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ABSTRACT

Summary: We present GeneNet Toolbox for MATLAB (also available

as a set of standalone applications for Linux). The toolbox, available as

command-line or with a graphical user interface, enables biologists to

assess connectivity among a set of genes of interest (‘seed-genes’)

within a biological network of their choosing. Two methods are

implemented for calculating the significance of connectivity among

seed-genes: ‘seed randomization’ and ‘network permutation’.

Options include restricting analyses to a specified subnetwork of the

primary biological network, and calculating connectivity from the

seed-genes to a second set of interesting genes. Pre-analysis tools

help the user choose the best connectivity-analysis algorithm for their

network. The toolbox also enables visualization of the connections

among seed-genes. GeneNet Toolbox functions execute in reason-

able time for very large networks (�10 million edges) on a desktop

computer.

Availability and implementation: GeneNet Toolbox is open source

and freely available from http://avigailtaylor.github.io/gntat14.

Supplementary information: Supplementary data are available at

Bioinformatics online.

Contact: avigail.taylor@dpag.ox.ac.uk
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1 INTRODUCTION

In search of the genetic causes of diseases, high-throughput ex-

periments, such as genome-wide association and gene expression

studies, are often used to find putatively causative genetic vari-

ants. Such experiments implicate many genes (‘seed-genes’); to

gain insights into the biological mechanisms through which these
genes’ variants exert their effects, we often explore the hypothesis

that the seed-genes participate in a shared biological pathway or

process. To this end, within a given biological network, (say, a

protein–protein interaction (PPI) or gene co-expression net-
work), we can count the direct connections between the seed-

genes [seed-genes and direct connections between them comprise

the ‘direct network’ (see Supplementary Figure S1A)], and deter-

mine if this ‘direct seed connectivity’ is more than expected by

chance.
Broadly speaking, there are two ways to assess direct seed

connectivity within a network of interest: In ‘seed randomization’

(SR), we keep the network the same, randomly select gene-sets

equal in size to the set of seed-genes, and obtain an empirical

P-value by comparing the direct seed connectivity to the con-

nectivity of the random gene-sets (see Supplementary Figure

S2A); conversely, in ‘network permutation’ (NP), we keep

seed-genes the same, permute the edges of the network many

times (while preserving node degree and network clustering

structure), and obtain an empirical P-value by comparing the

direct seed connectivity in the real versus permuted networks

(see Supplementary Figure S2B and Supplementary

Information for algorithmic details).
Sometimes, experimental biases influence seed-gene selection;

for example, when using RNA-sequencing to call differentially

expressed genes, there is a length bias towards longer transcripts

(Oshlack and Wakefield, 2009). In such cases, gene attributes

affected by these biases must be accounted for when assessing

direct seed connectivity. In SR, we can do this by matching gene

attributes of randomized gene-sets to the real set of seed-genes

(see Supplementary Figure S3; note this approach will not work

if seed-genes have unique attributes). In other scenarios, the bio-

logical network used to determine direct seed connectivity may

be subject to an ascertainment bias; for example, gene–gene con-

nections reported in PPIs are biased by the number of studies

pertaining to processes in which gene products participate

(Rossin et al., 2011). With SR, we can account for an ascertain-

ment bias by matching randomized genes to real seed-genes by

degree. However, if such a bias is the primary concern, then NP

should be used to better account for node degree [on condition

that the network in question can be sufficiently permuted, while

preserving its clustering structure (see Additional features)]. NP

can also be used to evaluate three further properties of the seed-

gene network [proposed in (Rossin et al., 2011), but renamed

here]: ‘seed direct degrees mean’; ‘seed indirect degrees mean’;

and ‘common connectors degrees mean’. [The latter two proper-

ties use the ‘indirect network’ among seed-genes (see

Supplementary Figure S1B); Supplementary Figures S4–S6 ex-

plain these properties.] Last, NP can help identify which seed-

genes, if any, might be hubs in the direct network (see

Supplementary Figure S4).

1.1 Existing platforms

A popular implementation of NP is the online resource Disease

Association Protein-Protein Link Evaluator (DAPPLE) (Rossin

et al., 2011). Crucially, unlike other implementations of NP

(Alexeyenko et al., 2012; Poirel et al., 2011), the DAPPLE NP

algorithm preserves not only node-degree but also network*To whom correspondence should be addressed.
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clustering structure. However, DAPPLE has important limita-

tions: its web-based interface forces users to compete with global

users for resources and is a bottleneck in any high-throughput

pipeline; in addition, users are constrained to use DAPPLE’s

built-in PPI. GeneNet Toolbox addresses these problems: it is

standalone, can be run from the command-line, and allows
flexible input. Moreover, it employs a MATLAB-optimized

NP algorithm that preserves both node degree and clustering

structure (see Supplementary Information for a performance

comparison), calculates the same network properties for lists of

seed-genes as DAPPLE, and also enables additional analyses

(described later).

2 FEATURES

Users access GeneNet Toolbox via a graphical user interface, or

by calling command-line functions (see user manual available as

Supplementary Information). The toolbox enables users to assess

seed-gene connectivity in a user-specified network using either

SR or NP. With SR users can account for gene-attributes.

Two extensions are available for both methods. The first restricts

an analysis to a specified sub-network of the primary biological
network (a ‘background’; see Supplementary Figure S7), thus

enabling the user to assess the connectivity of seed-genes

within a particular genic context, rather than against a ‘whole-

genome’ background. This might be useful, for example, in the

analysis of a behavioural disorder, when a user might want to

compare the connectivity of seed-genes to genes associated with

behaviour, rather than to all genes. The second extension calcu-

lates connectivity from the initial seed-genes to a second set of

interesting genes (a ‘backbone’; see Supplementary Figure S8).

Thus, for example, in analysing the genetic causes of a disease, a

user could assess connectivity of seed-genes to previously identi-

fied candidate-genes for that disease. The extensions can be com-
bined (see Supplementary Figure S9). If available, multiple

processors can be used to reduce run-time. To visualize the

seed-gene direct network users choose the ‘quickview’ option,

or output the network as a tab-delimited text file formatted for

Cytoscape (Smoot et al., 2011). Input files are tab-delimited text

files; results files are text files.

2.1 Additional features

As noted above, when network ascertainment bias is of concern

(e.g. in a PPI), seed-gene connectivity is likely assessed more

accurately with NP than SR. However, for NP to work it must

be possible to permute a network sufficiently while preserving its
clustering structure. To assess a network’s suitability for NP, we

provide a pre-analysis tool ‘Network permutation analyser’ (see

user manual). The tool summarizes a network’s clustering struc-

ture using the global and mean local clustering coefficients, (Luce

and Perry, 1949; Watts and Strogatz, 1998), comparing these
attributes to those obtained for permuted networks. Heuristic

measures indicating the effect of network permutations are also

provided: for N permutations (set by the user) the tool: (i) shows

the mean percentage of edges remaining unbroken per permuta-
tion; and (ii) plots the percent of edges remaining unbroken after

1..N permutations. Finally, we expect that networks in which

hub-genes are connected to hub-genes will be hardest to permute,

so to assess network assortativity we plot the neighbour connect-

ivity distribution (Maslov and Sneppen, 2002).

3 PERFORMANCE

(Table 1).

4 REQUIREMENTS

GeneNet Toolbox requires MATLAB 2013B (at least) and Perl,

and can be used on any computer where these are installed.

Alternatively, the toolbox is available as a set of standalone ap-
plications that can be run without a MATLAB installation or

license, in a Linux environment (Perl is required). The toolbox is

distributed under the GNU General Public License v3.0 (http://

www.gnu.org).
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