R version 3.0.2 environ-
ment. To further evaluate the nonlinear effects of aging on ODI values
extracted from cortical (frontal, occipital, parietal, and temporal lobe
GM) and subcortical (cerebellum, hippocampus, and striatum) ROIs,
regression with a restricted cubic spline function was conducted (rms
package implemented in R). Statistical thresholds were determined by
application of Bonferroni correction for 7 ROIs at which p � 0.0071
(0.05/7) was considered significant. To determine how well neocortical
microstructure (ODI) predicts chronological age compared with the
macrostructural properties of these structures (average cortical thick-
ness) and lobar mean FA, root mean squared error (RMSE) and R 2 of the
respective models were compared.

Effects of regional ODI (extracted from 48 cortical regions using
Harvard-Oxford cortical atlas) on cognitive function were interrogated
using stepwise forward-regression analysis, whereas accounting for
effects of age and sex. Assuming that regional ODI would serve as medi-
ators between age and cognitive performance, we conducted bootstrap-
ping tests for mediation analysis, using the Preacher and Hayes (2008)
SPSS macro with 5000 samples in the SPSS version 21.0 environment
(Preacher and Hayes, 2008). This approach yields � regression values for
the indirect effect estimates and the corresponding 95% accelerated and
bias-corrected confidence intervals (mediation effect is considered sig-
nificant if the interval does not include 0).

Results
Aging pattern of GM microstructure
In a sample of 45 healthy subjects across the adult lifespan (21– 84
years of age; female/male: 24/21; Table 1), we found a widespread
decrease in the neocortical-ODI (pFWE �0.05) with advancing
age. In contrast, only voxels in the cerebellar crus I/II demon-
strated a significant age-related increase in ODI (Fig. 2, Table 2).
No significant age-related difference was observed for GM �IN.
When we repeated the analysis using different fGM thresholds
(fGM � 0.65 and fGM � 0.75), similar patterns of lower neocortical
ODI and higher cerebellar ODI were observed with older age
(data not shown).

ROI analysis (Fig. 3) revealed significant linear decline with
advancing age for frontal ODI (t � 	6.41, p � 1.04 � 10	7),
occipital ODI (t � 	5.66, p � 1.23 � 10	6), parietal ODI (t �
	8.31, p � 2.09 � 10	10), and temporal ODI (t � 	4.39 p �
7.51 � 10	5), whereas a similar trend, albeit nonsignificant after
multiple-comparison correction, was also found for striatum
(t � 	2.56, p � 0.014). In contrast, a significant linear age-
related increase in cerebellar (t � 3.25, p � 0.0022) and
hippocampal-ODI (t � 2.25, p � 0.0071) was observed. In addi-
tion, hippocampal ODI demonstrated a significant nonlinear re-
lationship with age (nonlinear term: p � 0.006). These effects
remained stable after inclusion of cortical thickness/subcortical
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volume measurements in the model (frontal lobe: p � 1.86 �
10	5, occipital lobe: p � 1.2 � 10	5, parietal lobe: p � 2.20 �
10	8, temporal lobe: p � 0.0018, hippocampus nonlinear effect:
0.008, and cerebellum: p � 0.034). A more detailed analysis using
48 cortical ROIs revealed that ODI extracted from a majority of
cortical regions (27 of 48) showed a significant decline with ad-
vancing age (p � 0.001, after correction for multiple compari-
sons). A similar trend was observed in 10 additional cortical
regions (p � 0.05).

Hippocampal ODI and cerebellar ODI showed negative cor-
relation (p � 0.05) with hippocampal and cerebellar volumes,
respectively, whereas frontal ODI and parietal ODI demon-
strated a positive correlation with frontal and parietal cortical
thickness measurements, respectively (p � 0.05). However, these
apparently significant correlations disappeared after controlling
for the effects of age.

Prediction of chronological age
The best prediction performance of chronological age was for the
parietal ODI (R 2 � 0.63, RMSE � 10.8y) followed by frontal ODI
(R 2 � 0.51, RMSE � 12.5 y). For each lobar ROI, mean GM ODI
consistently outperformed other measures of brain structure,
namely the mean cortical thickness measurements and lobar
WM fractional anisotropy for the prediction of chronological
age (Table 3).

GM microstructure in relation to brain resting-state
functional connectivity
In the same participants, we evaluated the effects of average
GM-ODI extracted from neocortical regions of resting-state net-
works on the brain-wide functional connectivity of these net-

works, whereas controlling for age and sex. From the group ICA,
6 of the 25 components (DMN, visual association, primary visual,
sensorimotor, and left/right frontotemporal networks) were vi-
sually identified as corresponding to previously described func-
tional networks that predominantly involve neocortical regions
(Smith et al., 2009). A significant positive relationship between
mean GM ODI extracted from the DMN and functional connec-
tivity (temporal-coherence) between DMN and occipital cortex
was observed (p � 0.002, Fig. 4, Table 4). Similarly, higher GM-
ODI extracted from the visual association network was associated
with increased connectivity between this network and the medial
aspect of the frontal lobe, corresponding to the anterior DMN
(p � 0.003; Fig. 4, Table 4). GM-ODI extracted from sensorimo-
tor and primary visual networks correlated positively, albeit
nonsignificantly after multiple-comparison correction (sensori-
motor network: p � 0.020; primary visual network: p � 0.021),
with functional connectivity between these networks and insula,
anterior and posterior cingulate cortices, and precuneus. In
contrast, we did not detect any significant positive relationship
between mean ODI extracted from the two lateralized frontotem-
poral networks (right and left) and functional connectivity of
these networks. Furthermore, we found a tendency toward re-
duced functional connectivity between the right frontotemporal
network and right frontal pole with higher ODI from this resting
state network (p � 0.027; Table 4).

We further investigated age-related differences in resting-
state functional connectivity for each network (Fig. 4, Table 4).
All four networks that showed higher functional connectivity
with higher GM ODI also demonstrated age-related deficits in
functional connectivity (pFWE �0.05). No age effect was observed
for the left and right lateralized frontotemporal networks. These
age-related effects disappeared when effects of age were modeled
in conjunction with GM ODI.

Cognitive correlates of GM microstructure
Across 48 cortical ROIs, frontal pole ODI was a significant deter-
minant of working memory/processing speed independent of age
(partial r � 0.49, p � 0.0009) after correction for multiple com-
parisons. In the follow-up analysis, hippocampal ODI (t � 2.05,
p � 0.047) also contributed positively to working memory/pro-
cessing speed performance along with frontal pole ODI (t � 3.9,
p � 0.0004) independent of age/sex. Consistent with our hypoth-
esis, the mediation analysis demonstrated that frontal pole ODI
mediated the negative relationship of age with cognition, whereas
hippocampal-ODI mediated the protective effects of age (Fig. 5).

Discussion
By applying the NODDI model to multishell diffusion images,
we found an in vivo pattern aligned very closely with published
postmortem data indexing neocortical vulnerability and
hippocampal compensation. We further demonstrated that
these microstructural differences have consequences in cogni-
tive function and brain resting-state networks with age-related
susceptibility.

Effects of age on GM ODI were independent of GM volume/
cortical thickness measurements. Moreover, there were no asso-
ciations between GM ODI and cortical thickness or subcortical
volume after controlling for age. This suggests that GM micro-
structure (ODI) and macrostructure (volume/cortical thickness)
likely represent independent processes in normal aging. Age
trends for ODI exhibited substantial regional specificity and
matched age-related dendritic changes previously documented
in each region. Congruent with neocortical dendritic deficits with

P(ODI increasing with increasing age):
P(ODI decreasing with increasing age):

0.05 0.001
0.05 0.001

Figure 2. Effects of aging on regional GM microstructure. GBSS results demonstrating sig-
nificant ( pFWE �0.05) ODI reduction with advancing age throughout neocortex and increased
ODI in cerebellar lobule-VIIA.
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advancing age, decreased complexity, and regression of the den-
dritic tree (Duan et al., 2003; Dickstein et al., 2013), we observed
pervasive age-related decline in neocortical ODI. Age-related def-
icits in frontoparietal ODI were more pronounced than those in
temporo-occipital ODI in coherence with a retrogenesis pattern
(i.e., GM regions that mature last are the first to be affected in
later life; Reisberg et al., 1999). Only a small number of quantita-
tive dendritic postmortem investigations (either in humans or in
nonhuman primates) have studied regional specificity of aging in
the neocortex (Jacobs et al., 1997; Young et al., 2014) because

most studies have typically focused on only a single cortical area
(Nakamura et al., 1985; Jacobs and Scheibel, 1993; Anderson and
Rutledge, 1996; Duan et al., 2003). Future postmortem studies
that examine the effect of aging simultaneously on multiple cor-
tical regions throughout the neocortex would help to facilitate
comparison between our in vivo results and postmortem findings
(Kim et al., 2013).

We observed a possible protective effect of higher hippocam-
pal ODI with advancing age. Intriguingly, age-related extension
and growth of the dendritic tree have been reported in the hip-
pocampus (Flood et al., 1985; Pyapali and Turner, 1996). These
changes have been regarded as a compensatory mechanism that
occurs in successful aging in response to partial deafferentation
(Buell and Coleman, 1979; Pyapali and Turner, 1996). Our in vivo
results agree with previous postmortem results and could be in-
terpreted as age-related increases of hippocampal ODI playing a
protective role against cognitive aging. In cerebellum, we found a
nonsignificant (pFWE � 0.11) age-related decline of ODI within
the vermal region. However, ODI increased significantly with age
in the hemispheric regions of lobule VIIA (cerebro-cerebellum)

Table 2. MNI coordinates, volume, and cortical regions of GM clusters from GBSS analysis demonstrating significant ( pFWE<0.05) effect of age on GM ODI

Cluster
Volume
(mm 3)

Minimum
p-value

MNI coordinates

Hemisphere Brain regionsX Y Z

ODI increase with age
A1 1087 0.005 36 	71 	38 Right Crus I, Crus II
A2 303 0.015 	29 	74 	38 Left Crus I, Crus II

ODI decline with age
B1 6111 0.003 43 50 	12 Right FPo, ACC, MFG, SFG
B2 4984 0.004 	1 4 35 Left Precuneus, PCC, ACC, PoCG, PreCG
B3 7599 0.003 56 	62 	5 Right LOC, SMG, MTG, STG, PoCG, COC
B4 2768 0.003 42 5 	43 Right TPo, MTG
B5 10669 0.003 	39 48 	13 Left SFG, MFG, IFG, OFC, FPo
B6 7828 0.003 	41 	73 	17 Left LOC, SMG, AG, Fus
B7 2174 0.003 	41 3 	23 Left TPo, MTG

ACC, anterior cingulate cortex; AG, angular gyrus; COC, central opercular cortex; OFC, orbitofrontal cortex; FPo, frontal pole; Fus, fusiform gyrus; IFG, inferior frontal gyrus; LOC, lateral occipital cortex; MedFC, medial frontal cortex; MTG, middle
temporal gyrus; PoCG, postcentral gyrus; PreCG, precentral gyrus; PCC, posterior cingulate cortex; SMG, supramarginal gyrus; SFG, superior frontal gyrus; STG, superior temporal gyrus.

BA

Figure 3. Cortical (A) and subcortical (B) ROI analysis demonstrating significant age effects on regional ODI. A nonlinear fit for the hippocampal ODI–age relationship is shown given its significant
nonlinear relationship with age.

Table 3. RMSE and R 2 of mean GM ODI, mean cortical thickness, and mean WM FA
predicting chronological age

Lobar region
Mean GM ODI
(R 2, RMSE)

Mean cortical thickness
(R 2, RMSE)

Mean WM FA
(R 2, RMSE)

Frontal lobe 0.51, 12.5 y 0.34, 14.4 y 0.18, 16.1 y
Occipital lobe 0.45, 13.2 y 0.16, 16.2 y 0.13, 16.6 y
Parietal lobe 0.63, 10.8 y 0.19, 16.0 y 0.12, 16.6 y
Temporal lobe 0.33, 14.5 y 0.17, 16.2 y 0.15, 16.4 y
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(Schmahmann and Pandya, 1997). Virtually all previous studies
examining the impact of aging on cerebellar dendritic organiza-
tion have focused solely on the vermal region of the cerebellum
and have observed age-related dendritic and synaptic deficits in
this region (Rogers et al., 1984; Chen and Hillman, 1999), which
is consistent with our results. Lobule VIIA, however, is an evolu-
tionary recent area of the cerebellum that is densely connected to
the neocortex (Schmahmann and Pandya, 1997). This suggests
that ODI increases in the cerebellar hemispheres may also be a
compensatory response to age-related deafferentation.

Higher GM ODI sampled from DMN and visual association
network was associated with increased functional connectivity of
these networks. A similar trend was also observed for primary
visual and sensorimotor networks. We also observed age-related
deficits in functional connectivity of networks that were posi-
tively correlated with GM ODI. There was partial anatomical
overlap between effects of ODI and age on functional connectiv-
ity for each of these networks. Furthermore, age-related effects
disappeared when age was modeled together with GM ODI.
These findings collectively suggest that GM ODI partially medi-
ates the effects of age on resting-state functional connectivity.

Functional connectivity disruption of the DMN with advanc-
ing age is a well replicated fMRI finding in healthy aging (Mow-
inckel et al., 2012; Ferreira and Busatto, 2013). Our findings
demonstrate how both intrinsic (within the DMN itself) and ex-
trinsic (within other resting-state networks) microstructural GM
differences could contribute to functional connectivity variations
of the DMN. In addition, we observed that GM ODI was related

to functional connectivity of resting-state networks with several
regions outside of the boundaries of these networks. Permutation
testing after dual regression analysis permits identification of any
brain region where functional connectivity with a network is re-
lated to GM ODI. Therefore, it is possible that clusters demon-
strating differential connectivity (in relation to ODI) with
resting-state networks fall outside the main foci of a given net-
work (Voets et al., 2012). Therefore, ODI may predict both intra-
network connectivity and internetwork connectivity. Although
the implication of these relationships is still unclear, there is a
growing interest in evaluating such between-network connec-
tions (Smith et al., 2013).

Our results suggest that resting-state networks are differen-
tially affected by GM microstructure, in which task-negative and
lower sensory/sensorimotor network connectivity associated
positively with ODI, lateralized task-positive networks involved
in higher cognition and attention remained unaffected or even
decreased with higher ODI. These results align closely with
network-specific effects of aging reported previously (Mowinckel
et al., 2012). In previous endeavors linking brain structure to
functional connectivity, long-range WM tracts have been a focus
(Bullmore and Bassett, 2011). Assessment of GM microstructure,
perhaps by indexing local circuitry and ensemble cyto-
architecture (Assaf et al., 2013), provides additional insight into
structure–function relationships in the human brain (Bullmore
and Bassett, 2011).

In terms of our diffusion image analysis approach, we used a
conservative inclusion criterion (estimated GM fraction �0.7)

Figure 4. Effects of GM ODI extracted from DMN and visual association networks (VANs) on voxelwise functional connectivity (temporal coherence) of the corresponding network while controlling
for effects of age and sex(dual regression). Age-related differences in resting-state functional connectivity for each network are also depicted for both networks.
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for voxels entering statistical analyses to further limit potential
partial volume effects. However, this approach may inadvertently
decrease statistical power in regions with thin cortical GM. Con-
versely, given our results, it appears that we had more than ade-
quate power to achieve our stated aims. Even greater power is
achievable with ultra-high-resolution diffusion-weighted MRI
(Sotiropoulos et al., 2013). Our structure–function relationships
were elicited using fMRI only in the resting condition. Future
studies will have to be performed to broaden these findings and
the potential effects of GM microstructure on the brain’s func-
tional dynamics during behavioral tasks and/or causal modeling
of functional data (Friston et al., 2003) may provide additional
useful knowledge. In addition, relaxation times (T1 and T2) vary

across brain tissues. This results in greater relative signal from the
free water component (CSF) compared with other brain tissues
given the same echo time. It has been shown that this issue may
result in free water fraction overestimation in a bitensor model
using single-shell diffusion data (Pasternak et al., 2009). Al-
though T1-related effects tend to be minimal given the long TRs
commonly used for diffusion imaging (as in our study: TR �
12,000 ms), T2-related effects are more pronounced when TE is
longer (Pasternak et al., 2009). However, to the best of our knowl-
edge, no study to date has shown whether such biases exist for the
NODDI model as well, which uses multishell diffusion data. In
our study, CSF fraction estimates were only used to calculate the
GM fraction and were not used as an outcome measure (Paster-

Table 4. MNI coordinates and volume of clusters ( pFWE <0.05) demonstrating effect of ODI extracted from each resting-state network (RSN) on its voxelwise functional
connectivity (temporal coherence) while controlling for effects of age and sex (dual regression)

Cluster Volume (mm 3) Minimum p-value

MNI coordinates

Hemisphere Brain regionsX Y Z

Default mode network (ODI/RSN overlapa: 9.0%, ODI/age similarityb: 0.16)
D1 174720 0.002 18 	70 28 Bilateral Cuneus, Lingual gyrus, OccPo, LOC, Occipital Fus.

gyrus, Precuneus
D2 67072 0.026 	2 14 4 Left Caudate nucleus
D3 3392 0.039 38 42 	20 Right FPo

Visual association network (ODI/RSN overlap: 8.5%, ODI/age similarity: 0.30)
V1 234944 0.003 	10 38 	12 Bilateral MedFC, ACC, FPo, ParaCG, OFC, IFG
V2 15680 0.021 14 	50 	12 Right Lingual Gyrus, Fus. cortex
V3 6272 0.021 	50 	6 44 Left PreCG
V4 3904 0.021 14 	62 32 Right Precuneus
V5 3072 0.043 6 	90 28 Right Cuneus, OccPo
V6 2304 0.027 46 30 12 Right IFG
V7 1600 0.029 	22 26 28 Left MFG

Sensorimotor network (ODI/RSN overlap: 30.0%, ODI/age similarity: 0.27)
S1 65728 0.02 30 	22 20 Right Insula, Lingual gyrus, Fus. cortex
S2 28544 0.026 2 	18 44 Bilateral PCC, JLC, Precuneus
S3 2176 0.04 2 38 	4 Bilateral ACC
S4 1984 0.034 	10 46 28 Left Lingual gyrus, Fus. cortex
S5 1856 0.037 62 14 	8 Right TPo

Primary visual network (ODI/RSN overlap: �1%, ODI/age similarity: 0.11)
P1 21504 0.021 22 18 8 Right Caudate Nucleus, Insula
P2 14528 0.021 14 10 28 Bilateral ACC
P3 9344 0.021 	18 	42 40 Left PCC, Precuneus
P4 3520 0.031 	54 2 8 Left PreCG, Insula
P5 2880 0.04 	26 26 8 Left Insula

Right frontotemporal networkc (ODI/RSN overlap: 26.5%, ODI/age similarity: no significant age effect)
R1 1600 0.03 22 50 24 Right FPo
R2 768 0.027 50 34 	8 Right FPo

ACC, anterior cingulate cortex; FOC, orbitofrontal cortex; FPo, frontal pole; Fus, fusiform; IFG, inferior frontal gyrus; JLC, juxtapositional cortex; LOC, lateral occipital cortex; MedFC, medial frontal cortex; MFG, middle frontal gyrus; OccPo,
Occipital Pole; ParaCG, paracingulate gyrus; PreCG, precentral gyrus; PCC, posterior cingulate cortex.
aODI/RSN overlap was calculated as the percentage of voxels demonstrating effect of orientation dispersion index (using a more liberal threshold: pFWE �0.10) that were located inside the main loci of the RSN (z � 3).
bODI/age spatial similarity was indexed using a Dice similarity score between the voxels demonstrating effect of orientation dispersion index and the voxels demonstrating effect of age (both thresholded at a more liberal pFWE �0.10).
cExcept for right frontotemporal network, higher ODI was associated with increased functional connectivity.

Figure 5. Mediation analysis of relationships among age (exogenous variable), frontal pole ODI, hippocampal ODI, and cognitive performance. Significant regression coefficients (SE) of associated
paths are shown in boldface.
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nak et al., 2012). Therefore, we believe that any potential overes-
timation of the CSF-fraction would have minimal effect on the
findings in our study.

Our cross-sectional design limits our ability to examine the
temporal dynamics among aging, GM microstructural changes,
and cognitive performance. Cohort effects and sampling biases
can potentially confound effects of aging in studies using a cross-
sectional design. Previously published work has shown that a
cross-sectional design can either overestimate (Nyberg et al.,
2010) or underestimate (Raz et al., 2005) age-related changes in
relational to longitudinal data. In this regard, our findings should
be interpreted with caution because they are the first of their kind
and our sample size can be considered relatively small. Although
strong effects of age on GM ODI were detected, additional studies
with larger sample sizes may detect relationships of smaller effect
sizes and may allow for more complex multivariate modeling
with age. Despite the agreement of our results with the postmor-
tem literature, our interpretation of subcortical ODI changes as
“compensatory” should be taken with caution. Tissue organiza-
tion of subcortical regions that showed higher ODI with aging
(i.e., three-layered cerebellar cortex and hippocampus) are con-
siderably different from that of neocortex, which has a six-layered
architecture (Shepherd, 2011; Roostaei et al., 2014). Therefore,
an alternative interpretation is that age-related ODI differences
in these structures represent different underlying microstructural
phenomena.

Our findings provide evidence for vulnerability and compen-
satory neural mechanisms of cognitive aging in GM microstruc-
ture in vivo that have functional and cognitive impact.
Microstructural GM changes represent a new target of investiga-
tion, not only for aging, but also for brain disorders with known
dendritic susceptibility such as Alzheimer’s disease (Penzes et al.,
2011). These alterations may serve as either a diagnostic marker
for at the earliest stage of illness or as targets for therapeutic
intervention.
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