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Abstract

Discriminative models are used to analyze the differences between two classes and to identify 

class-specific patterns. Most of the existing discriminative models depend on using the entire 

feature space to compute the discriminative patterns for each class. Co-clustering has been 

proposed to capture the patterns that are correlated in a subset of features, but it cannot handle 

discriminative patterns in labeled datasets. In certain biological applications such as gene 

expression analysis, it is critical to consider the discriminative patterns that are correlated only in a 

subset of the feature space. The objective of this paper is two-fold: first, it presents an algorithm to 

efficiently find arbitrarily positioned co-clusters from complex data. Second, it extends this co-

clustering algorithm to discover discriminative co-clusters by incorporating the class information 

into the co-cluster search process. In addition, we also characterize the discriminative co-clusters 

and propose three novel measures that can be used to evaluate the performance of any 

discriminative subspace pattern mining algorithm. We evaluated the proposed algorithms on 

several synthetic and real gene expression datasets, and our experimental results showed that the 

proposed algorithms outperformed several existing algorithms available in the literature.
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1 Introduction

Discriminative models are used to extract patterns that are highly correlated in one class 

compared to another class. Mining such discriminative patterns can provide valuable 

knowledge toward understanding the differences between two classes and identifying class-

specific patterns. For example, discriminative mining of gene expression data can lead to the 

identification of cancer-associated genes by comparing the expression patterns of the genes 

between healthy and cancerous tissues [13]. However, these genes can be correlated only in 

a subset of the cancerous samples due to the heterogeneity in the sample space [27]. Since 

the existing discriminative models are based on using all the features to find the 

discriminative patterns, it is crucial to develop a model that can identify discriminative 

patterns that are correlated in a subset of the feature space.
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Co-clustering has been proposed to identify subsets of objects that are inter-related under 

subsets of features (co-clusters) [10], [16], [3], [27], [1]. However, co-clustering is an 

unsupervised procedure that does not consider the class labels to find the discriminative 

patterns in labeled datasets. In order to capture the subspace discriminative patterns (or 

discriminative co-clusters), discriminative co-clustering is being proposed in this paper by 

incorporating the class labels into the co-clustering process.

1.1 Co-clustering

Given a data matrix with two entities such as (genes, samples) in gene expression data [26], 

a subset of rows may be inter-related under a subset of columns forming blocks of 

substructures (or co-clusters) [14]. Applying traditional clustering techniques, such as k-

means and hierarchical clustering, will not capture such co-clusters [10], [16], [22], [4], [32]. 

However, co-clustering (or biclustering)1 has been proposed to simultaneously cluster both 

dimensions of a data matrix by utilizing the relationship between the two entities [10], [16], 

[26], [34], [27]. Co-clusters have several characteristics that should be considered in the 

search process. Here, we describe the important characteristics of the co-clusters in the gene 

expression domain. However, many of these characteristics are applicable to several other 

domains. 1. Arbitrarily positioned co-clusters. Due to the heterogeneity of the samples, a 

subset of genes can be correlated in any subset of the samples. Hence, the co-clusters can be 

arbitrarily positioned in the matrix [27]. 2. Overlapping. A gene can be involved in several 

biological pathways. Hence, that gene can belong to more than one co-cluster [27], [15]. 3. 
Positive and negative correlations. In a positive (negative) correlation, genes show similar 

(opposite) patterns [39]. 4. Noisy data. The expression data contains a huge amount of noise 

[23]. Hence, the co-clustering algorithms should be robust against noise.

Recently, the (κ, ℓ) co-clustering model has been proposed to simultaneously find κℓ co-

clusters [4], [15]. This model was shown to perform well in various applications [4], [15]. 

However, the main limitation of this model is that it assumes a grid structure comprised of 

κ×ℓ co-clusters as shown in Fig. 1(a). The assumption here is that the rows in each row 

cluster should be correlated under each of the ℓ column clusters. Such an assumption may 

not hold when a subset of rows is correlated in a limited subset of columns (or vice versa). 

To overcome this limitation, we propose a novel co-clustering algorithm that is able to 

identify arbitrarily positioned co-clusters as shown in Fig. 1(b). This algorithm is extended 

to efficiently find the discriminative co-clusters in the data.

1.2 Discriminative Co-clustering

Discriminative models aim to extract patterns that are differentially correlated between two 

classes [19]. Figure 2 shows the correlations between three objects in two classes. These 

objects are highly correlated in a subset of the features in class A, but they are not correlated 

in class B. Such discriminative patterns cannot be discovered using standard discriminative 

models that use all the features. In order to capture these patterns, discriminative co-

clustering is also being proposed in this paper.

1To be consistent, we will be using the term ‘co-clustering’ throughout the paper. The Bioinformatics research community preferably 
calls it as ‘biclustering’.
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In addition to the above mentioned characteristics of the co-clusters, the discriminative co-

clusters must possess the following characteristics: 1. High discriminative coherence. 

Coherence (or correlation) is a measure of similarity between a set of objects [27]. The 

discriminative co-clustering algorithms should identify the set of co-clusters with the 

maximum difference in the coherence between the two classes. The co-clusters that have the 

same correlation in both of the classes should be ignored. 2. Low inter-class overlapping. 

The discriminative co-clusters discovered in one class should have a minimal number of 

rows that are common with the co-clusters discovered in the other class. 3. High 
discriminative power. Incorporating the class labels can improve the performance of 

classification algorithms [21]. Discriminative co-clusters must be able to make more 

accurate predictions.

Example. Fig. 3 shows an example of discriminative and non-discriminative co-clusters. 

The width of each co-cluster (X) indicates the number of features in it, and its shade 

represents its correlation score, which is also displayed as a percentage inside each co-

cluster. The correlation score can be measured by various functions such as the mean-

squared residue (MSR) [10]. In this example, the higher the percentage (or the darker the 

shade), the stronger the correlation. The co-cluster properties (shade and width) are the main 

criteria used to distinguish between discriminative and non-discriminative co-clusters. A co-

cluster is considered as a discriminative co-cluster if it is correlated only in one class (such 

as X1 and X5.b), if it is highly correlated in one class and less correlated in the other class 

(such as X4) or if it is correlated in relatively higher percentage of features (such as X3 and 

X6). The co-clusters X2 and X5.a are not considered as discriminative co-clusters because 

they are similarly correlated in both classes.

Can any co-clustering algorithm be used to identify the discriminative co-
clusters?—A naive solution to this problem is to co-cluster each class separately and then 

identify the co-clusters that appear in only one class. However, there are many limitations in 

following such a procedure: (i) Standard co-clustering algorithms focus on identifying the 

most correlated co-clusters. Therefore, discriminative co-clusters that have low correlation 

score (such as X1 and X6) will not be discovered. (ii) Since the standard co-clustering 

algorithms do not detect all the co-clusters, it is possible that co-cluster X2 is discovered 

only in one class and considered as a discriminative co-cluster. (iii) Most co-clustering 

algorithms prefer large co-clusters. Therefore, the complete co-cluster X5 may be considered 

as a discriminative co-cluster because part a is not discovered in class B due to its size 

limitation. In this paper, we develop a novel algorithm that directly optimizes an objective 

function to efficiently identify the discriminative co-clusters, and we propose two metrics to 

score the discriminative co-clusters based on their correlation scores and the number of 

features in them.

1.3 Our Contributions

The primary contributions of this paper are as follows:

1. A novel co-clustering algorithm, Ranking-based Arbitrarily Positioned 

Overlapping Co-Clustering (RAPOCC), to efficiently extract significant co-

clusters.
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• Propose a novel ranking-based objective function to find arbitrarily 

positioned co-clusters.

• Extract large and overlapping co-clusters containing both positively and 

negatively correlated rows.

2. A novel discriminative co-clustering algorithm, Discriminative RAPOCC (Di-
RAPOCC), to efficiently extract the discriminative co-clusters from labeled 

datasets.

• Find the discriminative co-clusters from labeled datasets efficiently by 

incorporating the class information into the co-clustering process.

• Propose three new evaluation metrics to quantify the results of the 

discriminative co-clustering algorithms on both synthetic and real gene 

expression datasets. Two metrics are used to measure the discriminative 

coherence property of the discriminative co-clusters, and the third one 

measures the inter-class overlap property.

3. In addition to summarizing some of the widely used co-clustering algorithms, we 

categorize the state-of-the-art approaches for discriminative co-clustering and 

characterize each category. We also empirically compare the performance of these 

categories with the proposed algorithm.

The rest of this paper is organized as follows: Section 2 presents an overview of the related 

work. Section 3 introduces the coherence measure and formulates the problems of co-

clustering and discriminative co-clustering. Section 4 describes the RAPOCC algorithm. 

Section 5 presents the Di-RAPOCC algorithm. Section 6 presents the results of the proposed 

algorithms on synthetic and real datasets along with the comparisons with other algorithms 

available in the literature. Finally, we conclude our discussion in Section 7.

2 Related Work

In this section, we describe some of the widely-used co-clustering algorithms and categorize 

the state-of-the-art approaches for discriminative co-clustering.

2.1 Co-clustering Algorithms

Cheng and Church (CC) [10] proposed the first co-clustering algorithm that produces one 

co-cluster at a time. The obtained co-cluster is replaced with random numbers, which 

typically reduces the quality of the co-clusters. The Order-Preserving Submatrices (OPSM) 

algorithm [7] finds one co-cluster at a time in which the expression levels of all genes 

induce the same linear ordering of the experiments. This algorithm does not capture the 

negatively correlated genes. The Iterative Signature Algorithm (ISA) [22] defines a co-

cluster as a co-regulated set of genes under a set of experimental conditions. It starts from a 

set of randomly selected rows that are iteratively refined until they are mutually consistent. 

The Robust Overlapping Co-clustering (ROCC) algorithm [15] finds κ × ℓ co-clusters using 

the Bregman co-clustering algorithm [6]. This algorithm does not handle the negative 

correlations. Our proposed co-clustering algorithm overcomes all of the above limitations by 
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(i) capturing arbitrarily positioned co-clusters, (ii) handling overlapping and positive and 

negative correlations and (iii) being robust against noise.

2.2 Discriminative Co-clustering Algorithms

In general, the co-clustering algorithms work in an unsupervised manner. However, some 

algorithms incorporate a priori knowledge in the co-clustering process. For example, in 

constrained co-clustering, some information can be incorporated such as the must-link and 

cannot-link constraints [30], [36], [35]. In discriminative co-clustering, the class labels are 

incorporated to find class-specific co-clusters. As illustrated in Fig. 4, the existing 

discriminative co-clustering approaches can be categorized as two-step or one-step 

approaches.

2.2.1 Two-step approaches—There are two sub-categories of these approaches: (i) first 

co-clustering, and then discriminative analysis. In [29], differentially expressed gene 

modules are identified by applying co-clustering each class separately, then the identified 

co-clusters are ranked based on their discrimination between the two classes. (ii) first 

discriminative analysis, and then co-clustering. The DeBi algorithm [33] uses two steps to 

identify differentially expressed co-clusters. The first step is to find the up or the down 

regulated genes using fold change analysis. In the second step, the MAFIA algorithm [8] is 

used to find the co-clusters from the up-regulation and the down-regulation data. There are 

two limitations for the two-step approaches: (i) the co-clustering is done for each class 

separately, and (ii) the discriminative analysis step is independent of the co-clustering step. 

Therefore, the one-step approaches have been proposed to overcome these limitations.

2.2.2 One-step approaches—The subspace differential co-expression (SDC) algorithm 

[18] uses the Apriori search algorithm to identify the discriminative patterns. The Apriori 

approach depends on using thresholds to define the discriminative patterns [19]. For 

example, a given pattern is considered as a discriminative pattern if the difference between 

the correlations of this pattern in the two classes is above a fixed threshold. Otherwise, this 

pattern will be split into smaller patterns to be tested again using the same threshold. 

Therefore, the SDC method suffers from the following limitations: (i) It generates very small 

patterns [18]. (ii) The number of the discovered patterns dramatically grows with the size of 

the datasets, and it significantly varies with the threshold value [19]. (iii) It has 

computational efficiency problems and does not scale well to large-scale datasets. In 

addition, the SDC method does not identify the subset of columns in which a given pattern 

shows the maximum correlation. In our previous work [28], we proposed a discriminative 

co-clustering algorithm to analyze the differences in the biological activities of several genes 

between two classes. Although this algorithm generated large co-clusters compared to the 

SDC method, this algorithm does not scale to large datasets because it maintains, for each 

pair of rows (genes), the set of columns under which the two rows are differentially 

correlated. Recently, locally discriminative co-clustering was proposed in [40] to explore the 

inter-sample and inter-feature relationships, but it does not find discriminative co-clusters as 

defined in our paper. To overcome all of the above limitations of the existing approaches, 

we propose a novel discriminative co-clustering algorithm that directly optimizes an 

objective function to efficiently identify the discriminative co-clusters from a given labeled 
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dataset. It should be noted that we primarily focus on co-clusters in our work rather than 

other concepts such as emerging patterns or contrast set patterns [17]. While we 

acknowledge the fact that these approaches are generic and probably can be modified for our 

problem, we emphasize that there is no existing work in the area of discriminative co-

clustering and hence this is an exciting direction of future research.

3 Preliminaries

In this section, we introduce the coherence measure that can be used to measure the quality 

of the co-clusters, and we formulate the problems of co-clustering and discriminative co-

clustering. The notations used in this paper are described in Table 1.

3.1 Measuring the Coherence of Co-clusters

Coherence is a measure of how similar a set of gene expression profiles are. Cheng and 

Church proposed the mean-squared residue (MSR) score as a measure of coherence [10]. 

Since the the overall shapes of gene expression profiles are of greater interest than the 

individual magnitudes of each feature [23], we normalize the expression values of each gene 

to be between 0 and 1. As a result, the value of the objective function will also be bounded 

between 0 and 1.

Definition 1. (Coherence measure H)—The coherence of a co-cluster X of |I| rows and 

|J| columns is measured as

where Xij is the value in row i and column j in co-cluster X,  is the row mean, 

 is the column mean and  is the overall mean of X.

Using Definition 1, a perfect co-cluster will have a score = 1. Given two rows (x and y) and 

J columns, the coherence measure can be re-written as follows:

(1)

where x̄ and ȳ represent the mean of the values for the rows x and y, respectively. An 

optimal co-cluster has a value of H(X) = 1, which results from the case where (xj − x̄) = (yj − 

ȳ), ∀j ∈ J. This type of correlation is positive (h+(x, y, J)). In the negative correlation, the 

rows have opposite patterns (i.e. the two negatively correlated rows will get a perfect score 
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when (xj − x̄) = −(yj − ȳ) ∀j ∈ J). Figure 5 shows an example these correlations. In a positive 

correlation, genes show similar patterns while in a negative correlation, genes show opposite 

patterns. The positive and negative correlations are defined in Definition 2.

Definition 2. (Positive and negative correlations)—Given two rows (x and y) and J 

columns, the positive correlation between them is defined as

and the negative correlation is defined as

Definition 3. (Pairs-based Coherence HP)—Given a co-cluster X of |I| rows and |J| 

columns, the coherence of this co-cluster is measured based on all the pairs in X:

where o ∈ {−, +}.

The type of correlations between any two rows, referred to as o in Definition 3, is 

maintained for each pair of rows in each co-cluster in the proposed algorithms.

3.2 Problem Formulations

Here, we formally define the problems of co-clustering and discriminative co-clustering.

Definition 4. (Co-clustering)—Let D ∈ ℝM×N denote a data matrix; the goal of co-

clustering is to find a row mapping (ρ) that maps the rows to the κ row clusters and a 

column mapping (γ) that maps the columns to the ℓ column clusters

such that the coherence of the top-K co-clusters is maximized.
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The problem of finding the co-clusters is an NP-hard problem [10]. In this paper, we 

propose a novel co-clustering algorithm to efficiently find arbitrarily positioned co-clusters 

from a given data matrix.

Definition 5. (Discriminative Co-clustering)—If HPA(Xi) measures the coherence of 

the co-cluster Xi in class A, the goal is to find the set of co-clusters that has maximal 

discriminative coherence

where ψA(Xi) (ψB(Xi)) is the maximum coherence of any subset of the objects in Xi in class A 

(B). The challenge here is to find ψ(Xi), which is similar to the NP-hard problem of finding 

the maximum subspace in Xi [10]. In the proposed discriminative co-clustering algorithm, 

we propose two approximations for computing ψ(Xi) that can be used to efficiently discover 

discriminative co-clusters by incorporating the class labels into the co-clusters discovery 

process.

4 The Proposed RAPOCC Algorithm

In this Section, we describe the RAPOCC algorithm. This algorithm is proposed to 

efficiently extract the most coherent and large co-clusters that are arbitrarily positioned in 

the data matrix. These co-clusters can overlap and have positively and negatively correlated 

rows.

4.1 Ranking-based Objective Function

In the proposed iterative algorithm, the score of each of the κℓ co-clusters is computed at 

each iteration, and the overall value of the objective function is computed based on the 

coherence score of the top-K scores where K is the number of optimized co-clusters (1 ≤ K ≤ 

κ ≤ ℓ).
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The set of the top-K co-clusters can be any subset of the κ * ℓ co-clusters. The objective 

function will be computed for each possible change in the row/column mapping to maintain 

non-decreasing values for the objective function. The advantage of using this objective 

function is that it allows the discovery of arbitrarily positioned co-clusters as shown in Fig. 

1(b).

4.2 The RAPOCC Algorithm

The main steps of the RAPOCC algorithm are shown in Fig. 6. The algorithm starts with a 

two-dimensional matrix (objects × features) as an input. In the first step, Fig 6(b), a divisive 

approach is used for initialization. Basically, it starts with all the rows and columns in one 

co-cluster; then the algorithm splits the co-cluster with the largest error. This iterative 

procedure continues until κ row clusters and ℓ column clusters are obtained. The core co-

clustering step, Fig. 6(c), finds the optimal row and column clusterings (ρ, γ). In the third 

step, Fig. 6(d), similar co-clusters are merged using a hierarchical agglomerative approach. 

In this step, more rows and columns are added to each co-cluster individually. Finally, a 

pruning step is used to prune the co-clusters with low coherence scores. These steps are 

described in Algorithm 1. In this algorithm, H(u, v) and HP (u, v) indicate the coherence of 

the co-cluster formed by the row cluster u and column cluster v. The inputs to this algorithm 

include the data matrix D ∈ ℝM×N, the number of row clusters κ and the number of column 

clusters ℓ. These are common parameters in the co-clustering methods [15], and they can be 

set based on the size of the data matrix. K determines the number of the optimized co-

clusters and can be set to any value between 1 and κ × ℓ. We set the parameters κ=5 and 

ℓ=3. The parameter K can be set to large value (we set it to 20 in our implementation) 

because the RAPOCC algorithm will only report the most coherent co-clusters, and the 

remaining ones will be pruned in the last step. In addition, we had a threshold that indicates 

that the minimum number of rows in a co-cluster to be 20 and the minimum number of 

columns in

Algorithm 1

RAPOCC(D,κ, ℓ,K)

1: Input: Data matrix (D)

     No. of row clusters (κ)

     No. of column clusters (ℓ)

     No. of optimized co-clusters (K)

2: Output:: A set of K co-clusters ({X})

3: Procedure:

4: Step 1 : initialization

5: i ← 1, j ← 1

6: ρ(g) ← i, ∀ g 1
m

7: γ(c) ← j, ∀ c 1
n

8: while i < κ or j < ℓ do

9:  if i < κ then
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10:   i ← i + 1

11:   α ← arg minα∑ j=1
ℓ H ′(u, v) : ρ(u) = α, γ(v) = l

12:   Partition α using bisecting clustering algorithm

13:  end if

14:  if j < ℓ then

15:   j ← j + 1

16:   β ← arg minβ∑i=1
κ H ′(u, v) : ρ(u) = i, γ(v) = β

17:   Partition β using bisecting clustering algorithm

18:  end if

19: end while

20: Step 2 : core co_clustering

21: repeat

22:  / * Row clustering * /

23:  for a = 1 : M do

24:   ρ(a) = arg maxu∈{−κ,…,−1,0,1,…,κ} HP(ρ(a) = u, γ)

25:  end for

26:  / * Column clustering * /

27:  for b = 1 : N do

28:   γ(b) = arg maxb∈{0,1,…,ℓ} HP(ρ, γ(b) = v)

29:  end for

30: until convergence

31: Step 3 : Merging similar co_clusters and refinement

32: Step 4 : Pruning

a co-cluster to be 5. This is chosen because in biological problems, the number of conditions 

are usually far less compared to the number of genes.

Step 1: Initialization—Inspired by the bisecting K-means clustering technique [37], we 

use a deterministic algorithm for the initialization. Each row is mapped to one of the κ 

clusters, and each column is mapped to one of the ℓ clusters, resulting in a checkerboard 

structure κ × ℓ as shown in Fig. 6(b). The initialization algorithm is a divisive algorithm that 

starts with the complete data assigned to one cluster as described in Algorithm 1 (lines 5-7).; 

then, the following steps are repeated until the desired number of row clusters is obtained. 

(1) Find the row cluster with the lowest coherence score (αmin). (2) Find the two rows in 

αmin with the lowest correlation (r1, r2). (3) Create two new row clusters α1 and α2. Add r1 

to α1 and r2 to α2. (4) Add each of the remaining rows in αmin to α1 (α2) if it is more 

correlated to r1 (r2). The column clusters are initialized in the same manner. The algorithm 

alternates between clustering the rows and the columns as described in Algorithm 1 (lines 

8-19).

Step 2: Core Co-clustering (ρ, γ)—This step finds the optimal row and column 

clusterings (ρ, γ) as shown in Fig. 6(c). To update ρ, each row (ri) is considered for one of 

the following three actions as described in Algorithm 1 (lines 20-30):
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• Exclude ri from any row cluster by setting ρ to 0.

• Find the best row cluster to include ri as a positively correlated row {1, 2, .., κ}.

• Find the best row cluster to include ri as a negatively correlated row {−κ, …, −2, 

−1}.

The objective function is computed for each possible action, and the action to be carried out 

is the one corresponding to the maximum value of the three objective function values. 

Within each co-cluster, there is a sign vector that determines the type of correlation (positive 

or negative) of each row. Therefore, a row can be positively correlated in some of the co-

clusters and negatively correlated in other co-clusters. The column mapping (γ) is calculated 

in a similar manner, but there is no consideration for negatively correlated columns. 

Following this strategy, the value of the objective function is monotonically increasing, and 

the convergence is guaranteed as shown in Theorem 1. After convergence, the result will be 

a non-overlapping set of co-clusters.

Theorem 1. The Algorithm RAPOCC (Algorithm 4) converges to a solution that is a local 

optimum.

Proof: From Definition 3, the coherence measure HP is bounded between 0 and 1. Hence, 

the objective function given in Definition 4 is bounded. Algorithm 4 iteratively performs a 

set of update operations for the row clustering and the column clustering. In each iteration, it 

monotonically increases the objective function. Since this objective function is bounded for 

the top-K co-clusters, the algorithm is guaranteed to converge to a locally optimal solution.

Step 3: Merging the Co-clusters—The top-K co-clusters with the maximum coherence 

are retained from the previous step. In this step, similar co-clusters are merged as shown in 

Fig. 6(d) using an agglomerative clustering approach. Before merging, the co-clusters with 

the lowest scores are pruned. If there is no pre-determined threshold for pruning the co-

clusters, the top η co-clusters will be retained, and the remaining co-clusters will be pruned. 

The similarity between any two co-clusters is defined using the coherence function of the 

union of the rows and columns of the co-clusters, and the merging is performed following an 

agglomerative clustering approach. The two most similar co-clusters are merged in each 

iteration. The goal of this step is two-fold: (i) it allows the discovery of large co-clusters, 

and (ii) it allows for overlapping co-clusters. In this step, the algorithm also adds more rows 

and columns to each co-cluster individually to obtain larger co-clusters and also allows for 

overlapping co-clusters. Hence, the same row/column can be added to several co-clusters.

Step 4: Pruning—In this step, we prune the co-clusters with the lowest coherence scores. 

To determine which co-clusters to prune, (i) sort the co-clusters based on their coherence 

(measured by HP), (ii) compute the difference between the consecutive scores and (iii) 

report the set of co-clusters just before the largest difference, and prune the remaining co-

clusters. The time complexity of the RAPOCC algorithm is O (κ.ℓ(max(MN2, NM2))).

We now extend the RAPOCC algorithm to discover discriminative co-clusters from labeled 

datasets that has two classes. First, rather than looking at κ × ℓ co-clusters, we will search 

for KA × 1 and KB × 1 co-clusters. Second, the initialization step and the objective functions 
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are changed to consider the two-classes problem. The core co-clustering, merging, 

refinement and pruning steps will be used with some modifications. The positive and 

negative correlations will be handled similarly.

5 The Proposed Di-RAPOCC Algorithm

Discriminative co-clustering aims to extract patterns that are highly correlated in a subset of 

the features in one class but not correlated in the other class. As illustrated in Fig. 3., the 

rows of a discriminative co-cluster in one class should not form a co-cluster in the other 

class. This implies that there are two tasks that should be performed simultaneously: (i) 

search for a co-cluster in one class, and (ii) find the coherence of the rows of the co-cluster 

in the other class (ψA(X) or ψB(X) in Definition 5). The challenge is to compute ψB(X) 

(ψA(X)) while searching for the co-cluster in class A (B).

Consider XA as a co-cluster in class A that has |I| rows and |JA| columns, and consider 

DB(I, .) as the sub-matrix composed of the I rows and all the columns in class B. XA will be 

considered as a discriminative co-cluster if there are no co-clusters in DB(I, .). An optimal 

solution for this would be to apply a co-clustering algorithm to find the maximal co-cluster 

in class DB(I, .). However, this is an NP-hard problem [10].

An alternative solution to this problem is to consider the correlations of each pair of rows in 

DB(I, .). Given two rows (x and y) in DB(I, .), the aim is to find the subset of columns where 

the coherence between the two rows is maximized. To find an exact solution, one should 

enumerate all possible subsets of the |NB| columns. However, this solution is 

computationally infeasible since it requires enumerating all the 2|NB| subsets, where NB is the 

number of columns in class B. To avoid such an exhaustive enumeration, we propose two 

efficient solutions: (i) a greedy-columns-selection solution and (ii) a clustering-based 

solution. Table 2 demonstrates a running example to illustrate how these solutions work.

5.1 Greedy-Columns-Selection

The intuition behind this measure is to iteratively compute the coherence between x and y 

based on the best Ji sets of columns for 1 ≤ Ji ≤ NB and then report a weighted average of 

these NB computations. In the first iteration, all the NB columns are used. In the second 

iteration, one of the columns (j) is removed, and the remaining NB − 1 columns are used to 

compute the coherence between the two rows. These are the set of NB − 1 columns that 

achieves the maximum coherence between the two rows. This will be repeated to compute 

the coherence of the two rows using the best NB − 2, NB − 3, …, 1 columns. The final value 

of this measure is a weighted average of {h(x, y, J1), …, h(x, y, JNB
)}:
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|Ji|/NB is the weight assigned to each set of columns such that larger sets of columns are 

assigned more weight than smaller sets of columns. This measure can be used to capture the 

negative correlations by applying h−(x, y, J) instead of h+(x, y, J). Since no prior knowledge 

about the correlations between the rows is used, hG will be computed twice, and the final 

value for this measure hG(x, y) is computed as the maximum of

Finally,  is computed as:

As an example, Table 3 shows the results of applying hG on the x and y rows in Table 2. 

From this table, it should be noted that the two rows form a perfect co-cluster in the columns 

{c1, c4, c6, c7, c9}. Fig. 7(a) shows a plot for all the three rows in all the columns, and Fig. 

7(b) shows a plot for all the three rows in the identified subset of the columns. Based on the 

greedy-columns-selection method, the first proposed discriminative coherence measure is 

defined as follows:

The range of  and  is (−1, 1).

5.2 Clustering-based Discretization

The goal of the discretization step is to create a new representation of the data using a 

standard one-dimensional clustering algorithm to cluster each row separately. We rank the 

clusters in each row, and each value in a row will be represented by the rank of the cluster it 

belongs to. After clustering, we estimate the coherence between any two rows using the new 

representation.

The intuition of using clustering is to guarantee that similar data points within each row will 

be represented by the same value. The basic idea is as follows: (i) Cluster the values of each 

row to c clusters. (ii) Rank the clusters based on the mean of the values of each cluster such 

that cluster 1 contains the lowest values in x, and cluster c contains the highest values in x. 

(iii) Map each value of x to the rank of the cluster the value belongs to.
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As shown in Section 3, the positive correlation between two rows is defined as (xj − x̄) = (yj 

− ȳ) and the negative correlation between them is defined as (xj − x̄) = −(yj − ȳ). Using the 

new representation, the positive correlation can be represented as

where s+ is the positive shift parameter. Since ζ(xj) and ζ(yj) can take any value between 1 

and c, the shift parameter (s+) can take any value from the following set: {−(c − 1), …, −1, 

0, 1, …, c − 1}. Similarly, the negative correlation can be represented as

where s− is the negative shift parameter that can take any value from the following set: {2, 3, 

…, 2c}. Now, we can efficiently estimate the correlation between any two rows by finding 

the values of s+ and s− which will have a finite number of possible values. To estimate the 

positive correlation between x and y, we will subtract ζ(xj) from ζ(yj), and the most frequent 

value that appears in many columns will be considered as the value for s+. Similarly, to 

estimate the negative correlation between x and y, we will add ζ(xj) to ζ(yj), and the most 

frequent value that appears in many columns will be considered as the value for s−. To 

determine if the two rows are positively or negatively correlated, we compare the number of 

columns in which the two rows are considered positively correlated to the number of 

columns in which the two rows are considered negatively correlated.

If |JC+| ≥ |JC−|, x and y are considered positively correlated, and their coherence is computed 

as , else, x and y are considered negatively correlated, and 

their coherence is computed as . Finally,  in class B can 

be computed as
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To illustrate how this measure works, Table 4 shows the results of clustering each row in 

Table 2 (Here we used k-means, k=3. However, any other clustering algorithm can be used). 

The values in this table are the rankings of the clusters. For example, 1 indicates the cluster 

that has the lowest values in the corresponding row, and 3 indicates the cluster that has the 

maximum value. As an example, consider the first two rows. Subtracting ζ(x) from ζ(y) 

yields the following:

This means that the maximum positive correlation between x and y is in 5 columns {c1, c4, 

c6, c7, c9} with s+ = 0, while adding ζ(x) to ζ(y) yields

This means that the maximum negative correlation between x and y is in 3 columns: {2, 4, 

5} with s− = 4 or {c3, c8, c10} with s− = 5). Hence, the coherence between x and y is 

computed as follows:

As another example, the last two rows (y and z) are negatively correlated in the same set of 

columns:

The results here are similar to those obtained using hG in terms of the set of columns in 

which the two rows have the maximum coherence, which is {c1, c4, c6, c7, c9}. Based on the 

clustering-based discretization method, the second proposed discriminative coherence 

measures is defined as follows:

Similar to  and , the range of  and  is (−1, 1). Our preliminary results showed 

that ψC and ψG produced very similar results on some of the simulated datasets. Since the 

computation of ψC is much faster than the computation of ψG, ψC is implemented in the 

proposed discriminative co-clustering algorithm. However, both measures will be used for 

evaluation purposes to quantify the resulting discriminative co-clusters using the proposed 

and the existing algorithms.

The Di-RAPOCC algorithm, described in Algorithm 2, optimizes for the following objective 

function in order to extract the discriminative co-clusters.
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Definition 6. (Discriminative Objective Function) To obtain the top-KA discriminative co-

clusters from class A, the objective function can be written as: 

 where . To obtain 

the top-KB discriminative co-clusters from class B, the objective function be can written as: 

 where .

5.3 The Di-RAPOCC Algorithm

We will now explain the different steps of the proposed Di-RAPOCC algorithm.

Step 1: Initialize the KA and KB co-clusters—First, we compute  and  for all 

pairs of rows. This step is preceded by clustering the values of each class. The clustering is 

only used to identify the set of columns in which two rows have the maximum correlation, 

and the original values will be used in all the steps. Hence, there is no loss of information in 

this step. Then, we define  as follows:

Similarly, we can also define . These will be used to identify KA groups of rows, SA, 

to be used as the seeds for the co-clusters (lines 7-12). For our experiments, we chose to 

have the values of both KA and KB equal to 5. If α is the minimum number of rows in any 

co-cluster (which is set to 3 in our experiments), the candidate set for each row Rx is 

computed as follows:

(2)

From all of the M candidate sets (since there are M rows in the data matrix, each row will be 

a candidate to be considered as a seed for a co-cluster), the top-KA sets are used as the initial 

co-clusters for each class.

(3)

Similarly, RB and SB will be computed for class B. Regarding the columns, all of them will 

be included in each co-cluster in the initialization.

Step 2: Updating the row/column clusterings—This is an iterative step in which we 

consider each row/column to be added/deleted from each co-cluster (lines 13-27). For each 

row, there are three possible assignments {−1, 0, 1}: 1 (−1) indicates adding the row to the 

co-cluster as positively (negatively) correlated, and 0 indicates removing the row from the 

corresponding co-cluster. The assignments of the columns do not consider a negative 
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correlation since the definition of negative correlation only comes from the rows. The same 

row (or column) is allowed to be included in more than one co-cluster in this step. Similar to 

the RAPOCC algorithm, the convergence of the Di-RAPOCC algorithm is guaranteed since 

the maintained objective function is bounded and optimized to be monotonically increasing.

Algorithm 2

Di-RAPOCC(D, K, α)

1: Input: Data matrix (D)

     No. of co-clusters (KA and KB)

     Minimum No. of rows in any co-cluster (α)

2: Output:: Two sets of discriminative co-clusters ({XA}, {XB})

3: Procedure:

4: Step 1: Compute δC for all the rows

5: ∀ x, y ∈ {I } δC
A ← h C

A(x, y) − h C
B(x, y)

6: ∀ x, y ∈ {I } δC
B ← h C

B(x, y) − h C
A(x, y)

7: Initialize each of the K co-clusters for each class

8: Compute SA and SB as defined in Equation (3)
 / * Initialize rows and columns of each co-cluster * /

9: for k = 1 : K do

10:  ∀
m∈Sk

A Xk
A.r(m) = 1, ∀

n∈N A Xk
A.c(n) = 1

11:  ∀
m∈Sk

B Xk
B.r(m) = 1, ∀

n∈N B Xk
B.c(n) = 1

12: end for

13: Step 2: Update the row and the column clusterings

14: repeat

15:  for k = 1 : K do

16:   for i = 1 : M do

17:    Xk
A.r(i) = arg maxu∈{−1,0,1} Φ(Xk

A.r(i) = u)
18:    Xk

B.r(i) = arg maxu∈{−1,0,1} Φ(Xk
B.r(i) = u)

19:   end for

20:   for j = 1 : NA do

21:    Xk
A.c( j) = arg maxv∈{0,1} Φ(Xk

A.c( j) = v)
22:   end for

23:   for j = 1 : NB do

24:    Xk
B.c( j) = arg maxv∈{0,1} Φ(Xk

B.c( j) = v)
25:   end for

26:  end for

27: until convergence
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28: Step 3: Merging similar co-clusters.

29: Step 4: Pruning.

Step 3: Merging the Co-clusters—Similar to the RAPOCC algorithm, the goal of this 

step is to merge similar co-clusters using an agglomerative clustering approach. The two 

most similar co-clusters, within the same class, are merged in each iteration. This step 

allows the discovery of large discriminative co-clusters, and it allows intra-class 
overlapping co-clusters.

Step 4: Pruning—In this step, we prune the co-clusters with the lowest discriminative 

scores. To determine which co-clusters to prune, (i) sort the co-clusters based on ΦA(X), in 

class A and ΦB(X), in class B, (ii) compute the difference between the consecutive scores and 

(iii) report the set of co-clusters just before the largest difference, and prune the remaining 

co-clusters.

6 The Experimental Results

To demonstrate the effectiveness of the proposed algorithms, several experiments were 

conducted using both synthetic and real-world gene expression datasets.

6.1 Experimental Setup

6.1.1 Datastes—For the synthetic datasets, a set of co-clusters were implanted in 

randomly generated datasets using the shifting and scaling patterns [39]. Given two rows, x 

and y, their relationship can be represented as:

where sshift and sscale are the shifting and scaling parameters. The sign of sshift determines 

the correlation type: if sshift > 0, then x and y are positively correlated, and if sshift < 0, then x 

and y are negatively correlated [39]. In addition, two types of synthetic datasets were used, 

one without noise and the other with Gaussian noise. For the real-world datasets, we used 

eight expression datasets in the co-clustering experiments as described in Table 5. In the 

discriminative co-clustering experiments, we only used the first four datasets in Table 5 

since each of these datasets has two distinct classes of biological samples.

6.1.2 Comparisons with existing methods—In the co-clustering experiments, we 

compared the results of the RAPOCC algorithm against the CC [10], the OPSM [7], the ISA 

[22] and the ROCC [15] algorithms. We used BiCAT software (http://www.tik.ethz.ch/sop/

bicat/) to run CC, ISA and OPSM algorithms using the default parameters. The code for the 

ROCC was obtained from the authors of [15]. In the discriminative co-clustering 

experiments, we compared the results of the Di-RAPOCC algorithm against the SDC 

algorithm [18] and the OPSM algorithm [7]. The OPSM algorithm is not a discriminative co-

clustering algorithm. Therefore, we used the following procedure: (i) Apply OPSM on each 

class separately, (ii) compute the inter-class overlap, (iii) remove the co-clusters that have 
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inter-class overlap ≥ 50%, and (iv) report the remaining co-clusters. We refer to this 

modified algorithm as Discriminative OPSM (Di-OPSM). The SDC algorithm takes as input 

three parameters (SDC, r, minpattsize) [18], which were set to the default values: (0.2, 0.2, 

3) unless otherwise stated.

6.1.3 Evaluation Measures—Several measures were used such as the number of co-
clusters, the average size and the average coherence of the co-clusters computed using 

Definition 3. We also used the recovery and relevance measures as defined in [31]. 

Recovery determines how well each of the implanted co-clusters is discovered, and 

relevance is the extent to which the generated co-clusters represent the implanted co-

clusters. Given a set of implanted co-clusters denoted by Yimp and a set of co-clusters 

obtained by an algorithm denoted by Xres, the recovery and the relevance can defined as 

follows:

In addition, we used the following proposed metrics to evaluate the results of the 

discriminative co-clustering:

• Greedy-based discriminative coherence (ΔG)

• Clustering-based discriminative coherence (ΔC)

• Inter-class overlap. If XA (XB) is the set of discriminative co-clusters in class A 

(B), the inter-class overlap is defined as the average of:

where the union and intersection operations are computed using the rows in the co-

clusters.
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6.1.4 Biological Evaluation—The biological significance was estimated by calculating 

the p-values using the DAVID tool (http://david.abcc.ncifcrf.gov/) to test if a given co-

cluster is enriched with genes from a particular category to a greater extent than would be 

expected by chance [24]. The range of the p-values is from 0 to 1. Lower p-values indicate 

biological significance [11].

6.2 Co-clustering Results

In this subsection, we present the results for the co-clustering experiments.

6.2.1 Results on Synthetic Data—Two types of datasets were used, one without noise 

and one with 10% noise. The size of each synthetic dataset is 200 × 150. Two co-clusters 

were implanted in each dataset, and the size of each co-cluster is 50 × 50. As shown in Fig. 

8, the RAPOCC algorithm outperformed the other algorithms because it optimizes for high-

quality co-clusters. As a result, fewer random data points are added to the co-clusters 

obtained by our algorithm.

6.2.2 Results on Real Gene Expression Data—Fig. 9 shows two co-clusters obtained 

by the proposed algorithm. The first co-cluster contains positively correlated genes, while 

the second co-cluster contains both types of correlations. The results of the five co-

clustering methods on the eight datasets are shown in Table 6 and summarized in the 

following observations:

• Coherence of the co-clusters. The RAPOCC algorithm outperformed all the other 

algorithms on all the datasets. The OPSM and the ROCC algorithms performed 

better than the CC and the ISA algorithms. These results confirmed one of our 

initial claims that the proposed RAPOCC algorithm was designed to identify high-

quality co-clusters.

• Size of the co-clusters. Except for the Leukemia dataset, the RAPOCC produced 

either the largest or the second largest co-clusters in all the datasets. The OPSM 

and the RAPOCC algorithms produced the largest co-clusters in four datasets and 

three datasets, respectively.

• Number of the co-clusters. The ROCC algorithm produced the largest number of 

co-clusters in all of the datasets. However, we observed that, in most of the cases, 

the co-clusters generated by this algorithm were either duplicates, subsets of each 

other or highly overlapping. On the other hand, the ISA algorithm did not produce 

any co-cluster for three datasets: Leukemia, Cho yeast and Causton yeast.

• Biological significance of the co-clusters. Fig. 10 shows the average of the 

percentages of the biologically significant co-clusters using the DAVID tool from 

all the eight gene expression datasets. As shown in this figure, our proposed 

algorithm outperformed all other algorithms.

Overall, the proposed algorithm produced the higher quality, more biologically significant 

and relatively larger co-clusters compared to the other algorithm. Furthermore, the RAPOCC 

algorithm is more robust to noise.
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6.3 Discriminative Co-clustering Results

In this subsection, we present the results for discriminative co-clustering experiments. Due 

to space limitations, in some of the tables we used OPM and RPC to refer to Di-OPSM and 

Di-RAPOCC algorithms, respectively.

6.3.1 Results on Synthetic Data—Using the shifting-and-scaling model [39], four co-

clusters were generated of the size 10×10. Half of those co-clusters were designed to be 

discriminative, while the remaining co-clusters were common in both classes. The structure 

of the synthetic datasets is similar to the structure shown in Fig. 3. In the first experiment, 

we implanted the synthetic co-clusters in random matrices of different sizes given by s × 20, 

where s = (50, 100, 300, 500). Fig. 11 shows the relevance and recovery results of SDC, Di-

OPSM and Di-RAPOCC co-clustering algorithms when applied to the synthetic datasets. 

The noise level, η, in this set of experiments is 0. The proposed algorithm outperformed 

other algorithms indicating that the proposed algorithm is capable of identifying the 

discriminative co-clusters. Since Di-OPSM was not directly designed to extract 

discriminative co-clusters, the identified co-clusters include both discriminative and non-

discriminative co-clusters. The poor performance of the SDC algorithm can be explained by 

two main reasons. (i) SDC generates too many patterns as shown in Table 7. As the size of 

the dataset increases, the number of the generated patterns generated by the SDC algorithm 

increases dramatically. (ii) The SDC algorithm generates very small patterns (average of 3 

rows per pattern). On the other hand, the Di-RAPOCC algorithm prunes any non-

discriminative co-cluster.

In the second experiment, different levels of noise were used, which are 0, 5%, 10%, 15% 

and 20%, respectively, to the synthetic dataset of size 100 × 20. Fig. 12 shows the recovery 

and the relevance of the three algorithms. As the noise level increases in the dataset, the 

relevance and the recovery values are degraded. However, our algorithm is still the 

algorithm most robust to noise due to the use of a clustering approach to estimate the 

coherence of any co-cluster. Table 8 shows the average results of the discriminative 

measurements ΔG and ΔC for all the different synthetic datasets. Unsurprisingly, our 

algorithm achieved the best results in all the datasets because it primarily focuses on 

identifying the most discriminative co-clusters in the search process. Fig. 13 shows the inter-

class overlap on synthetic datasets. The Di-RAPOCC algorithm achieved the best results 

because it avoids common patterns in both of the classes.

6.3.2 Results on Real Gene Expression Data—The SDC algorithm was applied on 

the Medulloblastoma and the Scleroderma datasets with the parameters values set to (0.3, 

0.3, 3) to avoid out of memory problems. For the Leukemia datasets, out of memory errors 

occurred for different combinations of the parameters; therefore, there are no results for this 

dataset. As shown in Table 9, the Di-RAPOCC algorithm achieved the best results in terms 

of the discriminative coherence measures (ΔG and ΔC). The results were also analyzed in 

terms of the number of co-clusters, the inter-class overlap and the average coherence as 

shown in Table 10. The coherence measure cannot be applied to the results of the SDC 

algorithm because it does not report the columns in which a set of rows is correlated. Here, 

we make some remarks regarding the performance of the three algorithms.
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• The SDC algorithm tends to produce a large number of small patterns. Since the 

SDC algorithm uses the Apriori approach, it has some computational efficiency 

problems, and the number of the discovered patterns grows dramatically with larger 

datasets.

• The Di-OPSM algorithm tends to produce co-clusters that are too large. Therefore, 

it does not give good results in terms of the coherence, inter-class overlap and 

discriminative measures. Since it is not a discriminative co-clustering algorithm, 

we have to run it on each class independently.

• The Di-RAPOCC algorithm keeps the top discriminative co-clusters and prunes 

the other co-clusters, and it works well on noisy and large datasets.

Fig. 14 shows the biological evaluation of the results. The SDC algorithm was excluded 

from this analysis because it produced too many patterns. The Di-RAPOCC algorithm 

outperformed the Di-OPSM algorithm in three datasets, while OPSM was better in the 

Leukemia dataset. However, for this dataset, Di-RAPOCC outperformed Di-OPSM in terms 

of the inter-class overlap, the coherence and the discriminative coherence measures. In a 

different analysis, we found several significant biological pathways that were enriched in the 

co-clusters produced by the proposed algorithm. For example, the MAPK signaling pathway 

which has a p-value = 4.77E − 12 was reported as an up-regulated pathway in the metastatic 

tumors that is very relevant to the study of metastatic disease [25]. The summary of 

comparisons between the three algorithms is shown in Table 11.

6.3.3 Discussion—We will now describe how the proposed model can overcome the 

limitations of the existing methods and can obtain the discriminative co-clusters that have all 

the desired characteristics mentioned earlier. (i) The proposed model incorporates the class 

label within each iteration step while optimizing the objective function. This will ensure to 

yield patterns with the maximum discriminative coherence and discriminative power. In 

addition, since ψ is computed for each feasible pair in both the classes, the model will 

generate patterns with minimum inter-class overlap. (ii) The proposed model will generate 

larger patterns compared to the SDC and other algorithms. This will be achieved by the 

update operations in which each row/column will be considered to be added to each pattern 

in each class. (iii) The pruning step will keep only the relevant patterns and remove the 

irrelevant ones. This will overcome the limitation of the SDC algorithm which generates too 

many unnecessary patterns. (iv) The efficient use of the clustering-based measure ψC for 

approximating the optimization criteria makes the proposed model an order of magnitude 

faster than the previous algorithms. (v) The proposed algorithm allows the patterns to share 

some columns (or conditions). This intra-class overlap is an important property of subspace 

patterns as described earlier.

7 Conclusion

In this paper, we presented a novel algorithm for discovering arbitrarily positioned co-

clusters, and we extended this algorithm to discover discriminative co-clusters by integrating 

the class label in the co-clustering discovery process. Both of the proposed algorithms are 

robust against noise, allow overlapping and capture positive and negative correlations in the 
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same co-cluster. Comprehensive experiments on synthetic and real-world datasets were 

carried out to illustrate the effectiveness of the proposed algorithms. The results showed that 

both of the proposed algorithms outperformed existing algorithms and can identify co-

clusters that are biologically significant. As future work, we are interested in analyzing the 

discriminative power of the proposed approach and extending it to solve prediction 

problems. Also, we plan to extend the work to other forms of subspace clustering algorithms 

such as correlation clustering [5].
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Fig. 1. 
Types of co-cluster structures.
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Fig. 2. 
A set of three objects that are highly correlated in a subset of the features in class A, but they 

are not correlated in class B. Hence, these objects are considered as a discriminative co-

cluster.
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Fig. 3. 
Example of discriminative co-clusters.
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Fig. 4. 
Different approaches to obtain discriminative co-clusters.
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Fig. 5. 
Different types of relationships between genes in one co-cluster. The genes {a, b} are 

positively correlated with each other, and the genes {c, d, e} are positively correlated with 

each other. However, the genes {a, b} are negatively correlated with the genes {c, d, e}.
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Fig. 6. 
The main steps of the proposed RAPOCC algorithm.
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Fig. 7. 
(a) a plot for the entire running datasets. (b) a plot for the co-cluster extracted from the 

running dataset.
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Fig. 8. 
The co-clustering results on the synthetic datasets.
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Fig. 9. 
Examples of the co-clusters identified by the RAPOCC algorithm. The three co-clusters in 

the first row contain only the positively correlated genes which show similar patterns. These 

co-clusters were obtained from the Gasch yeast dataset. The three co-clusters in the second 

row contain positively and negatively correlated genes which show opposite patterns. These 

co-clusters were obtained from (d) Gasch yeast, (e) Scleroderma and (f) Causton yeast 

datasets.
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Fig. 10. 
Proportion of co-clusters that are significantly enriched (average of the 8 datasets).
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Fig. 11. 
Relevance and Recovery for SDC, Di-OPSM and Di-RAPOCC obtained from synthetic 

datasets.
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Fig. 12. 
Relevance and recovery obtained with noise levels of 5%, 10%, 15% and 20%, respectively.
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Fig. 13. 
The inter-class overlapping on synthetic datasets.
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Fig. 14. 
Proportion of the co-clusters that are significantly enriched in each dataset (significance 

level = 5%).
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TABLE 1

Notations used in this paper.

Notation Description

D input data matrix of M rows and N columns

κ number of row clusters

ℓ number of column clusters

ρ mapping of row clusters

γ mapping of column clusters

K number of optimized co-clusters

X Co-cluster of |I| rows and |J| columns

I set of rows in co-cluster X

J set of columns in co-cluster X

xj the jth column in row x

|.| the cardinality function

Notations for discriminative co-clustering

NA No. of columns in class A

KA number of optimized co-clusters in class A

cj
A jth column in class A, 1 ≤ j ≤ |NA|

Xk
A.r(i) ith row of the kth co-cluster in class A

Xk
B.c( j) jth column of the kth co-cluster in class B
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TABLE 3

Results of hG on the x and y rows in Table 2.

(i) Çolumns {Jm} h+ (x, y, Ji)

1 J1 = {c1, c2, c3, c4 , c5, c6, c7, c8 , c9, c10} 0.9723

2 J2 = {c1, c3, c4, c5 , c6, c7, c8 , c9, c10} 0.9860

3 J3 = {c1, c3, c4, c6, c7, c8, c9, c10} 0.9908

4 J4 = {c1, c3, c4, c6, c7, c8, c9} 0.9947

5 J5 = {c1, c4, c6, c7, c8, c9} 0.9978

6 J6 = {c1, c4, c6, c7, c9} 1.0

7 J7 = {c4, c6, c7, c9} 1.0

8 J8 = {c6 , c7, c9} 1.0

9 J9 = {c6, c9} 1.0

10 J10 = {c9} 1.0

hG(x, y, J) (weighted average) 0.994
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TABLE 5

Description of the real-world gene expression datasets used in our experiments.

Dataset Genes Total
samples

class A class B

Description samples Description samples

Leukemia [20] 5000 38 Acute lymphoblastic leukemia 11 Acute myeloid leukemia 27

Colon cancer [2] 2000 62 Normal 22 Tumor 40

Medulloblastoma [25] 2059 23 Metastatic 10 Non-metastatic 13

Scleroderma [38] 2773 27 Male 12 Female 15

Arabidopsis thaliana [31] 734 69 69 Different biological samples and pathways

Gasch yeast [31] 2993 173 173 Time series gene expression data

Cho yeast [12] 6240 14 17 Time points (cell cycle)

Causton yeast [9] 4960 11 Response to environmental changes
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TABLE 7

Number of co-clusters from synthetic datasets.

Synthetic dataset SDC Di-OPSM Di-RAPOCC

s=50 256 15 2

s=100 990 16 2

s=300 4, 451 16 3

s=500 10, 210 22 3
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TABLE 8

Discriminative measures (synthetic datasets).

Synthetic
dataset

Δ G Δ C

SDC OPM RPC SDC OPM RPC

s=50, η=0 0.51 0.54 0.69 0.51 0.55 0.72

s=100, η=0 0.50 0.68 0.71 0.54 0.0.54 0.70

s=200, η=0 0.49 0.63 0.70 0.54 0.66 0.71

s=300, η=0 0.52 0.51 0.67 0.51 0.64 0.70

s=500, η=0 0.51 0.64 0.71 0.52 0.63 0.72

s=100, η=5% 0.53 0.57 0.71 0.51 0.60 0.70

s=100, η=10% 0.52 0.65 0.67 0.53 0.61 0.65

s=100, η=15% 0.51 0.63 0.76 0.49 0.63 0.70

s=100, η=20% 0.52 0.64 0.72 0.50 0.61 0.65
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TABLE 9

Discriminative measures (expression datasets)

Dataset Δ G Δ C

SDC OPM RPC SDC OPM RPC

Colon 0.60 0.58 0.62 0.50 0.53 0.56

Medulloblastoma 0.49 0.54 0.59 0.51 0.53 0.55

Leukemia - 0.57 0.59 - 0.56 0.58

Scleroderma 0.57 0.54 0.60 0.54 0.55 0.60
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TABLE 11

Comparisons between the three discriminative co-clustering algorithms.

Measure SDC OPM RPC

No. of the co-clusters High Low Medium

Size of the co-clusters Small Large Medium

Coherence - Low High

Discriminative coherence Low Medium High

Inter-class overlap High Medium Low

Recovery Low Medium High

Relevance Low Medium High
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