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Introduction

Over the last decades, urolithiasis has been increasingly 
diagnosed, and nowadays, it affects roughly 10  % of the 
Western countries population [1–5]. Dramatic changes 
in dietary habits including a high protein and salt intake, 
and more recently a high consumption of carbonated bev-
erage rich in fructose represent one of the major causes 
of an increased incidence of calcium oxalate renal stone, 
which now represents the most frequently diagnosed type 
of stone. [6–8]. However, several other factors may be 
implied in stone formation. Indeed, more than 100 chemi-
cal components have been identified in urinary calculi [9], 
and more than 100 different etiologies may be involved in 
stone formation. Among analytical methods for identifying 
the stone components, chemical and physical methods can 
be used. However, despite their low cost, chemical meth-
ods are often inadequate for accurately analyzing urinary 
calculi. They are unsuccessful to identify rare purine stones 
resulting from genetic disorders such as 2,8-dihydroxyad-
enine [10–12] or drug-induced calculi [13–15]. Moreover, 
they are unable to quantify the respective amount of each 
element in mixed stones and to differentiate accurately 
between the various crystalline phases of calcium oxalate 
or calcium phosphate that are related to very different bio-
chemical and pathophysiological conditions [16–18].

Physical analytic methods

Among physical methods, X-ray diffraction (XRD) and 
Fourier transform infrared spectroscopy (FTIR) are cur-
rently used for stone analysis. They identify each compo-
nent and provide semi-quantitative evaluation of their pro-
portions within the stone.
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These methods are able to identify non-calcium stones 
such as cystine, 2,8-dihydroxyadenine, xanthine, uric acid, 
urates, methyl-1 uric acid, struvite, proteins, lipids or drugs, 
as well as calcium oxalate (CaOx) and/or calcium phosphate 
(CaPh) stones. Because stones may remain several months 
or years in the urinary tract, they contain commonly (94 % 
in our experience) several components [19]. An accurate 
identification of minor components with their location in 
the stone is clinically relevant to assess environmental fac-
tors involved or to explain the lithogenic process (for exam-
ple crystallization of CaOx from a CaPh Randall’s plaque). 
Moreover, it could highlight marked changes in conditions 
with outbreak of new lithogenic process such as primary 
hyperparathyroidism, type 2 mellitus diabetes or urinary 
tract infection by urea-splitting bacteria (Figs. 1, 2, 3, 4).

Physical methods provide information on crystalline 
phases of the same chemical species that may imply differ-
ent lithogenic conditions: for example, whewellite (CaOx 
monohydrate, COM) and weddellite (CaOx dihydrate, COD) 
among CaOx stones; carbapatite, brushite, or whitlockite 
among CaPh stones. A similar composition, for example 
CaOx, may be the result of a variety of lithogenic processes, 
including diet imbalance, low diuresis, genetic or acquired 
diseases [9]. It is the same for crystalline phases: COM stones 
may correspond to hyperoxaluric states related to very dif-
ferent etiopathogenic conditions, such as primary hyperox-
aluria, enteric hyperoxaluria, or idiopathic CaOx nephrolithi-
asis [16, 20]. In contrast, COD stones are clearly related to 
hypercalciuria in a very high proportion of cases [16, 20, 21]. 
The corresponding stones exhibit distinct morphology easily 
identified in both surface and section (Fig. 5). Finally, the ini-
tial nucleation process could be related to another mechanism 

(e.g., Randall’s plaque) than the factors responsible for the 
subsequent stone growth. All these considerations raise the 
importance that the stone analysis should provide information 
on the stone morphology, chemical composition and crystal-
line phases, as well as their location within the stone.

Only physical methods can identify such a diversity 
of components. For this purpose, several techniques were 

Fig. 1   Whewellite stone initiated from a carbapatite Randall’s plaque 
(arrow)

Fig. 2   Kidney stone from a child aged 9 years old. Examination of 
the stone section shows a mixed stone initiated by crystallization of 
ammonium hydrogen urate as a result of chronic diarrhea related to 
bowel infection while the child ate a vegetable diet providing insuf-
ficient protein and phosphorus intake. Ammonium urate was secondly 
covered by whewellite (white arrow) as a consequence of oxalate-rich 
diet and low water intake. The further coverage by a mixture of wed-
dellite and carbapatite (black arrow) was the consequence of changes 
in life style resulting in an easy access to dairy products. The child 
developed hypercalciuria of dietary origin

Fig. 3   Uric acid kidney stone in a man aged 58 years old. The patient 
had a BMI above 30  kg/m2 and suffered a type 2 diabetes mellitus 
and hypertension. Uric acid was the consequence of metabolic syn-
drome and diabetes. However, stone analysis provided evidence that 
uric acid was secondly deposited on a whewellite stone (white arrow) 
and that the first step of stone formation was a carbapatite Randall’s 
plaque (black arrow), suggesting the stone was initiated for a long 
time
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proposed in routine practice [22], including X-ray powder 
diffraction [23], infrared spectroscopy [24], Raman spectros-
copy [25, 26], scanning electron microscopy [27] or thermal 
analysis [28] and also stereomicroscopy for stone morphol-
ogy [9, 20]. Nowadays, infrared spectroscopy is extensively 

used for more than 300,000 stone analyses per year over the 
world. One limitation for some centers to use this technology 
can be the cost associated with the equipment, infrared spec-
troscopy is the less expensive, and X-ray powder diffraction 
and scanning electron microscopy are the most expensive.

What information from stone analysis could be 
clinically relevant?

A stone might be the first manifestation of numerous patholo-
gies and metabolic disorders. The objective of stone analysis 
is to collect all relevant information from the stone helping 
the physician to establish the cause(s) of stone formation and 
growth. For that purpose, physicians may investigate blood 
and urine biochemistry of each stone former in order to iden-
tify metabolic disorders able to provide accurate information 
on a possible metabolic disease or risk factors involved in 
lithogenesis. Such metabolic investigation does not ensure the 
actual diagnosis of the lithogenic disease if stone composition 
does not match. Moreover, the stone composition during sub-
sequent analysis can differ in up to 21 % of cases, implicating 
the necessity to send for morpho-constitutional analysis every 
different stone events/treatments [29].

Thus, in addition to metabolic investigation, stone analy-
sis is an essential step for the etiological diagnosis. In some 
cases, the metabolic disease implied in stone formation is 

Fig. 4   Section of a stone presumably related to urinary tract infec-
tion. In fact, while the peripheral layers are made of a mixture of car-
bapatite and struvite as a consequence of chronic UTI, the core of the 
stone is made of pure whewellite, suggesting that metabolic factors 
are first involved in the stone process. Of note, the morphology of 
the initial whewellite stone shows a papillary imprint (arrow) which 
is highly suggestive of heterogeneous nucleation from a Randall’s 
plaque (not visible)

Fig. 5   Common stones made 
of calcium oxalate. Stone 
morphology is very differ-
ent according to the crystal-
line phase: Calcium oxalate 
monohydrate corresponding to 
the stone subtype Ia (a surface; 
b section). Calcium oxalate 
dihydrate corresponding to the 
stone subtype IIa (c surface;  
d section)
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unrecognized by standard metabolic investigations while 
the stone may contain particular component allowing 
diagnosis unambiguously [12–15]. An example is adenine 
phosphoribosyltransferase deficiency revealed by a stone 
made of 2,8-dihydroxyadenine. To obtain this result, physi-
cal methods for stone analysis are required.

Stone analysis has to report qualitative and quantitative 
information regarding crystalline phases, their location 
within the stone and structural characteristics (morpho-
constitutional analysis) [9, 20]. Such procedure consists in 
examining the surface and cross-sectional morphology to 
summarize stone features as a morphological type that can 
be related to metabolic disorders and diseases. Moreover, 
determining accurately the composition of all parts of the 
stone (the core, inner layers, peripheral layers and surface) 
is essential. Finally, a global qualitative analysis from the 
whole stone (or a fragment of the stone) with the relative 

proportions of all components identified by sequential anal-
ysis is recommended.

Morphological characteristics and the corresponding 
morphological types have been already described [9, 20]. 
In Table  1, the various types of stones are summarized, 
their corresponding main crystalline phase and the com-
mon causes associated with each stone subtype. About 
98 % of urinary calculi are incorporated according to that 
classification. If a stone cannot be classified, two explana-
tions should be considered: the chemical composition (e.g., 
dihydroxyadenine, xanthine, atazanavir, sulfadiazine…) 
or the cause is very uncommon [30]. Because calculi are 
frequently made of several crystalline phases, it is not sur-
prising to find a mixture of different subtypes related to the 
different crystalline phases. Among the principal associa-
tions, finding binary mixtures such as COM and COD or 
ternary mixtures including COM, COD and carbapatite are 

Table 1   Main relations observed between stone type, main component and etiology

UTI urinary tract infection, PHPT primary hyperparathyroidism, ESRF end-stage renal failure

Morphological type Subtype Main components Common causes

I Ia Whewellite Dietary hyperoxaluria

Ib Whewellite Stasis, low diuresis

Ic Whewellite Primary hyperoxaluria type I

Id Whewellite Malformative uropathy, stasis and confined multiple stones

Ie Whewellite Enteric hyperoxaluria

II IIa Weddellite Hypercalciuria

IIb Weddellite ± whewellite Hypercalciuria ± hyperoxaluria ± hypocitraturia

IIc Weddellite Hypercalciuria, stasis and confined multiple stones

III IIIa Uric acids Low urine pH and stasis

IIIb Uric acids Metabolic syndrome, diabetes

IIIc Various urates Hyperuricosuria and alkaline urine, UTI

IIId Ammonium urate Hyperuricosuria and diarrhea

IV IVa1 Carbapatite Hypercalciuria, UTI

IVa2 Carbapatite Distal renal tubular acidosis

IVb Carbapatite UTI, hypercalciuria. Etiology depends on minor components identified in the stone

IVc Struvite UTI by urease-splitting bacteria

IVd Brushite Hypercalciuria, PHPT, phosphate leak

V Va Cystine Cystinuria

Vb Cystine Cystinuria + inadequate therapy

VI VIa Proteins Chronic pyelonephritis

VIb Proteins Proteinuria, drugs, clots

VIc Proteins ESRF and excessive calcium + vitamin D supplementation

Main associations

Ia or Ib + IIa or IIb Whewellite + weddellite Intermittent hyperoxaluria and hypercalciuria (dietary origin)

Ia + IVa1 Whewellite + carbapatite Randall’s plaque, medullary sponge kidney

IIa or IIb + IVa1 Weddellite + carbapatite Absorptive or resorptive hypercalciuria

Ia or Ib + IIa or IIb + IVa or IVb Whewellite + weddellite + carbapatite Hyperoxaluria + hypercalciuria, medullary sponge kidney

Ia + IIIb Whewellite + uric acid Hyperoxaluria + metabolic syndrome
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counting together for a quarter of cases in our experience 
(Fig. 6).

The main limitation for an accurate stone analysis is the 
progress in flexible ureteroscopy with laser energy used to 
fragment a significant part of the stone, thus providing only 
small piece(s) for analysis. However, remembering that 
60–80 % of urinary calculi pass spontaneously, they should 
be submitted to a morpho-constitutional analysis when 
collected.

Keys for interpretation of stone analysis

Qualitative aspects

The qualitative composition is imperative, and non-
calcium-containing components are clinically relevant. 
Among purines:

Uric acid can be a marker for an excessive urate excre-
tion in urine (hyperuricosuria), but it is more often related 
to insulin resistance with a defect in renal ammonia gen-
esis and constant acidic urine. In less cases, it is related to a 
high urine concentration of urate because of low diuresis in 
patients treated a long time with uricosuric drugs or suffer-
ing inflammatory bowel disease that have required partial 
or total colectomy (digestive alkaline losses).

Uric acid may be identified as three different crystal-
line forms: anhydrous, monohydrate or dihydrate. There 
is no apparent difference between these three crystalline 
phases regarding the cause of the stone. However, uric acid 
dihydrate is the commonest crystalline phase of uric acid 

identified in crystalluria studies, and this phase is poorly 
stable with time, thus spontaneously converted to uric acid 
anhydrous after several weeks or months. Identifying uric 
acid dihydrate in a stone, especially as the principal form of 
uric acid, is highly suggestive of an active lithogenic pro-
cess with recent stone formation.

In contrast, urate stones, irrespective to the cation that 
is linked to the urate anion, are always associated with an 
excessive urate concentration in urine because of low diu-
resis or high excretion of uric acid. Among the various 
urates reported, ammonium hydrogen urate and sodium 
hydrogen urate monohydrate are more frequent due to their 
relatively poor solubility. They are mainly found in alkaline 
urine. Sodium urate is seen in cases of high urate and high 
sodium concentration, while ammonium urate is observed 
with high ammonium concentration. The origin of ammo-
nia is an overproduction by kidney cells as a compensatory 
mechanism of metabolic acidosis or a hydrolysis of urea by 
urea-splitting bacteria.

Dihydroxyadenine is a specific marker of an adenine 
phosphoribosyltransferase deficiency, a severe and rare 
genetic disease able to induce crystalline nephropathy and 
end-stage renal failure.

Xanthine suggests an overproduction of xanthine and/
or a defect on the oxidative pathway to convert it into uric 
acid. Two pathological conditions may be involved: an 
inherited deficiency in xanthine dehydrogenase (familial 
xanthinuria) and an enzyme inhibition by allopurinol ther-
apy in patients suffering an accelerated purine metabolism 
pathway as in Lesh–Nyhan syndrome (hypoxanthine–gua-
nine phosphoribosyltransferase deficiency).

Methyl-1 uric acid is one of the primary metabolites 
of caffeine. It is produced in the liver by enzymes of the 
cytochrome P450. For a not clearly understood reason, 
methyl-1 uric acid was only identified in patients with 
increased blood aluminum level because of chronic inges-
tion of aluminum-containing drugs. It should alert the phy-
sician on potential aluminum toxicity.

Other components without calcium can crystallize in the 
urine: cystine, struvite, other magnesium phosphates, pro-
teins and various drugs.

Cystine is a marker of cystinuria, which is the most 
common inherited tubular defect inducing stone formation.

Struvite is an indicator of urinary tract infection by 
urea-splitting micro-organisms. Other magnesium salts, 
without ammonium ion, namely newberyite and trimagne-
sium phosphate pentahydrate may be considered as struvite 
derivatives related to past UTI.

Proteins are present in all stones in slight proportion, 
commonly <5  %. In case they are more abundant, they 
must turn to particular causes of urolithiasis such as chronic 
pyelonephritis, severe chronic kidney disease, long-term 
treatment with some antiseptic or antiviral drugs. Among 

Fig. 6   Type IIa + IVa mixed stone made of alternate layers of wed-
dellite and carbapatite. Such a morphology and composition is highly 
suggestive of hypercalciuria. Of note, more than 50  % of calcium 
stones related to primary hyperparathyroidism exhibit such a structure



162	 World J Urol (2015) 33:157–169

1 3

drugs able to form urinary stones, triamterene, atazanavir, 
sulfadiazine and ceftriaxone are the commonest. Ceftriax-
one is identified in urinary or biliary tract as a calcium salt.

Regarding calcium oxalates and calcium phosphates, 
other criteria than the presence within the stone must be 
taking into account since these compounds are poorly solu-
ble in urine. It is common to identify a small amount of 
carbapatite in the core of a calcium oxalate stone. The pres-
ence of carbapatite is of concern because it may be consid-
ered as the initiation process of the stone. It comes from 
Randall’s plaque, a papillary calcification that serves as a 
nidus of a growing number of CaOx stones in industrial-
ized countries [31–34].

In our experience, the proportion of stones exhibiting a 
papillary print (umbilicated) was high among COM stones 
(39.6 %) and low (8.6 %) among COD calculi (p < 0.0001). 
Randall’s plaque among all spontaneously expulsed COM 
and COD stones were present in 60 and 16  %, respec-
tively. Few data are available in other countries regarding 
the existence of Randall’s plaque identified from stone 
analysis. For example, in Spain [35] and Balearic Islands 
[36], Randall’s plaque was identified from stone exami-
nation in about 12.5  % of cases. Of note, several reports 
based on ureteroscopic examination of the renal papillae of 
stone formers underlined the high occurrence of Randall’s 
plaques in the kidneys, varying from 57 % in France [34] to 
75–80 % in the USA [33, 37].

Quantitative data

Most reports on stone composition in the literature focus on 
the principal component. It is a simple and useful approach 
from an epidemiological point of view. However, it is 
important to consider qualitative and quantitative aspects 
of the stone structure (including minor components) and 
to know the distribution of these elements within the stone 
(and the corresponding morphology).

Calcium oxalate

CaOx represents the main chemical species of stones 
throughout the world, and it can be identified as three dif-
ferent crystalline phases: COM, the most common; COD, 
frequency depending on the countries; and calcium oxa-
late trihydrate (COT), named caoxite, a rare and unstable 
phase. The comparison between urine biochemistry and 
crystalline phase of CaOx found in freshly voided urine 
provided evidence that COM crystals are related to hyper-
oxaluria, while COD crystals are mainly related to hyper-
calciuria [21, 38–40]. Thus, COM stones are mainly asso-
ciated with excessive oxalate concentration (low diuresis) 
and/or excessive oxalate excretion with secondary mild and 
intermittent hyperoxaluria in 88  % of cases [38, 39, 41]. 

By contrast, COD stones are related to hypercalciuria in 
more than 85 % of cases [17]. The third phase (COT) is an 
infrequent and unstable form of CaOx and is observed in 
uncommon conditions including hyperoxaluria and specific 
drug intake [30, 42].

Among CaOx stones, a high proportion of them contains 
a mixture of COM and COD, often associated with carbap-
atite in various proportions (Randall’s plaque excluded). 
In such cases, biochemical factors involved in stone for-
mation are those involved for each crystalline phase, i.e., 
hypercalciuria and hyperoxaluria. If an increased content 
of carbapatite is present, it should orient to more specific 
metabolic dysfunctions such as bone resorption, primary 
hyperparathyroidism, acidification tubular defect or another 
alkalinizing source.

Calcium phosphate

CaPh is a common chemical component of stones identi-
fied in about 85 % of all calculi in our experience (propor-
tion: 0.5 up to 99 %). The clinical significance depends on 
the crystalline phase, the location and the overall content 
within the stone. Previously was underlined the increasing 
part of carbapatite Randall’s plaque as a nidus for CaOx 
stones. In such cases, the CaPh content is low (<5  %; 
Fig.  1). As suggested by Miller and coworkers, other 
CaOx stones which contain a core of carbapatite without 
papillary print may also result from an initiation on Ran-
dall’s plaque with a secondary coverage of the plaque by 
new layers of CaOx after the stone was unhooked from 
the papilla [43]. However, other causes of CaPh should be 
considered. Because carbapatite is highly pH dependent, it 
must be expected that carbapatite-rich stones are developed 
in poorly acidic to alkaline urine. This is suggestive for 
either urinary tract infection (UTI) or metabolic disorders 
responsible for chronically elevated urine pH, associated 
or not with hypercalciuria [44, 45]. Carbapatite associated 
with brushite and/or octacalcium phosphate pentahydrate 
(OCPP) is commonly a marker of hypercalciuria. Presence 
of OCPP indicates an active and recent lithogenic process 
[18].

UTI is one of the most common mechanisms resulting in 
phosphate stones [17, 44]. In such cases, several character-
istics of the stone should be considered:

1.	 In addition to carbapatite, other CaPh species are pre-
sent in the stone, in particular amorphous carbonated 
calcium phosphate and/or whitlockite.

2.	 A specific sign of UTI-induced calculi is the presence 
of struvite.

3.	 In the absence of struvite, another sign may be useful, 
namely the carbonation rate of carbapatite as deter-
mined by infrared spectroscopy [46]. When it is higher 
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than 15 %, the probability that UTI is a driving force 
for stone formation is very high.

Carbapatite is rarely pure, and other crystalline phases 
present as minor components may assist to establish the 
diagnosis. Carbapatite associated with COD is highly sug-
gestive of hypercalciuria and should raise suspicion for 

primary hyperparathyroidism [47]. In contrast, carbapatite 
associated with COM is more related to medullary sponge 
kidney and other causes of urinary stasis.

Among metabolic causes of carbapatite-rich stones, 
hypercalciuria is an important factor, the mechanism of 
which being often resorptive and/or absorptive [44, 48, 49]. 
Primary hyperparathyroidism is one of the main causes of 

Fig. 7   Examples of brushite 
stones type IVd (left surface; 
right section)

Fig. 8   Calcium phosphate 
stones mainly composed of 
carbapatite: a subtype IVa1 
(surface); b subtype IVa1 (sec-
tion); c subtype IVa2 (surface): 
note the glazed aspect and the 
presence of very tiny cracks;  
d subtype IVa2 (section);  
e subtype IVb (surface);  
f subtype IVb (section)
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resorptive hypercalciuria. Kidney stones related to such a 
pathological condition were recently considered, revealing 
particular features in stone composition and morphology 
(Figs. 6, 7) [47].

An infrequent cause of CaPh stones is a kidney cells 
impairment to excrete protons as observed in inherited 
distal acidification defect or acquired auto-immune dis-
eases such as Sjogren’s syndrome. In such metabolic 
diseases, urinary calculi are mainly composed of car-
bapatite with a very high content of CaPh, often above 
80 % of the stone mass. While most causes of carbapa-
tite stones induce IVa1 or IVb subtype, distal acidifica-
tion defects are associated with IVa2 subtype in 90  % 
of cases (Fig. 8) [9]. Such findings illustrate the signifi-
cance of morpho-constitutional analysis helping to find 
clinical diagnosis.

The significant contribution of the stone morphology

COM stones

COM accounts in most countries over the world as the 
more common and more abundant component of stones 
[50–53]. The morphological aspect of COM stones orients 
toward very different diseases or lithogenic conditions:

•	 Mild intermittent hyperoxaluria related to high oxalate 
intake

•	 Low diuresis with increased concentration of oxalate 
ions in urine

•	 Heavy hyperoxaluria either related to inherited diseases 
(primary hyperoxaluria type 1) or to enteric hyperoxaluria 
(ileal resection, bariatric surgery or chronic pancreatitis).

COM stones exhibit five different morphologies in class 
I of the morpho-constitutional classification.

The subtype Ia (Fig. 1), often dark brown in color, sug-
gests a slow and intermittent growth related to peaks of 
hyperoxaluria (low diuresis or oxalate-rich food intake). 
It is the most common subtype of calcium stones in most 
countries (unpublished data). While seeing a grayish thin 
layer on a Ia stone surface, it corresponds to a freshly COM 
crystal sediments secondary to a recent peak of urine con-
centration of oxalate (Fig. 9).

The subtype Ib (Fig. 10) can be a marker of an old stone, 
probably first developed as weddellite because of transient 
hypercalciuria and secondly completely converted from 
weddellite to whewellite in the time. Subtypes Ia and Ib are 
often dark brown in color.

In contrast, subtype Ic is very light, brown-yellow 
pale, or even white in children (Fig.  11). It is associated 

Fig. 9   COM stone subtype Ia. Note the thin grayish layer of very 
recently deposited crystals covering the brown surface of the stone. 
Such a grayish coverage is resulting from recent episode of hyperox-
aluria often related to transient oxalate-rich food intake

Fig. 10   COM stones subtype Ib. Top surface, bottom section. Note 
the dark color of the stone in most parts of surface and section
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with heavy oxaluria, mainly primary hyperoxaluria type 1 
(related to alanine glyoxylate aminotransferase deficiency 
in hepatocytes), which is the most severe stone disease 
often responsible for end-stage renal failure, especially 
when the diagnosis was delayed because stone morphology 
was not considered [54, 55]. All 92 stones from patients 
with PH type 1 analyzed in our laboratory had this Ic mor-
phology, which appears to be virtually pathognomonic 
for the disease. Therefore, this particular morphology of 
pure COM stones should immediately orient the physician 
toward this severe disease to allow early introduction of 
proactive therapeutic strategy.

Other genetic forms of primary hyperoxaluria such as 
hyperoxaluria type 2 (glyoxylate reductase/hydroxypyruvate 
reductase deficiency) [56] or hyperoxaluria type 3 (related 
to a dysfunction of the 4-hydroxy 2-oxoglutarate aldolase 
in the hydroxyproline pathway) [57] do not present every 
time subtype Ic since hyperoxaluria is often associated with 
hypercalciuria for a not yet understood reason [58].

The subtype Id is typically a marker for stasis in patients 
with hyperoxaluria in a confined environment such as: cal-
yceal diverticulum, ureteropelvic junction obstruction or 
prostate hypertrophy with incomplete bladder emptying 
(bladder stones).

Finally, the subtype Ie is related to severe forms of enteric 
hyperoxaluria in patients suffering from inflammatory bowel 

diseases with extensive ileal resections, bariatric surgery or 
chronic pancreatitis (Fig.  12) [9]. Among patients having 
enteric hyperoxaluria, subtype Ie was present in 82.5 % of 
cases.

Although Ic and Ie subtypes stones are scarce, it is 
important to identify these subtypes since they warn the cli-
nician of a severe cause of hyperoxaluria, not always previ-
ously identified with investigations, and often responsible 
for a progressive kidney failure.

COD stones

Weddellite stones correspond to type II of the classifica-
tion. Subtypes IIa to IIc are often related to hypercalciu-
ria either associated or not with other conditions favoring 
stones growth. For example, we found that IIa or IIb sub-
types made of large COD crystals were frequently related 
to hypercalciuria associated with hyperoxaluria and relative 
hypocitraturia (Fig. 13).

Uric acid and urate stones

Remember that uric acid and urates account for type III of 
the classification and include four subtypes. Among them, 

Fig. 11   COM stones subtype Ic. Top surface. On the left side, the 
stones are whitish. They came from an infant aged <2 years. Bottom 
section. Note the very light color in most parts of the stones Fig. 12   COM stones subtype Ie. Top surface, bottom section
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subtypes IIIa and IIIb gather uric acid stones and subtypes 
IIIc and IIId gather urate stones that are commonly com-
posed of ammonium hydrogen urate, which is the less solu-
ble form of urate salts in urine.

Regarding uric acid stones, the subtype IIIa is primar-
ily related to slow stone growth conditions as observed in 
urinary stasis and is mainly found with bladder stone of 
men with prostate hypertrophy (Fig. 14) By contrast, IIIb 
subtype suggests a substantial involvement of a metabolic 
process associated with one or several of the following 
factors:

•	 Permanent low urine pH in the case of metabolic syn-
drome or type 2 diabetes mellitus, or in the case of 
intestinal alkali loss in patients having chronic hydro-
electrolytic diarrhea (ileostomy, colectomy, hemor-
rhagic rectocolitis,…)

•	 High excretion of uric acid as observed in diabetes mel-
litus, in myelo- or lymphoproliferative syndromes or the 
case of Vaquez disease or rare cases of tubular dysfunc-
tion inducing a defect in urate reabsorption. Of note, 

among patients suffering type 2 diabetes, females are 
especially at risk to develop uric acid stones exhibiting 
a subtype IIIb (37 vs. 13 % in the absence of diabetes, 
p < 0.00001).

•	 High production and excretion of uric acid from diet 
origin (high fructose intake, nucleo-protein rich food, 
rare genetic diseases on the nucleotide pathways such 
as Lesh–Nyhan syndrome or phosphoribosylpyrophos-
phate synthetase hyperactivity).

•	 High uric acid concentration in acidic and concentrated 
urine secondary to low diuresis, whatever the origin.

In all cases, the high content of uric acid dihydrate in a 
IIIb stones is a marker of an active lithogenic process and a 
recent growth of the stone (Fig. 15).

Subtypes IIIc and IIId gather urate stones that have dif-
ferent etiologies than these observed for uric acid stones. In 
contrast with IIIa and IIIb stones, urate calculi are not devel-
oped in acidic urine and require a high urine concentration 
of urate in poorly acidic to alkaline urine. The main causes 
for urate stones are alkalizing conditions related to thera-
peutic measures or to urinary tract infection by urea-split-
ting micro-organisms or high urate concentration with low 

Fig. 13   COD stones subtype IIa. Top stone made of small octahe-
dral crystals of weddellite as commonly observed in patients who 
form stones because hypercalciuria. Bottom stone made of both small 
and very large crystals (arrows) of weddellite as commonly found in 
patients who suffered hypercalciuria, hyperoxaluria and, often mild 
hypocitraturia

Fig. 14   Uric acid stone subtype IIIa. Top surface, bottom section
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content of electrolytes in urine as found in chronic diarrhea. 
Among urate salts, ammonium urate is the most common 
component of IIIc subtype and the only one of IIId subtype.

The commonest form observed in Western countries cor-
responds to IIIc subtype calculi with a homogenous rough 
surface with local porous areas. The color is usually gray-
ish. The inner structure is commonly loose, unorganized, 
and locally porous, the color being the same as in the sur-
face. Such type of ammonium urate is found mainly in two 
pathological conditions:

•	 Local production of ammonium ions from urea in 
patients with UTI by urea-splitting bacteria;

•	 Excessive alkaline urine secondary to alkalinization for 
dissolving radiolucent stones (uric acid stone suspected) 
in patients with a preexisting hyperuricosuria.

The subtype IIId is seen among ammonium urate stones 
of children (mainly boys) with the endemic bladder lithiasis 
living in developing countries and anorectic patients living 
in industrialized countries. The inner structure of the stone 
is typical and appears as alternate concentric thick and thin 
layers, the former being compact and brownish, whereas 
the latter is loose and locally porous, beige in color. This 
stone subtype is perceived in cases of base loss due to 

chronic diarrhea with low phosphate intake, resulting in a 
compensatory increase in urinary ammonia excretion. The 
causes of diarrhea may be of infectious origin or laxative 
abuse in anorectic patients [59, 60]. Stone color observed 
with laxative abuse is very dark with purplish shades. In 
patients who have chronic diarrhea and ammonium urate 
stones, the subtype in more than 90 % of cases was IIId [9].

Conclusion

Routine morpho-constitutional analysis of stones by mor-
phologic examination combined with FTIR or X-ray dif-
fraction considerably improves information from the 
stone analysis to determine the cause(s) of stone disease. 
It should be recommended in all laboratories that provide 
stone analysis for helping physicians to identify the causes 
of urolithiasis. It is remarkable that stones with the same 
chemical composition exhibit distinct morphological char-
acteristics according to their cause, in relation with the 
degree of metabolic abnormalities and the kinetics of the 
lithogenic process.
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