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ABSTRACT

Summary: Whole-exome sequencing (WES) has extensively been

used in cancer genome studies; however, the use of WES data in

the study of loss of heterozygosity or more generally allelic imbalance

(AI) has so far been very limited, which highlights the need for user-

friendly and flexible software that can handle low-quality datasets. We

have developed a statistical approach, ExomeAI, for the detection of

recurrent AI events using WES datasets, specifically where matched

normal samples are not available.

Availability: ExomeAI is a web-based application, publicly available

at: http://genomequebec.mcgill.ca/exomeai.

Contact: JavadNadaf@gmail.com or somayyeh.fahiminiya@mcgill.ca

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

In cancer, recurrent genomic aberrations are highly likely to

affect oncogenes or tumor suppressor genes that drive cancer

progression. One efficient way to identify such aberrations is to

investigate genomic profile of allelic imbalance (AI) simultan-

eously across the genomes of a number of similar tumor samples.

Detection of AI is based on the study of the relative proportion

of the two alleles (A and B) at heterozygous sites (Wong et al.,

2004). In a diploid normal heterozygous locus, the expected

frequency of the B allele is 0.5 (1:1 ratio). AI is defined as a

significant deviation from this proportion. The genotypes, B,

AAB, BB, which show loss of heterozygosity (LOH), duplication

and copy-neutral LOH, respectively, are examples of AI. The

first two cases are also examples of Copy Number Aberrations

(CNA).
To date, investigation of AI/LOH in cancer studies has mainly

been based on single nucleotide polymorphism (SNP) genotyping

or comparative genomic hybridization arrays and the potential

of WES data has not been fully exploited. To our knowledge,

there is no publicly available software for identification of

recurrent genomic AI segments, using WES data, shared across

multiple tumor-only samples (Liu et al., 2013). To address the

limitation, we developed a novel software, ExomeAI, which can

detect recurrent AI across cancer genomes by analyzing batches

of WES data, and specifically in the absence of matched normal

samples. We recently applied our approach to different cancer

types [e.g. Small-Cell Carcinoma of the Ovary Hypercalcemic

Type, (Witkowski et al., 2014), gliomas and renal cell carcinoma

(our unpublished data)] and successfully identified recurrent AI

regions. To facilitate the analysis for non-computational cancer

researchers, using Galaxy platform (Goecks et al., 2010), we

implemented our approach and developed a user-friendly web

application.

2 METHODS

As shown in Supplementary Figure S1, ExomeAI gets a batch of tumor

Variant Call Format files, as input (see Supplementary information for an

alternative format). Using preset quality filters on variants, it converts

read counts for each variant to B-allele frequency (BAF), where BAF is

the number of reads with the non-reference base at the variant site divided

by the total read count. Since only heterozygous variants are informative

in AI detection, only variants with BAF values from 0.05 to 0.95 (default

values) will be used as heterozygous variants for further analysis. The

expected BAF in a normal sample is 0.5 (one copy of B and one copy of

A). The absolute deviation of BAF values (dBAF) from the expected

value (dBAF= jBAF–0.5j) is used for segmentation and segment-wise

calling. Segments of similar dBAF values are detected using circular

binary segmentation (CBS) algorithm (Venkatraman and Olshen,

2007). The CBS algorithm is applied to each arm of all chromosomes.

For segment-wise calling, where matched samples are not available, the

dBAF values of each segment can be compared with a fixed threshold.

Although a fixed cutoff approach has been used successfully for

SNP arrays (Staaf et al., 2008), the proper threshold may vary for

WES datasets with different qualities (e.g. varying sequencing depths).

We propose a two-step approach: We first call AI at each variant over the

genome using a binomial test (Sathirapongsasuti et al., 2011) and we

calculate the mean dBAF values for non-AI variants. In the

second step, a Wilcoxon signed rank test is performed to evaluate the

distribution of dBAF in each segment (see Supplementary information

for details).

One of the main issues in AI or CNA calling is false positives, which

gets even more challenging when the matched normal sample is not avail-

able. In cancer analysis, it is desirable to remove candidate segments that

may either represent common Copy Number Variations (CNVs) or tech-

nology or alignment artifacts. In order to remove false positives calls, we

created a control database of 500 non-cancer WES samples (the database

is kept updated). The statistically significant AI segments will then be

compared with the control database to find the number of hits within

the database. By default, ExomeAI counts each overlap of the control

database with more than 50% of the query segment as one hit. In the next

step, the significant segments that were not seen (or seen less than a given*To whom correspondence should be addressed.
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frequency) in the control database will be used to find the recurrent AI.

The output of this final step will be a list of identified segments with

names and number of tumor samples that share the segment

(Supplementary Table S2) along with the plots of the segments for

each chromosome (Supplementary Figs S6 and S7).

3 IMPLEMENTATION AND EXAMPLES

The development of ExomeAI method has been motivated by

the need to detect the recurrent AI using WES dataset of tumor-

only SCCOHT samples. By applying this method, we showed

that 19p were deleted in all patients with SMARCA4 mutations

(Witkowski et al., 2014). Since then, we have successfully

applied our method to several other cancer types such as

glioma, renal cell carcinoma (unpublished data) and ETMR

(Kleinman et al., 2014) (see Supplementary information) and

showed that the approach is sensitive to clearly detect the recur-

rent AI across cancer genomes, in the absence of paired normal

samples.

As we believe that the approach has a wide application in

cancer genome research and in order to make it publically avail-

able to non-computational cancer researchers, we developed a

web-based application facilitated by Galaxy platform (Goecks

et al., 2010) which is platform for biomedical genomic research.

ExomeAI server is equipped with two 3.4-GHz Intel processors

(a total of 8 cores/16 threads), 32 GB of RAM, and 10 TB of disc

space, and is accessible through http://genomequebec.mcgill.ca/

exomeai.

4 EVALUATION USING SIMULATED DATA

In order to evaluate the accuracy of the method, we created a

simulated dataset using 10 real non-cancer Exomes (not included

in the control database) and we added over 600 CNAs on 22

autosomal chromosomes (hg19). Ranging in length, size and

copy number, CNVs were randomly located on genome.

Simulated aberrations included all combinations of: length

(Mb)= [1,3,5,10,15,20], copy number= [1,3] and non-aber-

rant/normal DNA fraction (%)= [5,10,20,30,40,50].
We analyzed the simulated dataset using ExomeAI and four

other softwares: SomatiCA, ExomeCNV (LOH analysis),

XHMM and CoNIFER. For the methods that required matched

normal samples (ExomeCNV and SomatiCA), samples before

adding simulated CNAs were used as matched normal samples.

For all softwares, default parameters were used (see supplemen-

tary information for details).
Sensitivity was calculated as the overlap of identified CNAs

with true simulated ones divided by the total length of simulated

CNAs. Specificity was calculated as TN/(TN+FP), where TN is

the length of True Negative and FP is the length of False Positive

regions at single base resolution.

Supplementary Figure S8 shows the sensitivity and specificity

of all five softwares averaged over all Exomes (n=10). The

Circos plot (Supplementary Fig. S9) depicts the results for all

methods across the genome of one simulated Exome. As

shown in Supplementary Table S3, ExomeAI achieved a

sensitivity of 0.76 with specificity 40.99. Using matched

normal samples, SomatiCA could achieve a higher sensitivity

(0.82); however, its specificity was lower (0.97).

In general, the softwares that were primarily developed for

CNA detection in cancer (ExomeAI, ExomeCNV and

SomatiCA) showed higher power to detect CNA. It was at

least partially because ExomeCNV and SomatiCA used matched

normal samples and ExomeAI used the internal control

database. CoNIFER and XHMM had very similar results. The

sensitivities of the two software were low in the simulated

dataset, which is consistent with previous studies (Tan et al.,

2014); however, they may perform better when CNVs are more

homogeneous and are present only in a low proportion of

samples.

5 DISCUSSION AND CONCLUSION

We present a novel web application for detection of recurrent

LOH or, more generally, AI events across batches of tumor-only

WES datasets. We show that ExomeAI can be effectively applied

in various cancer types. Using a control database of non-cancer

samples, ExomeAI overcomes the limitation of the ‘obligatory’

usage of matched normal samples and efficiently reduces the

rate of false positive calls. Working on multiple samples and

looking for recurrent events further reduce the chance of

false positives. In case where some of the samples have

matched-normal counterparts, the recurrent aberrations can be

further studied in those samples using other softwares which

have been well reviewed elsewhere (Liu et al., 2013; Alkodsi

et al., 2014).
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