Skip to main content
. Author manuscript; available in PMC: 2015 Dec 1.
Published in final edited form as: Knowl Inf Syst. 2013 Aug 28;41(3):667–696. doi: 10.1007/s10115-013-0684-0

Algorithm 2.

Di-RAPOCC(D, K, α)

1: Input: Data matrix (D)
     No. of co-clusters (KA and KB)
     Minimum No. of rows in any co-cluster (α)
2: Output:: Two sets of discriminative co-clusters ({XA}, {XB})
3: Procedure:
4: Step 1: Compute δC for all the rows
5: x,y{I}δCAhCA(x,y)hCB(x,y)
6: x,y{I}δCBhCB(x,y)hCA(x,y)
7: Initialize each of the K co-clusters for each class
8: Compute SA and SB as defined in Equation (3)
 / * Initialize rows and columns of each co-cluster * /
9: for k = 1 : K do
10:  mSkAXkA.r(m)=1, nNAXkA.c(n)=1
11:  mSkBXkB.r(m)=1, nNBXkB.c(n)=1
12: end for
13: Step 2: Update the row and the column clusterings
14: repeat
15:  for k = 1 : K do
16:   for i = 1 : M do
17:    XkA.r(i)=argmaxu{1,0,1}Φ(XkA.r(i)=u)
18:    XkB.r(i)=argmaxu{1,0,1}Φ(XkB.r(i)=u)
19:   end for
20:   for j = 1 : NA do
21:    XkA.c(j)=argmaxv{0,1}Φ(XkA.c(j)=v)
22:   end for
23:   for j = 1 : NB do
24:    XkB.c(j)=argmaxv{0,1}Φ(XkB.c(j)=v)
25:   end for
26:  end for
27: until convergence
28: Step 3: Merging similar co-clusters.
29: Step 4: Pruning.