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ABSTRACT

Motivation: The model bacterium Escherichia coli is among the best

studied prokaryotes, yet nearly half of its proteins are still of unknown

biological function. This is despite a wealth of available large-scale

physical and genetic interaction data. To address this, we extended

the GeneMANIA function prediction web application developed for

model eukaryotes to support E.coli.

Results: We integrated 48 distinct E.coli functional interaction data-

sets and used the GeneMANIA algorithm to produce thousands of

novel functional predictions and prioritize genes for further functional

assays. Our analysis achieved cross-validation performance compar-

able to that reported for eukaryotic model organisms, and revealed

new functions for previously uncharacterized genes in specific biopro-

cesses, including components required for cell adhesion, iron–sulphur

complex assembly and ribosome biogenesis. The GeneMANIA ap-

proach for network-based function prediction provides an innovative

new tool for probing mechanisms underlying bacterial bioprocesses.
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1 INTRODUCTION

As the primarymodel organism formicrobial biology,Escherichia

coli has been studied for decades using countless large- and small-

scale biochemical assays of gene function. More recently, the

physical (protein–protein) and functional (gene–gene or epistatic)

relationships between E.coli genes have been extensively studied

by our group (Hu et al., 2009; Babu et al., 2011a, 2014;

Rajagopala et al., 2014) and others (Arifuzzaman et al., 2006;

Typas et al., 2008) in the hopes of understanding the entire

complement of biological pathways in a prokaryotic organism.

These studies have revealed much of the physical and functional

organization of the E.coli bacterial proteome. However, as many

of the low-throughput studies were particularly concerned with

specific, smaller groups of genes, and the larger scale studies were

conducted using methodologies that inherently enrich for certain

physical (i.e. transient versus more stable protein interactions) or

genetic interactions, defining a single pathway level map of E.coli

function can be problematic. Complicating matters further is the

inherent difficulty in querying, navigating, and visualizing such

complex biological networks in a meaningful way as each study

only identifies part of the map and is idiosyncratically biased.

Thus, despite rapid progress, we are far from understanding the

biological roles and functional relationships of the 4247 E.coli

genes from an integrated ‘systems’ perspective. As� 45% (1925

of 4247) of this organism’s genome (i.e. K-12W3110) still remains

functionally unannotated, methods more sensitive at interpreting

existing data appear warranted.

Underlying this disconnect between the volume of data avail-

able and the lack of annotation is a paucity of user friendly tools

for the accurate and automatic inference of a gene’s function.

While many gene function prediction systems based on func-

tional interaction networks exist (Alexeyenko and

Sonnhammer, 2009), few are readily available for prokaryotes

[e.g. eNet (Hu et al., 2009); EcID (Andres Leon et al., 2009);

STRING (Franceschini et al., 2013)], and none consider the

breadth of evidence supporting functional interactions available

today, such as phenomics and epistatic interactions, which have

only recently become available.

Here, we extend the GeneMANIA resource to support E.coli

(Mostafavi et al., 2008; Zuberi et al., 2013) for gene function

prediction. We validate novel predictions supporting a role in

iron (Fe) - sulphur (S) cluster binding, cell adhesion and riboso-

mal protein degradation and biogenesis for more than half a

dozen uncharacterized (orphaned) E.coli genes. An online imple-

mentation of GeneMANIA including all E.coli biological*To whom correspondence should be addressed.
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networks used to generate our predictions has been made pub-
lically available (www.genemania.org), and we have also created
a stand-alone program and plugin for the Cytoscape network

visualization environment (Shannon et al., 2003; Montojo
et al., 2010). We find that integration of these E.coli datasets

into a single unified network using GeneMANIA furthers our
understanding of how bacterial components are connected in

complexes and pathways, and enables functional prediction of
previously uncharacterized or under-characterized bacterial gene

products.

2 METHODS

2.1 E.coli (K-12) genomes and biological networks

Since Gene Expression Omnibus (GEO) datasets (see Supplementary

Methods for details), protein domains, coexpression and all experimental

interactions were generated in the K-12 genomes of W3110 or MG1655

(which are highly similar), for gene function prediction, we merged the

gene identifiers from both these genomes, generating a non-redundant

dataset of 4455 genes (excluding insertion sequence elements). In total,

48 biological networks from various literature sources were compiled for

function prediction, which are currently displayed on the GeneMANIA.

2.2 Validation

GeneMANIA performance was evaluated by 5-fold cross-validation on

each Gene Ontology (GO) annotation category (GO gene sets were

downloaded from go_daily-termdb.obo-xml.gz; dated 2013-12-03). In

each instance, true examples were withheld proteins with the correspond-

ing annotation, and negative examples were all other proteins. Cross-

validation and area under the ROC (receiver operating characteristic)

curve (AUC) was computed using the ‘Network Assessor’ component

of the GeneMANIA command line tool (Montojo et al., 2010). To

gauge the contribution of each feature to overall prediction performance,

networks were withheld and average AUC and error rate estimated

across all GO annotations.

2.3 Fe-S cluster, ribosome and adhesion function

prediction

The query gene derived subnetwork corresponding to the selected process

was generated using the GeneMANIA plugin (Montojo et al., 2010) for

Cytoscape (Shannon et al., 2003), available from the Cytoscape App

Store (Lotia et al., 2013). Relative network weightings were determined

using the GeneMANIA web interface.

2.4 Bacterial strains and media

Strains used were either the wild-type E.coliK-12 BW25113 or single gene

deletion mutant strains marked with a kanamycin resistance marker from

the Keio knockout library (Baba et al., 2006) for validation experiments.

Mutant strains were streaked onto Luria-Bertani (LB) agar plates sup-

plemented with 30mg/ml kanamycin and incubated at 37�C overnight to

obtain single colonies.

2.5 Growth curves

Overnight cultures of wild-type and mutant strains prepared from single

colonies were inoculated in LB supplemented with either no antibiotic,

6mg/ml streptomycin, 0.5mg/ml tetracycline, 750mM reduced L-glutathi-

one, 250mM 2, 20-dipyridyl or a combination, as indicated, at an OD600

of�0.01. Concentrations of additives were based on analogous recently

conducted experiments (Wong et al., 2014). Cultures were grown in

Bioscreen C (Growth curves) honeycomb 100-well plates in 200ml

volumes at 37�C and the turbidity of the cultures was measured using

the wide-band filter (450–580nm) at 15-min intervals.

2.6 Degradation of ribosomal proteins, ribosomal profiles

and translation fidelity

The reaction mixture used for degradation assays contained 1.2mMClpP,

3.9mM substrate and an ATP regeneration system (13 units/ml of creatine

kinase and 16mM creatine phosphate) in buffer containing 25mM

HEPES (pH 7.5), 5mM MgCl2, 5mM KCl, 0.03% (w/v) Tween 20

and 10% glycerol. Components were incubated at 37�C for 3min

before adding 1.0mM ClpX to start the reaction. At given time points,

aliquots were withdrawn and mixed with 4� Laemmli buffer to stop the

reaction. Proteins were then resolved on SDS-PAGE gels and visualized

by Coomassie staining.

The S30 crude extracts were loaded on linear sucrose density gradients

as described (Jiang et al., 2007), with 40% sucrose used as cushion and

ribosomes or other complex subunits isolated by high-speed ultracentri-

fugation at 4�C for 16h as previously described (Campbell and Brown,

2008). Translational fidelity of mutant strains expressed via reported ex-

pression plasmids was evaluated as previously described (Thompson

et al., 2002; Hu et al., 2009; Babu et al., 2011b).

2.7 Biofilm assay

The biofilm assay was performed as previously described (O’Toole et al.,

1999), with minor modifications. Briefly, 5ml of overnight E.coli cultures
grown in LB at 32�C was added to sterile 96-well polystyrene dish con-

taining 100ml of fresh LB medium supplemented with 0.45% glucose.

Culture dish was incubated overnight (�18h) at 32�C, and the biofilm

was stained with 0.5% crystal violet for 5min. Excess crystal violet was

washed off with sterile water. An ethanol–acetone mixture (80:20) was

added to the wells to release the dye, and the biofilm that adhered to the

surface of the well was imaged using a Canon digital camera. Biofilm

formation was assessed by the intensity of residual coloration.

3 RESULTS AND DISCUSSION

3.1 Networks supporting function prediction

We collected five types of E.coli GeneMANIA functional inter-
action networks: physical interactions, transcript coexpression,

genetic interactions, shared protein domains (SPDs) and ‘other’
networks inferred from genomic context and chemogenomic (i.e.

phenomic) profiles (Supplementary Table S1). Specifically, we
included 48 experimentally derived E.coli biological networks,

from our group and others that span these evidence types. While
the physical interaction networks were unweighted, all remaining

network types were weighted by profile correlation, wherein
higher correlations are more indicative of shared function
(Mostafavi et al., 2008). To evaluate the extent to which these

lines of evidence types overlapped, we counted the number of par-
allel edges (i.e. edges from different networks connected to the

same node pairs) in each supporting network (to a maximum of
50) for each gene in the E.coli genome. More than 57 000 edges

were supported by several networks, while themajority (4800 000)
of edges existed in only a single network, or were only weakly

supported (i.e. with low edge weight; Supplementary Fig. S1).
Notably, coexpression contributed most (4500 000) of these

edges due to the large number of experiments included (33),
followed by networks derived from genetic screens (4145 000).
GeneMANIA uses the ‘guilt-by-association’ function predic-

tion approach (Oliver, 2000), wherein a user provides a ‘seed list’
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of known related genes that is then extended to include other

genes that are predicted to share a similar function based on

overlapping connection within the biological networks

(Mostafavi et al., 2008). In the simplest mode of operation, the

user needs only to enter in a gene or genes of interest. In gen-

erating functional predictions, the GeneMANIA algorithm is

designed to automatically weight networks on the basis of rele-

vance to the query set. This weighting is calculated for each

query, so that network weights can vary based on user input.

These assigned network weights are provided to the user, so that

they may assess the relative predictive power of the biological

evidence types and the basis for each prediction.

3.2 Cross-validation and performance of

network categories

To assess the sensitivity and specificity of GeneMANIA in

making functional predictions in E.coli, we used 5-fold cross-val-

idation to measure its ability to correctly identify known func-

tionally annotated E.coli genes given input genes possessing the

same functional annotation. These results were compared across

GeneMANIA score thresholds using AUC. The average error,

measured as 1 - AUC, across all GO biological process, cellular

component and molecular function annotations ranged from

0.10 for cellular component annotations to 0.15 for biological

process annotations (Fig. 1a), which is comparable to that

achieved with yeast Saccharomyces cerevisiae (Mostafavi et al.,

2008). Moreover, comparison of function predictions derived

from STRING to GeneMANIA predictions indicated that

GeneMANIA achieved significantly better performance

(Supplementary Table S2, see Supplementary Methods).

Next, we evaluated the contribution of each input network

type by individually excluding each type of network and re-eval-

uating overall performance (Fig. 1b) using the GeneMANIA

network assessor function (Montojo, 2014). We find that while

the SPD and other network types contribute substantially to the

overall predictive accuracy of the program, some networks ap-

peared to have little influence on average. However, this was not

the case for all GO terms. For example, physical interactions

contribute more substantial reductions in error for GO terms

such as ribosome assembly (Supplementary Table S3). This

underscores one of the principle benefits of the GeneMANIA

algorithm: namely, its ability to adaptively weight evidence

based on the input genes.

3.3 Predicting gene function

To identify functions for E.coli genes, we input genes by GO

annotation (assuming at least 10 genes per GO term) to

GeneMANIA using the command line tools available at http://

pages.genemania.org/tools/. The top 100 results were retrieved

for each GO term (Supplementary Table S4). To confirm the

value of some of the higher ranking predictions, we focused ex-

perimental effort on functionally uncharacterized proteins that

were predicted to have a novel function. For example, Fe–S clus-

ter biogenesis proteins were found to be associated with three

uncharacterized proteins: YnfH, YhgA and YdhZ (Fig. 2a). This

association was based largely on SPDs, coexpression and other

sources of evidence including large-scale phenomics data

(Nichols et al., 2011) (Fig. 2a). Since a large number of genes

that confer aminoglycoside sensitivity are involved in Fe–S clus-

ter biogenesis and aerobic respiration (Kohanski et al., 2007;

Babu et al., 2014; Wong et al., 2014), we tested the sensitivity

of ynfH, yhgA and ydhZ single mutants to sublethal concentra-

tions of streptomycin antibiotic. Both wild-type and single

mutant deletion strains exhibited similar growth curves in the

absence of antibiotic or in the presence of a non-aminoglycoside

(tetracycline) drug (Fig. 2a). However, at a sublethal dosage of

the aminoglycoside streptomycin, wild-type cells reached a lower

density of cells in stationary phase compared with the mutant

cells. Addition of the iron chelator 2,2’-dipyridyl (DP) or the

essential antioxidant, glutathione (GSH) to the streptomycin

containing medium relieved the growth reduction in wild-type

cells to a level comparable to single mutants (Fig. 2a), indicating

the participation of YnfH, YhgA and YdhZ in an Fe–S cluster-

related processes.

Another example of novel assigned function was the implica-

tion of the gene clpP in ribosome biogenesis, a prediction driven

largely by strong coexpression. Consistent with this prediction,

the ClpP, a serine protease that forms an active degradation

complex with ClpX ATPase was found to degrade the ribosomal

subunit S7 in the presence of ATP (Fig. 2b), but the mechanism

by which the ClpXP protease recognizes the ribosomal S7 for

degradation (Flynn et al., 2003) is not yet known.
Similarly, based on SPDs, coexpression and other data sources

(e.g. phenomics and genomic context), a ribosomal link was pre-

dicted between a previously uncharacterized protein, YihD, and

the methyltransferase factors (TrmA, RsmJ) responsible for

methylation of 16S rRNA and tRNAs. To evaluate this possible

connection, we tested the ribosome profile of yihD deficient

strains. In contrast to wild type, yihD mutant had an elevated

amount of free 30 S and 50S ribosomal subunits, and a concomi-

tant decrease in 70 S formation (Supplementary Fig. S2a).

Consistent with this result, yihD mutant also exhibited signifi-

cantly higher read-through of amber (UAG) and opal (UGA)

stop codon alleles, and +1 and –1 frameshift mutations in

a �-galactosidase reporter system (O’Connor, et al., 1992).

Collectively, these results support our prediction of ClpP and

YihD involvement in ribosome biogenesis.
Finally, SPDs and correlated transcript expression profiles

connected the unannotated proteins YdeT, YdhQ, YhjY with

Fig. 1. Median error rates of function prediction. (A) Average error rate

of GeneMANIA function prediction estimated by 5-fold cross-validation

for each GO biological process (BP), cellular component (CC) and mo-

lecular function (MF) annotation. (B) Effect of eliminating various cate-

gories of evidence on error. Exp, coexpression; GIs, genetic interactions;

PIs, physical interactions and SPD, shared protein domains
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components involved in bacterial adhesion and biofilm forma-

tion. To evaluate this link, we measured mutant strains harbor-

ing deletions in each of these genes for their ability to form a

biofilm in vitro (see Methods). In contrast to wild-type cells, all

three single mutants displayed surface attachment through bio-

film formation (Supplementary Fig. S2b) as has been previously

noted for other biofilm-associated mutants (Ma and Wood,

2009). Notably, only one of the eight experimentally tested func-

tion predictions from GeneMANIA were ranked highly by the

STRING-derived function predictor (Supplementary Table S6,

see Supplementary Methods).

4 CONCLUSIONS

Until now, GeneMANIA has been limited to eukaryotes, where

it has proven to be a powerful resource for probing gene function

and revealing pairwise connections linking genes in yeast, fly,

worm, human and other species (Zuberi et al., 2013). In this

study, we have extended the predictive power of GeneMANIA

to a leading model prokaryote, E.coli, an organism that has to

date lacked comparable tools for functional interrogation that

are simultaneously accurate, comprehensive (including the latest

high-throughput data), and easy to use. This work combines the

GeneMANIA algorithm with expansive networks of informative

functional connections consisting of more than one million gene–

gene associations based on physical interactions and shared

genetic, domain, chemogenomics and coexpression profiles.

This represents a rich resource, unparalleled in any other bacter-

ial species to date, for further mechanistic characterization of

both known and uncharacterized genes.
The GeneMANIA algorithm and supporting networks for

E.coli and several model eukaryotes are made freely available

via a user friendly GeneMANIA web interface (www.genema-

nia.org) and as a plugin for the Cytoscape network visualization

environment. This web-accessible resource facilitates exploration

of functional inferences in hypothesis-driven follow-up studies

aimed at elucidating mechanistic aspects associated with particu-

lar bioprocesses.
While the prediction performed by GeneMANIA provides a

new method for leveraging functionally informative associations

to explore bacterial gene function, the quality of function predic-

tions, especially for loosely connected proteins, is expected to be

improved over the coming years as new genomic resources,

including protein and genetic interactions for the previously un-

explored interactome and biological space become available.

Nevertheless, just as we were able to identify novel functions

for uncharacterized genes in Fe–S cluster binding, ribosome bio-

genesis and cell adhesion, we believe that this resource will enable

additional functional discoveries in E.coli, and, through orthol-

ogy mapping, in other experimentally and evolutionarily signifi-

cant uncharacterized bacterial species (Supplementary Table S7,

see SupplementaryMethods), including opportunistic pathogens.

Fig. 2. Novel factors involved in Fe-S assembly and ribosome biogenesis. (A) Subnetwork of non-essential proteins of unknown function (pink)

connecting the components of Fe-S (blue) cluster binding (i) based on SPD, Exp and other large-scale (ii) network sources. Growth profiles of wild

type (WT) and mutant strains in the absence or presence of sublethal concentration of indicated antibiotics, iron chelator and antioxidant (iii).

Tetracycline is used as control. Each data point represents the mean�SD (error bars) of three independent replicates (see Supplementary Table S5)

(Color version of this figure is available at Bioinformatics online.) (B) Subnetwork of ClpP (pink) is connected with the ribosome factors (blue) (i) based

on Exp and other genomic sources (ii). SDS-PAGE gels (iii) showing the degradation of ribosomal (r) S7 protein over time (h) after the addition of ClpX

to the mixture containing ClpP, casein kinase (CK), ribosomal S7 protein and ATP regeneration system (left), whereas no S7 degradation was observed

in the absence of ATP and ClpP over time (right, negative controls). Molecular masses (kDa) of marker proteins (M) by SDS-PAGE are shown
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