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ABSTRACT

Motivation: The transition/transversion (Ti/Tv) ratio and heterozygous/

nonreference-homozygous (het/nonref-hom) ratio have been com-

monly computed in genetic studies as a quality control (QC) measure-

ment. Additionally, these two ratios are helpful in our understanding of

the patterns of DNA sequence evolution.

Results: To thoroughly understand these two genomic measures, we

performed a study using 1000 Genomes Project (1000G) released

genotype data (N= 1092). An additional two datasets (N=581 and

N= 6) were used to validate our findings from the 1000G dataset. We

compared the two ratios among continental ancestry, genome regions

and gene functionality. We found that the Ti/Tv ratio can be used as a

quality indicator for single nucleotide polymorphisms inferred from

high-throughput sequencing data. The Ti/Tv ratio varies greatly by

genome region and functionality, but not by ancestry. The het/

nonref-hom ratio varies greatly by ancestry, but not by genome re-

gions and functionality. Furthermore, extreme guanine+cytosine

content (either high or low) is negatively associated with the Ti/Tv

ratio magnitude. Thus, when performing QC assessment using these

two measures, care must be taken to apply the correct thresholds

based on ancestry and genome region. Failure to take these consid-

erations into account at the QC stage will bias any following analysis.
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1 INTRODUCTION

The maturity of high-throughput sequencing technology has
greatly enhanced our ability to study the human genome. The

rise of high-throughput sequencing technology also raises vari-

ous bioinformatics challenges. One such challenge lies with the

quality control (QC) of the sequencing data. As high-throughput
sequencing becomes more commonly used, QC measures become

more automatic and less obvious to the researcher. This is par-

ticularly dangerous if these QC measures introduce biases into

the sequencing data that are not clear to the researcher using the

data.
Adenine (A) and guanine (G) are two-ring purine-based nu-

cleotides and cytosine (C) and thymine (T) are one-ring pyrimi-

dine-derived nucleotides. In substitution mutations, transitions

are defined as the interchange of the purine-based A$G or

pryimidine-based C$T. Transversions are defined as the inter-

change between two-ring purine nucleobases and one-ring pyr-
imidine bases. The possible transversions are A$C, A$T,

C$G, G$T. If substitution mutations occur randomly, then
the Ti/Tv ratio [the number of transition single nucleotide poly-

morphisms (SNPs) divided by the number of transversion SNPs]

averaged over a large enough number of substations should be
0.5, because there are two possible transitions and four possible

transversions. However, a transversion is considered to be a
more drastic change than a transition, because substitution of

one-ring to two-ring chemical structure or vice versa (transver-

sions) requires more energy than substitution without change in
the ring structure (transitions). Thus, in real sequencing data, the

transition and transversion ratio is often greater than 0.5. The Ti/
Tv ratio has been used as an important parameter in many stu-

dies such as phylogenetic tree reconstruction and estimation of

divergence. Recently, the transition/tranversion ratio has also
been used as a QC parameter in high-throughput sequencing

studies (Durbin et al., 2010; Emond et al., 2012; Guo et al.,
2012a, b, 2013; Wang et al., 2014).

For human-exome sequencing data, the Ti/Tv ratio is gener-
ally around 3.0, and about 2.0 outside of exome regions

(Bainbridge et al., 2011). The Ti/Tv ratio is also different between
synonymous and non-synonymous SNPs (Yang and Nielsen,

1998). The Ti/Tv ratio for the haploid chromosomes (X in

males, Y, mitochondria) is different compared to the diploid
chromosomes (chromosomes 1–22). Much stronger bias toward

transitions over transversions (Ti/Tv is between 21 and 38) in
mitochondria has been observed in multiple studies (Lanave

et al., 1986; Guo et al., 2012a). It has been suggested to consider

haploid and diploid chromosomes separately when computing
Ti/Tv ratios (Guo et al., 2013).

Another useful ratio to compute for genetic studies is the het-
erozygosity to non-reference homozygosity ratio (het/nonref-

hom). There are three possible genotypes for a given diploid
genomic position: AA, AB and BB. If A represents the reference,

then the het/nonref-hom ratio of a person is computed as the

number of SNPs with AB genotype dived by the number of SNP
with BB genotype. Mathematically, the assumptions of Hardy–

Weinberg equilibrium applied over a large set of multiple SNPs
in one individual (instead of one SNP in a large number of mul-

tiple individuals, as is the standard case for Hardy–Weinberg

equilibrium QC tests) results in a het/nonref-hom ratio of 2.0
(Guo et al., 2013). Thus for whole-genome sequencing, the het/

nonref-hom ratio can be used also as a QC parameter.*To whom correspondence should be addressed.
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In this study, we have performed in-depth analyses of the Ti/

Tv and het/nonref-hom ratios to determine the range of variabil-

ity in these measures. We focused our analyses on three major

aspects of these measures: (i) Genomic region: defined as exon,

intron, intergenic, micro RNA (miRNA) and non-coding RNA

(lncRNA) (ii) SNP type: synonymous or non-synonymous,

(iii) Subject continental ancestry: European, Asian, African and

American. Furthermore, we also explored the reasons for the

measured variations we observed among these three aspects.

2 METHODS

Three different datasets were selected to conduct our study. The major

dataset is the 1000 Genomes Project (Abecasis et al., 2012) (1000G)

released genotype data, which contain 1092 subjects from a diverse eth-

nicity background. The genotypes of the 1092 subjects were inferred by

the 1000G research team from various sequencing data types, including

targeted partial-exome sequencing, whole-exome sequencing, and low-

pass whole-genome sequencing. Imputation techniques were used to

impute the SNPs in strong linkage equilibrium (LD). The 1000G dataset

is the most complete description of human genomes existing today in

terms of number of subjects, geographic distribution and coverage of

the genome. Thus, our analyses were focused on the 1000G dataset.

The second dataset is part of the Shanghai Breast Cancer Study

(SBCS) (Zheng et al., 2009) which contains 581 subjects. Illumina’s

TrueSeq capture reagent was used to capture the exome sequence data

in this dataset. Paired-end 100 base pair long reads were generated on the

Illumina HiSeq 2000 platform. The third dataset derives from a study of

hereditary colorectal cancer and includes six sequenced germline whole

genomes from Caucasian subjects. Paired-end 100 base pair long reads

were generated from the Illumina HiSeq 2000 for these six genomes.

For 1000G released data, no additional QC was performed by us. For

dataset 2 and 3, thorough QCs were performed at the raw data, align-

ment, and variant calling level. Alignment was done using the Burrows–

Wheeler Aligner (BWA) (Li and Durbin, 2009) against the HG19 human

reference genome. We then marked duplicate reads with Picard and car-

ried out regional realignment and quality score recalibration using the

Genome Analysis Toolkit (GATK) (McKenna et al., 2010). For variant

calling, we only used reads with a mapping quality score (MAPQ) �20

(i.e. �1% probability of being wrong) and bases with base quality score

(BQ) �20. We used GATK’s Unified Genotyper to call SNPs. GATK’s

best practice SNP filtering recommendation was followed to produce the

final list of SNPs used in our analyses.

We divided genomic regions into different subgroups by three criteria:

genomic region, subject ancestry and functional categories. We con-

sidered five major regional categories: exonic, intronic, intergenic,

miRNA and lncRNA regions. LncRNA was chosen as a region because

there has been great research interest in lncRNA in the recent years led by

the Encyclopedia of DNA Elements ENCODE project (Consortium

et al., 2012). In 2012, the ENCODE project claimed that about 80% of

the human genome is functional. This is a direct contradiction of previous

understanding that only 3% of the human genome is functional. Even

though this statement has been criticized by other scientists (Graur et al.,

2013), it is undeniable that the hidden functionality in lncRNA might

hold great potential research interest. ANNOVAR (Wang et al., 2010)

was used to determine whether a SNP is in an exon, intron or intergenic

region. If an SNP can be classified into multiple regions due to over-

lapping annotations of regions, it will be only considered once in the first

region defined. Such SNPs consist of less than 0.1% of all SNPs and do

not contribute to the result significantly. To determine whether a SNP

resides in a non-coding RNA region, we used the release of Gencode .v19

file as reference. The ancestry subgroups were defined based on the

1000G definition. For the 1000G dataset, there are total of 14

subethnicity groups. Following the 1000G protocol, we grouped these

into four major categories: African (ASW, LWK, YRI), American

(CLM, MXL, PUR), Asian (CHB, CHS, JPT) and European (CEU,

FIN, GBR, IBS, TSI). The full names of each subrace can be viewed

in Supplementary Table S1. The 1000G American group is a complex

admixed population with ancestry from all three other continental

groups. All analyses on 1000G dataset were performed for each major

ancestry group separately. The other two datasets only contain subjects

from a single ancestry group and thus were not divided further by ances-

try groups. Finally, the coding region SNPs were categorized by their

functionality: synonymous or non-synonymous. Variations among ances-

try groups and genomic regions were tested using the Kruskal–Wallis test

(Kruskal and Wallis, 1987).

We also studied the effect of guanine–cytosine content (GC-content)

on the two ratios. The concentration of GC-content has been directly

linked to coding-sequence length (Oliver and Marin, 1996) and the pro-

ficiency of Illumina sequencing technology (Dohm et al., 2008). Because

GC-content is regionally related, we examined the GC-content within the

four genomic regions described previously. To extract each individual

exon and intron location, we used RefSeq’s transcript transfer format

(GTF) file. The exact exon start and end locations are given, and the

intron start and end were computed based on the end and start of the

corresponding exons. The nucleotide sequences were extracted for all

exons and introns based on the HG19 human genome reference. GC-

content was computed for each exon and intron. For intergenic regions,

we divided the intergenic regions into 1 million base pair windows and

computed their GC-content and ratios. For lncRNA, we computed the

GC-content and ratio for each individual lncRNA based on the Gencode

.v19 lncRNA release.

3 RESULTS

We first compared the Ti/Tv ratios of the five major regional

categories. Even though the variations of Ti/Tv ratios were stat-

istically significantly different due to high sample size

(P50.0001) (Supplementary Table S2), there was not a visible

substantial variation of the Ti/Tv ratios among the four ancestry

groups (Fig. 1). For exonic regions, the African group had the

highest Ti/Tv ratio median of 2.84, and the Asian group had the

lowest median Ti/Tv ratio of 2.79. For intronic regions, all an-

cestry groups had similar median Ti/Tv ratios of around 2.2.

The median Ti/Tv ratio continued to drop to around 2.06 for

intergenic and lncRNA regions for all four ancestry groups. The

median Ti/Tv ratios for miRNA regions are between 2.59 and

2.95 among the four ancestry groups. Higher variations were

observed for Ti/Tv ratios in miRNA regions due to fewer

SNPs reside in the short miRNA regions. Based on these results,

the Ti/Tv ratio can be used to distinguish between exonic and

non-exonic regions, and the Ti/Tv ratio of lncRNA behaves simi-

larly to intergenic regions.
Next, we examined the het/nonref-hom ratios of the five major

regional categories (Fig. 2) and found there were no major dif-

ferences (Supplementary Table S2) between the het/nonref-hom

ratios among the five regions. However, the het/nonref-hom

ratio is strongly associated with continental ancestry. Among

the four ancestry groups, Africans had the highest median het/

nonref-hom ratio of around 2.0, and Asians had the lowest

median het/nonref-hom ratio at 1.4. The median het/nonref-

hom ratios for Americans and Europeans were around 1.7 and

1.6. From these results, clearly, the het/nonref-hom ratio is
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Fig. 2. A het/nonref-hom ratio for exome regions. B het/nonref-hom

ratio for intron regions. C het/nonref-hom ratio for intergenic regions.

D het/nonref-hom ratio for non-coding RNA regions. E het/nonref-hom

ratio for miRNA regions

Fig. 1. A Ti/Tv ratio for exome regions. B Ti/Tv ratio for intron regions.

C Ti/Tv ratio for intergenic regions. D Ti/Tv ratio for non-coding RNA

regions. E Ti/Tv ratio for miRNA regions. The variation for Ti/Tv is

higher than other regions because much fewer SNPs are in miRNA

regions
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ancestry dependent, and the Ti/Tv ratio is genome region

dependent.
The next step after identifying SNPs from exome sequencing

data involves annotation of the SNPs to assess their potential

functionality. For the Ti/Tv ratio, there is a visible difference

between synonymous and non-synonymous SNPs and little vari-

ation among ancestry groups (Fig. 3). Synonymous SNPs had

a higher Ti/Tv ratio (median ratio around 3.1) compared with

non-synonymous SNPs (median ratio around 2.1) for all four

ancestry groups. For the het/nonref-hom ratio, there was no

difference between synonymous and non-synonymous SNPs

(Supplementary Table S2) observed. However, the strong vari-

ation between ancestry groups was present. Regardless of how

we divided the SNPs (by regions or by functionality) the het/

nonref-hom ratio patterns across the ancestry groups remained

the same.
Because regions with extreme GC-content are rare in the

human genome (Supplementary Figure S1), to balance the

denominator when computing ratios we defined six unequal

GC-content bins: 0.0–0.3, 0.3–0.4, 0.4–0.5, 0.5–0.6, 0.6–0.7 and

0.7–1.0 to give more GC-content range to regions with extreme

high or low GC-content values. The GC-content had a clear

non-linear effect on the Ti/Tv ratio (Fig. 4), with high and

low GC-content resulting in lower Ti/Tv ratios. A similar pat-

tern has been used to describe the effect of GC-content

on Illumina sequencing depth (Benjamini and Speed, 2012;

Guo et al., 2014). The regions with low GC-content (0–0.3)

and high GC-content (0.7–1) had relatively higher variation for

het/nonref-hom ratios than exons with moderate GC-content

(03–0.6) due to fewer SNPs observed in extreme GC-content

regions (Fig. 5). Again, the same ancestry variation described

previously for the het/nonref-hom ratio was observed. The dif-

ference of Ti/Tv ratios observed among regions can be poten-

tially explained by the differences of GC-content among these

regions. We computed GC-content of the five regions we defined

and the results are as follow: miRNA: 0.51, exome: 0.49,

intronic: 0.42, lncRNA 0.40, intergenic: 0.38. The GC-content

is directly correlated with Ti/Tv ratio (Spearman’s correlation

coefficient r=0.9).

Using the exome sequencing data from the SBCS study and

whole-genome sequencing data from the colorectal cancer study,

we further validated our results. Because each of the two add-

itional studies only contained a single ancestry group, we could

not divide the SNPs further by ancestry groups. Overall, we

observed similar results for the two datasets compared to the

1000G dataset (Supplementary Figures S2 and S3). For the Ti/

Tv ratio, separated by region, the exome regions had the highest

value followed by intron regions. Intergenic regions and lncRNA

regions had similar values, lower than intron or exon regions.

Divided by functionality, synonymous SNPs had much higher

Ti/Tv ratios compared to non-synonymous SNPs (t-test: SBCS

P50.0001. Colorectal Cancer P50.0001). Stronger variations of

het/nonref-hom ratios among the regions and functionalities

were observed in the SBCS dataset. Due to the limitation of

sample size (N=6) in the colorectal dataset, it is difficult to

draw conclusions on the variation of the colorectal dataset for

het/nonref-hom ratio compared to the 1000G dataset. The

same conclusion can be reached regarding the GC-content

evaluation (Fig. 3). Extreme GC-content tends to produce

lower Ti/Tv ratios and relatively stable het/nonref-hom ratios

were observed for regions with GC-content between 0.3 and

0.7. Extreme GC-content produced a wider range in het/

nonref-hom ratio values.
Finally, we repeated our analyses of 1000G dataset by cate-

grizing the SNP data by subancestry group (Supplementary

Fig. 5. A GC content and het/nonref-hom ratio relationship for exome

regions. B GC content and het/nonref-hom ratio relationship for intron

regions. C GC content and het/nonref-hom ratio relationship for inter-

genic regions. D GC content and het/nonref-hom ratio relationship for

non-coding RNA regions

Fig. 3. A Ti/Tv ratio for synonymous SNPs. B Ti/Tv ratio for non-syn-

onymous SNPs. C het/nonref-hom ratio for synonymous SNPs. D het/

nonref-hom ratio for non-synonymous SNPs

Fig. 4. A GC content and Ti/Tv ratio relationship for exome regions.

B GC content and Ti/Tv ratio relationship for intron regions. C GC

content and Ti/Tv ratio relationship for intergenic regions. DGC content

and Ti/Tv ratio relationship for non-coding RNA regions
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Figures S4–S8). And the results were consistent with combined
ancestry group.

4 DISCUSSION

High-throughput sequencing technology allows researchers to
examine the human genome at the single nucleotide resolution

instead of just the subset of previously known SNPs available on
any genotyping array. One of the consequences of applying high-
throughput sequencing technology is the ability to detect a much

higher number of potential novel SNPs, which are generally un-
detectable by array technology. This advantage of high-through-

put sequencing technology also brings the need for highly
efficient and accurate QC for the SNPs detected. The QC of
high-throughput sequencing data has been an important topic

in the field of bioinformatics for the last few years. Within the
scope of QC for SNPs inferred from sequencing data, unlike
other QC parameters such as depth, genotype quality etc., the

Ti/Tv and het/nonref-hom ratios cannot be used directly to filter
individual SNPs but rather to measure the overall SNP quality
for a sequence. For example, from previous studies, we know

that SNPs in exome regions should have a Ti/Tv ratio of around
3. The general rule is that a higher Ti/Tv ratio usually indicates
better quality SNPs, as long as the ratio is not too high (44). If

we observe a Ti/Tv ratio substantially lower than the expected
value (53.0) for exome SNPs, we know that usually increasing

other QC filters such as depth and genotype quality score will
cause the Ti/Tv ratio to also increase.
From our study, we conclude that the Ti/Tv ratio is highly

dependent on the genome region and functionality. The exome
regions tend to have the highest Ti/Tv ratio for SNPs, followed
by intron regions. Intergenic regions and lncRNA regions have

lower and similar Ti/Tv ratios. Thus, when using Ti/Tv ratios as
a QC measurement, it is best to compute the Ti/Tv ratio by
region rather than as a whole. The majority of DNA high-

throughput sequencing studies focus on non-synonymous
rather than synonymous SNPs. We found that synonymous
SNPs have substantially higher Ti/Tv ratio than non-synonym-

ous SNPs. The Ti/Tv ratio of non-synonymous SNPs is rather
similar to the intergenic regions. The high Ti/Tv ratio of syn-
onymous SNPs compared to non-synonymous SNPs can be

explained through the probability of amino acid changes using
the amino acid table. Out of all possible changes within the

amino acid table, there are 33 synonymous transition and 36
synonymous transversions (random Ti/Tv ratio=0.92) com-
pared with 63 non-synonymous transition and 156 non-

synonymous transversions (random Ti/Tv ratio=0.40). Thus,
it is also useful to categorize exome SNPs by their functionality
before computing the Ti/Tv ratio. Futhermore, we found no

association between the Ti/Tv ratio and ancestry, thus high-
throughput sequencing studies on subjects of any ancestry
groups can use the reported Ti/Tv ratio thresholds in this

study as a QC guideline.
The het/nonref-hom ratio is not used as often as the Ti/Tv

ratio for QC because it has been suggested that the het/nonref-

hom ratio works best with whole-genome sequencing data, and
the price of whole-genome sequencing remains high (4$4000 per
sample) (Guo et al., 2013). Through our analyses, we found that

the het/nonref-hom ratio is not dependent on genomic regions,

thus it can be applied to exome regions alone and is also a rea-

sonable QC measure for exome sequencing data. The expected

value for the het/nonref-hom ratio in a whole-genome sequen-

cing SNP data has been mathematically proposed to be 2.0 (Guo

et al., 2013). However, our results show the het/nonref-hom ratio

is highly dependent on ancestry. Out of the four major contin-

ental ancestries we tested, only the African group showed a het/

nonref-hom ratio consistent with the expected value of 2.0. The

other three continental ancestry groups, American, Asian and

European, all had different het/nonref-hom ratios lower than

2.0. Since the Hardy–Weinberg equilibrium assumptions are

used to calculate the expected value of 2.0, perhaps the African

samples match the expected value because these assumptions are

more accurately achieved in that older population, while they

may be violated even subtly in the other three continental popu-

lations that have undergone several major bottlenecks through

global migrations. Whatever the cause, our data show that it is

important to evaluate the het/nonref-hom ratios separately by

ancestry group.
Last, we studied the effect of the GC-content on both ratios

and found that the het/nonref-hom ratio is not affected by GC-

content, and the Ti/Tv ratio is negatively associated with both

high and low extreme GC-content (0–30 and 70–100%). Thus,

when performing QC on a smaller region, it is beneficial to com-

pute the GC-content of that region and adjust your Ti/Tv ratio

expectation based on the region’s GC-content.
Two additional datasets were used to validate the results we

found from the 1000G dataset. The majority of the results are in

agreement among the three datasets with some minor variation

among datasets. These variations could be caused by the differ-

ent sequencing technology used. The 1000G dataset was gener-

ated using a combination of low-pass whole-genome sequencing,

exome sequencing, target region sequencing and imputation. Of

the other two datasets, the SBCS study used exome sequencing,

and the colorectal cancer study used whole-genome sequencing,

and no imputation was performed. Also the variation could

result from sample size and phenotype differences. The 1000G

dataset contained significantly more subjects and is a population

cohort, while the other two datasets contained breast cancer

and colorectal cancer patients at much smaller sample sizes.

Nonetheless, the two additional datasets provided supporting

evidence for the conclusions we have drawn based on the

1000G dataset analyses.
In conclusion, the Ti/Tv and het/nonref-hom ratios can both

be used as QC assessment of SNPs inferred from high-through-

put sequencing data, but care must be taken that the subject

ancestry and the function of the DNA sequenced (if not whole

genome) are taken into consideration when setting limits for the

reasonable values of these ratios. The ratio values provided in

this study can serve as general guidelines for future studies.
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