Methods

Predicting Gene Ontology Biological Process
From Temporal Gene Expression Patterns

Astrid Leegreid,'* Torgeir R. Hvidsten,”? Herman Midelfart,? Jan Komorowski, 3

and Arne K. Sandvik'

"Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, N-7489
Trondheim, Norway; 2Department of Information and Computer Science, Norwegian University of Science and Technology,
N-7491 Trondheim, Norway; 3The Linnaeus Centre for Bioinformatics, Uppsala University, SE-751 24 Uppsala, Sweden

The aim of the present study was to generate hypotheses on the involvement of uncharacterized genes in
biological processes. To this end, supervised learning was used to analyze microarray-derived time-series gene
expression data. Our method was objectively evaluated on known genes using cross-validation and provided
high-precision Gene Ontology biological process classifications for 21l of the 213 uncharacterized genes in the
data set used. In addition, new roles in biological process were hypothesized for known genes. Our method uses
biological knowledge expressed by Gene Ontology and generates a rule model associating this knowledge with
minimal characteristic features of temporal gene expression profiles. This model allows learning and classification
of multiple biological process roles for each gene and can predict participation of genes in a biological process
even though the genes of this class exhibit a wide variety of gene expression profiles including inverse
coregulation. A considerable number of the hypothesized new roles for known genes were confirmed by
literature search. In addition, many biological process roles hypothesized for uncharacterized genes were found
to agree with assumptions based on homology information. To our knowledge, a gene classifier of similar scope
and functionality has not been reported earlier.

[Supplemental material is available online at www.genome.org. All annotations, reclassifications of known genes,
and classifications of uncharacterized genes are available online at http:/ /www.lcb.uu.se/~hvidsten/ fibroblast.]

One of the main goals of the postgenomic era is to understand
the multiple biological roles of genes and gene products, and
their interaction in complex networks in living organisms.
With the scarce and fragmented status of present knowledge,
this is an enormous challenge. It requires substantial new de-
velopments in experimental biology and computer science to
extract, translate, and integrate experimental observations
into functional molecular biological models. DNA-microarray
technology (Schena et al. 1995) allows parallel measurement
of thousands of genes in different biological settings. Genes
coding for gene products involved in the same biological pro-
cess are likely to be regulated in a coordinated manner. There-
fore, when searching for the roles of a gene in terms of in-
volvement in biological processes, measurements of changes
in gene expression throughout the time course of a given
biological response are of particular interest.

Clustering methods (unsupervised learning) offer effi-
cient ways of finding overall patterns and tendencies in mi-
croarray gene expression data. Such methods can discover
classes of expression patterns and identify groups of genes
that are regulated in a similar manner and can therefore in-
dicate along which lines biological interpretations may be
sought in a given experiment (Eisen et al. 1998; Iyer et al.
1999). On the other hand, unsupervised learning methods
usually do not use existing biological knowledge in finding
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the clusters, and they do not offer well-established methods
for classifying uncharacterized genes according to their bio-
logical roles. By including biological knowledge in the learn-
ing process, supervised methods can generate gene-
expression-based models that can be used for classification of
unknown genes. Furthermore, such models can be objectively
evaluated with respect to classification quality.

Although hierarchical clustering has shown that similar-
ity in biological roles often corresponds to expression similar-
ity (Eisen et al. 1998), biologically related genes in many in-
stances show dissimilar expression profiles and may even be
inversely coregulated (Eisen et al. 1998; Iyer et al. 1999; Shat-
kay et al. 2000; Stanton et al. 2000). Moreover, gene products
often have multiple actions. The relations between temporal
changes in gene transcript levels and the multiple biological
roles of the gene products are so complex that, given our
present knowledge, it may only be possible to use learning
from examples to create models.

The Gene Ontology (GO) (http://www.geneontology.org;
The Gene Ontology Consortium 2000) provides a valuable
source of structured knowledge of protein function in terms
of molecular function, biological process, and cellular component.
In each of these three ontologies, the classifications are ar-
ranged in a hierarchy in which the components may have
more than one parent component (directed acyclic graph).
Use of GO in analysis of experimental data from high-
throughput methods enables integration of biological back-
ground data in a controlled manner.

Our particular research goal was to model the relation-
ships between gene expression as a function of time and involve-
ment of a gene in a given biological process and to use this model
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Table 1. Annotation of Known Genes
GenBank Annotations to the

Gene accession Annotations at the 23 broad cellular processes

symbol Gene name number most specific level of GO used for learning

SEPP1 Selenoprotein P, plasma, 1 AA045003  Oxidative stress response (GO: Stress response (GO:0006950),
0006979), metal ion transport transport (GO:0006810)
(GO:0006823)

EPB41L2  Erythrocyte membrane protein W88572 Positive control of cell proliferation  Cell proliferation (GO:0008283)

band 4.1-like 2 (GO:0008284)

0OA48-18  Acid-inducible phosphoprotein AA029909  Cell proliferation (GO:0008283) Cell proliferation (GO:0008283)

CTSK Cathepsin K (pycnodysostosis) AA044619  Proteolysis and peptidolysis (GO: Protein metabolism and
0006508) modification (GO:0006411)

CPT1B Carnitine palmitoyltransferase |, W89012 Fatty acid B-oxidation (GO: Lipid metabolism (GO:0006629)

muscle 0006635)
CLDNT1 Claudin 11 (oligodendrocyte N22392 Cell adhesion (GO:0007155), Cell adhesion (GO:0007155), cell
transmembrane protein) substrate-bound cell migration motility (GO:0006928), cell
(G0O:0006929), cell proliferation proliferation (GO:0008283),
(GO:0008283), developmental developmental processes (GO:
processes (GO:0007275) 0007275)

RPL5 Ribosomal protein L5 AA027277  Protein biosynthesis (GO: Protein metabolism and
0006412), ribosomal large modification (GO:0006411), cell
subunit assembly and organization and biogenesis
maintenance (GO:0000027) (G0O:0006996)

Homo sapiens clone 23785 mRNA N32247 Calcium-independent cell—cell Cell adhesion (GO:0007155)
sequence matrix adhesion (GO:0007161)

ESTs, weakly similar to A45082 T62968 Transmembrane receptor protein Cell surface receptor-linked signal
neurotrophic receptor rorl tyrosine kinase signaling transduction (GO:0007166)
precursor (H. sapiens) pathway (GO:0007169)

CCNGT Cyclin G1 R45687 Cell cycle control (GO:0000074), Cell cycle (GO:0007049), cell
mitotic G2 phase (GO: death (GO:0008219)
0000085), apoptosis (GO:

0006915), mitosis (GO:
0007067)
CDKN1C  Cyclin-dependent kinase inhibitor R81336 Cell cycle arrest (GO:0007050), cell ~ Cell cycle (GO:0007049), cell
1C (p57, Kip2) cycle arrest (GO:0007050), proliferation (GO:0008283)
negative control of cell
proliferation (GO:0008285)
GRAT Glutamate receptor, ionotropic, N47974 Induction of apoptosis (GO: Cell death (GO:0008219), cell
AMPA 1 0006917), cell surface receptor surface receptor-linked signal
linked signal transduction (GO: transduction (GO:0007166)
0007166)

Homo sapiens mRNA for KIAA1888 H26264 Transport (GO:0006810) Transport (GO:0006810)
protein, partial cds

FMOD Fibromodulin AA029408  Cell-cell matrix adhesion (GO: Cell adhesion (GO:0007155)
0007160)

CDK5R1 Cyclin-dependent kinase 5, R49183 Cell proliferation (GO:0008283), Cell proliferation (GO:0008283),

regulatory subunit 1 (p35) cell cycle control (GO:0000074) cell cycle (GO:0007049)

CAT Catalase W89002 Oxidative stress response (GO: Stress response (GO:0006950)
0006979), peroxidase reaction
(GO:0006804)

Homo sapiens, clone MGC: 16131 R71462 Transport (GO:0006810), Transport (GO:0006810),
IMAGE: 3628944, mRNA, intracellular signaling cascade intracellular signaling cascade
complete cds (G0O:0007242) (G0O:0007242)

ESTs, moderately similar to JX0336 R60996 Tricarboxylic acid cycle (GO: Energy pathways (GO:0006091),

succinate dehydrogenase
(H. sapiens)

0006099), fatty acid metabolism
(GO:0006631)

lipid metabolism (GO:0006629)

Annotations for some of the genes in the data set are shown. A full record of annotations for all known genes is provided in Supplemental

Material (available online at http://www.genome.org).

to predict the biological roles of unknown genes. We built an
if-then rule model using a supervised learning method based
on Rough Sets (Pawlak 1991; Komorowski 1999; Skowron et
al. 2002). It associated Gene Ontology (GO) classes of biologi-
cal processes (The Gene Ontology Consortium 2000) with
minimal features of temporal gene transcript profiles from the
fibroblast serum response in a data set provided by lyer et al.
(1999). Gene profiles of 497 unknown and known genes in
the fibroblast serum response were then subjected to the
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model to classify (reclassify, respectively) the genes. The pro-
cess provided hypotheses about multiple roles of the genes in
terms of GO biological process. Our method generated a high-
precision model that produced a substantial number of new
hypotheses about biological roles of both characterized and
uncharacterized genes. Methods like the one presented here
may be pivotal in future research by permitting a more fo-
cused experimental approach to elucidate the biological roles
of genes.
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Table 2. Summary of the Rule Model

A. Annotations, rules, and classifications

Annotated genes

Within the 23 broad classes of GO biological process 273
Gene probes

Associated with the 273 genes within the 23 broad biological process classes 284
Training examples

Annotations associated with the genes in the 23 broad biological process classes 549

Coannotations® associated with the genes in the 23 broad biological process classes 444
Rules

Generated from the training examples 18064
Estimated quality of classifications of unknown genes (cross-validation estimates)

Sensitivity 84%

Specificity 91%

Fraction of classifications that are correct 49%
Classifications for unknown (uncharacterized) genes

Classifications were obtained for 211 of the 213 unknown genes 548
Reclassifications for training examples 728

True positive classifications 519

True positive coclassifications® 356

False positive classifications 219

False negative (missing) classifications 30

For 272 of the 273 training examples at least one correct reclassification was obtained

B. Number of biological processes annotated or classified per gene

Annotations
for training
example genes

Number of biological
processes per gene

Reclassifications
for training
example genes

Classifications for
unknown genes

1 105
2 100
3 41
=4 27

30 27
93 84
96 59
54 41

?Pairs of two different biological processes annotated to the genes in the data set.
PClassification of two different biological processes to one gene.

RESULTS

Construction of Training Examples

We used a data set provided by lyer et al. (1999; http://
genome-www.stanford.edu/serum) that describes the tran-
script levels of genes detected by 517 different gene probes
during the first 24 h of the serum response in serum-starved
human fibroblasts. The 517 gene probes corresponded to 497
unique genes, because 20 genes were represented by more
than one probe according to Unigene clustering of cDNA se-
quences (http://www.ncbi.nlm.nih.gov/UniGene/index.
html; 2002). For each gene, biological processes were assigned
at the lowest possible (most specific) level of GO (The Gene
Ontology Consortium 2000; http://www.geneontology.org/).
Information for annotations was extracted manually from
UniGene (http://www.ncbi.nlm.nih.gov/UniGene/index.
html), LocusLink (http://www.ncbi.nlm.nih.gov/LocusLink/
index.html), SWISS-PROT (http://us.expasy.org/sprot),
GENATLAS (http://bisance.citi2.fr/GENATLAS), and from the
literature. For 284 of the 497 genes, information for GO an-
notations was found (Table 1). No biological process informa-
tion was found on the biological roles of the remaining 213
genes, and these were termed unknown or uncharacterized. Af-
ter the completion of our annotation work, human gene GO
annotations have been made available by LocusLink. There
is good agreement between our annotations and those at
LocusLink. However, in general, we obtained a higher number

of annotations per gene, and many of our annotations were at
a more detailed level.

The annotated genes formed learning examples from
which a rule model was trained. Because supervised learning
requires a nontrivial number of examples from each class
from which to learn, the genes were grouped into classes of at
least 4 elements. To achieve this, the more specific annota-
tions were moved upward in the ontology so that the learning
examples were grouped into 23 broad classes of biological
processes (e.g., stress response, transport, cell proliferation; see
Table 1). Thus, a class is a set of genes that all have an anno-
tation with a common ancestor in the GO hierarchy. Of the
284 known genes, 273 belonged to these 23 broad classes of
GO biological process.

The 273 genes of the 23 broad GO classes gave rise to 549
training examples because for 167 genes more than one bio-
logical process was annotated to the same gene (see Table 2B).
There are several reasons for this coannotation. One reason is
that some biological processes have more than one parent in
the GO hierarchy. For instance, DNA replication is a child of
both DNA metabolism and of cell cycle. Moreover, many of the
encoded proteins have multiple biological roles, like ribo-
somal proteins, which are involved in protein synthesis (pro-
cess: protein metabolism and modification) as well as being struc-
tural components of ribosomes (process: cell organization and
biogenesis; see, e.g., RPL5 in Table 1). Another example is cell
adhesion proteins, which are often found also to play a role in
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Figure 1 Expression profiles for different biological process function-class training example genes. The x-axis shows time, and the y-axis shows
log,-transformed gene expression ratios (serum treated vs. control). Expression profiles for the three processes not shown in this figure are shown
in Figure 3A.

cell motility, cell proliferation, and development (e.g., biological process level in GO. For example, kinases and phos-
CLDNI11 in Table 1). Furthermore, one type of molecular phatases involved in intracellular signaling cascade are coanno-
function may have two or more different descriptions at the tated with protein metabolism and modification because they
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Figure 2 Distribution of training example genes annotated with different biological processes across expression profile clusters. Genes annotated
with the 23 broad biological processes used in the present work distributed across the 10 expression profile clusters (A-J) as determined by lyer

et al. (1999) using hierarchical clustering.

modify other proteins by phosphorylation and dephosphory-
lation.

The temporal expression profiles of the genes in each GO
class are shown in Figure 1 and Figure 3 below. It can be seen
that many of the biological processes involve genes that are
up-regulated when other genes involved in the same process
are down-regulated. These genes can be said to be inversely
coregulated (see, e.g., cell motility and defense (immune) re-
sponse in Fig. 1). By using agglomerative hierarchical cluster-
ing, Iyer et al. (1999) detected 10 major gene expression pro-
file clusters (A-J) among the differentially expressed genes of
the serum response. Figure 2 shows that three biological pro-
cess classes (cell proliferation, protein metabolism and modifica-
tion, and oncogenesis) contain genes whose expression profiles
are distributed among all the 10 expression profile clusters.
Another 6 processes included genes with expression profiles
distributed among 9 of the 10 expression profile clusters. This
observation points out the high complexity of the expression
profiles of genes participating in one biological process.

Generating the Rule Model

A Rough Set-based supervised learning method (Pawlak 1991;
Komorowski 1999; Skowron et al. 2002) was used to generate
the model from the 549 training examples represented by
their GO biological process annotations and by their gene
expression levels. To accommodate the high complexity of
the temporal gene expression profiles observed for genes in
one biological process class (see Figs. 1 and 3), numerical gene
expression data were transformed into template data in which
each gene expression profile was described as a combination

of templates “increase”, “decrease”, and “constant” over time
intervals of at least 3 or 4 time points. The combination of
templates and time intervals created 55 different features. Be-
cause of this relatively large number, most genes had a unique
combination of the 55 features. The template approach allows
us to focus on the relative changes in transcript levels and to
regard the temporal expression profile of each gene as a com-
bination of several subinterval profiles. Thus, we can discover
similarities of changes in transcript levels within shorter time
frames than the whole 24-h period.

The trained model defines relationships between the
gene expression profiles observed during the fibroblast re-
sponse (measured data) and the involvement of the genes in
GO biological processes (biological background knowledge).
It consisted of 18,064 rules and is summarized in Table 2. The
if-then rules of the model that define a particular biological
process (see examples in Table 3) describe minimal expression
profile properties (features) that discern genes participating in
one process from genes participating in all other processes.
On the average, 3 out of 55 original features were used in each
rule. This shows that minimization effectively removed the
insignificant features to obtain general rules that can classify
unseen gene profiles. The rules are approximate and define
the relationship between gene expression and biological role
only with some confidence level. Comparing the transcription
gene rule examples in Table 3 with the transcription gene ex-
pression profiles in Figure 3A shows that the variety of profiles
is much greater than described by the rules in Table 3. The few
rules shown in Table 3 are far from sufficient to completely
describe the relationships between expression profiles and the
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Figure 3 Expression profiles of annotated and classified genes for the processes transcription, protein metabolism and modification, and cell
s shows log,-transformed gene expression ratios (serum treated vs. control). For each process the
ing example genes annotated with the process; (B) training example genes correctly classified to
example genes classified but not annotated to the process, that is, false positives; (D) training
ssify with the biological process to which they were annotated, that is, false negatives; and (E)
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unknown (uncharacterized) genes classified to the process.
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Table 3. Examples of Rules Induced for transcription

30MIN — 4H(Constant) AND TH — 8H(Decreasing) AND 16H — 24H(Increasing) — Process(transcription)
OMIN — 1H(Constant) AND 30MIN — 4H(Increasing) AND 8H — 16H(Decreasing) AND 16H — 24H(Decreasing) — Process(transcription)
15MIN — 1H(Decreasing) AND 30MIN — 4H(Constant) AND 6H — 24H(Increasing) — Process(transcription)

A total of 5402 rules was generated for transcription. Using Michaelski’s rule quality measure (Torgo 1993), we selected rules that cover the
highest number of genes encoding proteins involved in transcription (cf. coverage) and that exhibit the highest ability to discern these genes
from genes involved in all other processes (cf. accuracy). The rules originate from the known genes PBX3, ZNF222, and TRIP7, respectively. The
first two rules also participated in the classification of unknown genes KIAAT799 and MGC5469, although only KIAAT799 received a fraction of

votes high enough to be classified as transcription.

The three rules shown in the Table had a Michalski’s value of 0.75 (u X accuracy + (1 — p) X coverage; where p = 0.5 + 0.25 X accuracy).
There was a total of 50 rules for transcription with Michalski’s value 0.75. Intervals where gene expression profiles fit the template for
“increasing” are shown in bold letters, whereas intervals that fit the template for “decreasing” are shown in italics (for a description of

“increasing/decreasing” templates see Methods).

biological role of transcription genes. A high number of rules
(for transcription there were 5402 rules) is needed to define
these relationships.

Classifications produced by the model are a direct con-
sequence of the rules. However, only the rules that match the
gene to be classified contribute to the classification. For ex-
ample, the first rule in Table 3 is only used when confronted
with an expression profile that meets the requirement of con-
stant transcript levels from 30 min to 4 h, decreasing levels
from 1-8 h, and increasing levels from 16-24 h. The final
classifications are then sorted out among all the processes
indicated by all the rules matching the gene using a voting
procedure (see Methods for details).

A 10-fold cross-validation showed that the model exhib-
ited high classification quality (average AUC value 0.88; Table
4). This demonstrates that our
model captures the complexity of
expression profiles among genes

classification quality from cross-validation is normally inter-
preted as the expected quality of the classifications of unchar-
acterized genes (unseen cases). The ability of the rule model to
recognize and reconstruct the complex expression profiles for
genes participating in one biological process is illustrated with
an analysis of three sample processes: cell proliferation, tran-
scription, and protein metabolism and modification (Fig. 3). The
expression profiles of the correctly classified genes (Fig. 3B)
reflect a very broad range of different expression profiles
within the annotated genes of one biological process (Fig. 3A).

By reclassification of the annotated genes (Table 6), we
obtained one or more correct classifications for 272 of the 273
known genes. Of the total of 738 classifications, 519 (70%)
agreed with the annotations. Reclassification hence generated
219 false-positive classifications, that is, classifications of

Table 4. Classification Quality During Cross-Validation

participating in one biological pro-

cess, and that it is able to apply it Process AUC SE Sensitivity Specificity
successfully in the classification ]
process. The values for sensitivity lon homeostasis 1.00  0.00 1.00 1.00
and specificity were chosen to allow Protein targeting 0.99 0.03 1.00 0.98
pe Y all Blood coagulation 096  0.08 0.96 0.99
for a high number of true positives  pNA metabolism 0.94  0.09 0.94 0.93
at the price of a relatively large Intracellular signaling cascade 0.94 0.06 0.92 0.94
number of false positives. With a Energy pathways 0.93 0.12 0.89 0.99
sensitivity of 84% (Table 4), 49% of ge” cycle 832 g?‘: 832 832
APV : B ncogenesis . : : .
the classifications during cross- o Bioy 091  0.11 0.87 0.95
validation were correct. A propor- Cell death 0.90 0.10 0.85 0.90
tion of correct classifications of Developmental processes 0.90 0.07 0.91 0.90
90% can be achieved by using Transcription 0.88 0.11 0.84 0.82
stricter requirements, but this will Defense (immune) response 0.88 0.05 0.88 0.91
result in a decrease in sensitivity to gte” adhesion 822 8?2 gg; 83;
N ce iTTieL ress response ’ b 5 .

39% (data not shown). This illus- 0" olism and modification 0.85  0.10 0.83 0.86
trates how the predictive model can Cell motility 0.84 0.11 0.83 0.89
be adjusted to fit the goals of the Cell surface receptor-linked signal transduction 0.82 0.15 0.79 0.84
analysis with respect to specificity Lipid metabolism 0.81 0.14 0.77 0.85
and Sensitjvjty' Transport 0.79 0.17 0.72 0.84
Cell organization and biogenesis 0.79 0.11 0.76 0.91
. . Cell proliferation 0.79 0.06 0.76 0.77
Usmg the Model to RedaSSIfy Amino acid and derivative metabolism 0.69 0.06 0.29 0.98
Known Genes Average 0.88  0.09 0.84 0.91

We used a model trained from all

the example genes to classify un-
known genes and to reclassify the
known genes (Table 5). This model
was trained with the parameters
used during cross-validation shown
in Table 4. By this approach, the

Tenfold cross-validation estimates of the area under the ROC curve (AUC), standard error (SE) for
AUC, and sensitivity and specificity for each of the 23 biological processes. Sensitivity is TP/(TP +
FN) where TP (true positives) is the number of genes classified and annotated to the process and
FN (false negatives) is the number of genes annotated but not classified to it. Specificity is TN/(TN
+ FP), where TN (true negatives) is the number of genes neither annotated nor classified to the
process and FP (false positives) is the number of genes classified but not annotated to it.
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Table 5. Classifications Obtained With the Model

Annotate Reclassifications for Classifications for
Process genes known genes (correct) unknown genes
lon homeostasis 4 4 (4) 4
Protein targeting 6 8 (6) 2
Blood coagulation 10 13 (10) 34
DNA metabolism 19 33 (19) 28
Intracellular signaling cascade 26 39 (25) 14
Energy pathways 6 6 (6) 0
Cell cycle 47 66 (44) 38
Oncogenesis 17 41 (17) 31
Circulation 15 17 (15) 3
Cell death 16 22 (16) 26
Developmental processes 15 23 (15) 21
Transcription 52 61 (47) 88
Defense (immune) response 37 44 (32) 20
Cell adhesion 30 32 (29) 19
Stress response 17 26 (17) 22
Protein metabolism and modification 33 45 (33) 35
Cell motility 32 40 (29) 21
Cell surface receptor linked signal transduction 27 38 (26) 34
Lipid metabolism 26 44 (25) 45
Transport 22 30 (22) 19
Cell organization and biogenesis 33 40 (30) 13
Cell proliferation 53 60 (46) 30
Amino acid and derivative metabolism 6 6 (6) 2

Summary of reclassification of known genes and classification of unknown genes to the 23 broad biological function

classes by using the model evaluated in Table 4.

genes to classes with which they were not annotated. Some of
these classifications will appear to be incorrect. However, a
share of the false-positive classifications may represent new
knowledge in the sense that this knowledge may have been
unrecognized during the annotation process (i.e., missing an-
notations). In other instances, the involvement of a gene in
the classified biological processes may not have been reported
at the time of annotation. In the latter case, we hypothesized
new biological roles of known genes.

An examination of the literature for false-positive reclas-
sifications of training examples showed that some of them,
indeed, represent existing knowledge. Examples of such miss-
ing annotations will be given in the sequel. Of the 14 genes
with a false-positive classification for DNA metabolism, 4
were found to participate in this process. These genes are
CCNA2 (cyclin A2; Ravnik and Wolgemuth 1996), CENPF
(Centromere protein F; Zhu et al. 1995), CKS2 (CDC28 protein
kinase 2; Zhang et al. 1995), and XPO1 (Exportin 1), which is
a homolog of the yeast CRM1 gene involved in chromosome
maintenance (Adachi and Yanagida 1989). Another process
with a high proportion of false-positive classifications was
oncogenesis. All 17 genes annotated with this process were cor-
rectly classified. However, our model predicted that another
24 genes participate in oncogenesis. A literature search revealed
that 12 of these 24 false-positive classifications represented
missing annotations (Table 7). The genes with missing anno-
tations for oncogenesis include the tumor suppressors COKN1C
(cyclin-dependent kinase inhibitor 1C), EGR1 (early growth
response 1), and proto-oncogenes NR4A3 (nuclear receptor
subfamily 4, group A, member 3) and COPEB (core promoter
element binding protein). This result shows that the model
was able to hypothesize (or to rediscover) existing knowledge
that was not included in the initial annotation process.

False-negative classifications are annotations of known
genes that our model failed to reproduce as classifications.
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This means that the expression profiles of the genes could not
be matched to the training examples of the annotated bio-
logical process. Examples of such expression profiles are
shown in Figure 3D. False negatives may arise from (1) incor-
rect annotations, (2) insufficient representative learning ex-
amples, or (3) no involvement of the genes in question in the
annotated biological process in the specific context of the
fibroblast serum response. For cell proliferation, there were
seven false negatives, including genes correctly classified to
participate in cell death (KIT, BMP1) and circulation (BMP1,
VEGF). Although these gene products may participate in cell
proliferation in other biological responses or in other cell
types, they need not be involved in this biological process
during the fibroblast serum response.

Coclassification Reveals Coregulation

of Biological Processes

Biological processes occurring during the fibroblast serum re-
sponse may be related in the sense that genes participating in
these processes are transcriptionally coregulated. Coregula-
tion may be discovered by our model by coclassifications of
more than one process to the same gene. These coclassifica-
tions were generated wherever the model identified a similar-
ity of the expression profile of the classified gene with the
profiles of training example genes of two or more different
biological processes. High frequencies of coclassifications
were obtained for some pairs of processes during reclassifica-
tion (Table 8), indicating that many training genes from these
pairs of processes display similar temporal expression profiles.
Our model therefore hypothesized that some biological pro-
cesses are related via transcriptional coregulation during the
fibroblast serum response. Many such pairs of processes, for
example, DNA metabolism—cell cycle, cell organization and bio-
genesis—cell cycle, and cell motility—defense (immune) response,



Supervised Learning to Predict Biological Process

Table 6. Reclassification of Known Genes
GenBank Predictions for the Annotations to the
Gene accession 23 broad cellular processes 23 broad cellular processes
symbol Gene name number used for learning used for learning
SEPP1 Selenoprotein P, plasma, 1 AA045003  Transport, stress response Stress response, transport
EPB41L2 Erythrocyte membrane protein W88572 Cell proliferation Cell proliferation
band 4.1-like 2
0OA48-18  Acid-inducible phosphoprotein AA029909  Cell proliferation Cell proliferation
CTSK Cathepsin K (pycnodysostosis) AA044619  Cell proliferation, protein Protein metabolism and
metabolism and modification modification
CPTIB Carnitine palmitoyltransferase |, W89012 Lipid metabolism Lipid metabolism
muscle
CLDNT11 Claudin 11 (oligodendrocyte N22392 Cell proliferation, cell motility, cell Cell adhesion, cell motility, cell
transmembrane protein) adhesion, developmental proliferation, developmental
processes processes
RPL5 Ribosomal protein L5 AA027277  Protein metabolism and Protein metabolism and
modification, cell organization modification, cell
and biogenesis organization and biogenesis
Homo sapiens clone 23785 mRNA N32247 Lipid metabolism, cell adhesion, Cell adhesion
sequence developmental processes
ESTs, weakly similar to A45082 T62968 Cell surface receptor-linked signal Cell surface receptor-linked
neurotrophic receptor rorl transduction, cell death, signal transduction
precursor (H. sapiens) oncogenesis
CCNGT Cyclin G1 R45687 Cell death, cell cycle, oncogenesis Cell cycle, cell death
CDKN1C Cyclin-dependent kinase inhibitor R81336 Cel cycle, oncogenesis Cell cycle, cell proliferation
1C (p57, Kip2)
GRIAT Glutamate receptor, ionotropic, N47974 Developmental processes, cell Cell death, cell surface
AMPA 1 surface receptor-linked signal receptor-linked signal
transduction, cell death transduction
Homo sapiens mRNA for KIAA1888 H26264 Transport, cell surface Transport
protein, partial cds receptor-linked signal
transduction, cell death,
intracellular signaling cascade
FMOD Fibromodulin AA029408 Transport, cell adhesion, cell Cell adhesion
organization and biogenesis, cell
surface receptor-linked signal
transduction, cell cycle
CDK5R1 Cyclin-dependent kinase 5, R49183 Cell proliferation, lipid metabolism, Cell proliferation, cell cycle
regulatory subunit 1 (p35) cell cycle
CAT Catalase W89002 Stress response, transcription, Stress response
oncogenesis
Homo sapiens, clone MGC: 16131 R71462 Transport, intracellular signaling Transport, intracellular signaling
IMAGE: 3628944, mRNA, cascade cascade
complete cds
ESTs, moderately similar to JX0336 R60996 Lipid metabolism, intracellular Energy pathways, lipid
succinate dehydrogenase signaling cascade, energy metabolism
(H. sapiens) pathways
GBAS Glioblastoma amplified sequence T90846 Lipid metabolism, cell surface Cell surface receptor-linked

receptor-linked signal
transduction

signal transduction

Reclassifications for some of the known genes in the data set are shown. A full record of reclassifications for all known genes is provided in

Supplemental Material (available online at http://www.genome.org).

were frequently annotated to the same gene. This indicated
that these processes are also related in the sense that they
involve proteins that are known to participate in both pro-
cesses. Consequently, our model rediscovered several pairs of
processes that are also linked by coannotations. Additionally,
the model discovered transcriptional coregulation of pairs of
biological processes that do not involve high numbers of
genes known to participate in both processes, such as tran-
scription—intracellular signaling cascade and transcription-lipid
metabolism. These pairs of processes show a low dependency
between coannotations and coclassifications to the same gene
(Table 8). Our results indicate that in each of these pairs the
biological processes follow similar time courses even though
each of the processes is mainly carried out by proteins not

directly involved in the other process of the pair. The pro-
cesses transcription and lipid metabolism are not known to co-
operate in a general sense even though lipid metabolism is
partly regulated by transcription. However, for the process
pair transcription-intracellular signaling cascade, our model has
discovered coregulation of genes involved in two processes
that are known to cooperate because transcription in most
cases is regulated by intracellular signaling cascades.

Use of the Model to Predict Biological Roles
of Unknown Genes

We obtained a total of 548 classifications for 211 genes out of
the 213 unknown (uncharacterized) genes (Table 9). These
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Table 7. False Positives for oncogenesis: Missing Annotations

Symbol (GenBank

accession number) Gene name Molecular function Comment Reference (PMID)
CCNGT (R45687) Cyclin G1 CDK kinase regulator p53 target 11327114
CDKN1C (R81336) Cyclin-dependent kinase Cyclin-dependent protein Tumor suppressor 7729684
inhibitor 1C kinase inhibitor
CAT (W89002) Catalase Oxidoreductase Tumor progression 8513880, 11597785

ALDH3A2 (H63779)
ADD3 (AA054129)

Aldehyde dehydrogenase 10
Adducin 3 (gamma)

Aldehyde dehydrogenase
Membrane-cytoskeleton-

associated protein

TFDP2 (W46792) Transcription factor Dp-2 (E2F
dimerization partner 2)

o Thalassemia/mental
retardation syndrome

Epidermal growth factor
receptor pathway substrate
15

Early growth response 1

Nuclear receptor subfam 4,
group A, m2 (Nurr1, Not)

Nuclear receptor subfam 4,
group A, m 3 (NorT)

Core promotor
element-binding protein

ATRX (N22858)

EPST5 (N78949)

EGR1 (H27557)

NR4A2 (N22386)
receptor
NR4A3 (W42606)
receptor
COPEB (AA055585)

Transcription cofactor
DNA helicase

Kinase substrate
Transcription factor
Ligand-dependent nuclear
Ligand-dependent nuclear

Transcription factor

Tumor progression 92393980
Tumor progression 9607561
Cell cycle regulation 7784053

Transcription and
DNA repair

10362365, 10630641

Growth regulation 93361014
Tumor suppressor 9109500
Proto-oncogene 9592180
Proto-oncogene 9592180
Proto-oncogene 9268646

This table shows genes classified but not annotated with the biological process oncogenesis (e.g., false positives for oncogenesis), where
information could be found in the literature confirming that the classification was correct and thus represented knowledge that was missed

during annotation (missing annotation).

classifications should be regarded as hypotheses about the
biological roles of these genes. The quality of such predictions
is estimated using cross-validation over the training examples
(known genes; Table 4). We also searched for homology in-
formation that could be used to make assumptions about the
biological processes in which the uncharacterized genes may
participate. Of the 24 genes for which such assumptions could
be made, 11 genes had one or more classifications that
matched this assumption (Table 10). These genes include
LOC55977, which shows some homology to the throm-
boxane A-2 receptor known to be involved in the LOC55977-
classified processes blood coagulation (Halushka et al. 19935)
and in developmental processes (development of the retina;
Hardy et al. 2000). FLJ10217, homologous to oxysterol-
binding protein, was classified with cell death and blood
coagulation, which are biological processes in which oxysterol-
binding protein is known to participate (Schroepfer Jr. 2000).
H-I(3)mbt-1 is a human homolog of a Drosophila tumor-
suppressor protein (Koga et al. 1999) involved in chromosome
segregation and was classified with the processes cell prolifera-
tion and oncogenesis. An EST, highly similar to SMHU1B metal-
lothionein 1B, was classified with the processes ion homeosta-
sis and stress response, which are the biological processes an-
notated to metallothioneins (Davis and Cousins 2000).

DISCUSSION

Supervised learning methods in the analysis of gene expres-
sion offer a complementary approach to unsupervised meth-
ods such as cluster analysis. Instead of first discovering new
classes of expression-wise related genes and then evaluating
them according to known classes of biological process, this
approach builds models from training examples of genes pre-
viously known to be involved in specific biological processes
and uses the models both for reclassification of the known
genes and for classification of uncharacterized genes.

974 Genome Research
www.genome.org

The annotation process provides a link between biologi-
cal knowledge and gene expression profiles. Our method
handles multiple annotations and multiple classifications,
which is important because there are many genes that encode
proteins that play a role in more than one biological process.
The learning examples are very complex also from a different
perspective: Although genes that constitute one class (e.g., a
GO biological process) are biologically related, their corre-
sponding temporal expression profiles can be very different
including, for instance, inverse coregulation or coregulation
with a time lag or a combination of both (see Figs. 1 and 3).
Our method accommodates this complexity of temporal gene
expression profiles by focusing on relative changes in gene
transcript profiles over shorter time intervals. With a super-
vised learning approach, we can use the learning examples to
find characteristic properties (features) of each class, which
are given a priori “increasing”, “decreasing”, “constant”, and
GO annotations, and then use these features in model con-
struction. Our results therefore demonstrate how supervised
methods may contribute in generating hypotheses about gene
biological roles. Establishing the optimal supervised learning
method for biological role classification from gene expres-
sions was not among the aims of this work, and it is possible
that other supervised approaches and systems might be used
with comparable success.

The legible nature of if-then rules makes our approach
particularly suitable for practical application in gene expres-
sion analysis because biologists can inspect the rules and get
a clear intuition about how the approach works. This is op-
posed to, for example, neural networks and support vector
machines. Of course, large rule sets are still difficult to com-
prehend, and methods for rule pruning and graphical display-
ing still have to be developed further. Also, other supervised
methods produce legible models, such as decision trees. De-
cision trees, however, select features individually by ranking
them, whereas our approach considers the discriminatory ca-
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Table 8. Pairs of Biological Processes With High Frequency of Coclassifications to the Same Gene

C D E
B Genes with Genes with Genes without
A Genes with coclassification, coannotation coclassification
Genes with coclassification but no but no and F

Pairs of processes coclassification and coannotation  coannotation  coclassification  coannotation P-value
DNA metabolism—cell cycle 25 12 13 0 219 7.36E-14
Transcription-oncogenesis 22 5 17 2 220 7.08E-05
Cell organization and

biogenesis—cell cycle 18 13 5 3 223 3.58E-15
Transcription—cell proliferation 18 10 8 2 224 1.59E-11
Transcription—cell cycle 18 7 11 2 224 1.13E-07
Cell motility—defense (immune)

response 16 11 5 2 226 9.00E-14
DNA metabolism-transcription 15 9 6 1 228 6.72E-12
Oncogenesis—cell proliferation 14 5 9 3 227 1.47E-05
Defense (immune)

response—cell proliferation 13 7 6 4 227 5.52E-08
Transcription—intracellular

signaling cascade 13 2 11 3 228 2.40E-02
Cell motility—cell adhesion 12 10 2 1 231 4.21E-15
Protein metabolism and

modification—stress response 12 5 7 0 232 1.15E-07
Protein metabolism and

modification—cell

organization and biogenesis 11 6 5 0 233 1.68E-09
Cell motility—cell proliferation 11 6 5 2 231 4.53E-08
Cell proliferation—intracellular

signaling cascade 11 7 1 232 1.12E-05
Transcription-lipid metabolism 11 1 10 0 233 4.51E-02

Pairs of biological processes that were classified to the same gene for at least 11 different genes are shown.

The dependence between the coannotations and the coclassifications was tested with Fisher’s exact test (see, e.g., Everitt 1992). A 2 X 2
contingency table was constructed for each process pair, and values in this table appear in columns B-F. The number of genes without a
coannotation and a coclassification for a pair was computed by subtracting numbers in the other three columns from the total number of genes
with at least 2 annotations or classifications. The P-value appears in column F. All but two pairs (transcription—intracellular signaling cascade

and transcription-lipid metabolism) were significant at the 0.0001 level.

pability of several features combined. This might prove ad-
vantageous in biological applications, although it comes with
a price of higher computational demands (the time consumed
by the algorithm grows proportional to the square of the
number of examples). Whereas most supervised learning al-
gorithms use expression ratios directly, our Rough Set-based
approach requires discrete values. Several algorithms for dis-
cretization exist, but finding something that works can quite
often be a difficult task. Being able to handle discrete values,
however, can be advantageous in biological application be-
cause, for example, sequence-derived data may easily be
added as a part of the basis for inducing models.

The results demonstrate that our method is robust. Even
training example genes with incomplete annotations may be
used for learning. Many false-positive reclassifications for the
known genes were found to represent true knowledge. Exist-
ing knowledge that had not been included in the annotation
process could now be found by a literature search guided by
the hypotheses generated by our model. This illustrates how
the training examples may be updated through a reclassifica-
tion process. It follows that an enhanced model may be ob-
tained from the iteratively improved (and validated) annota-
tions of the genes used as examples for learning.

A considerable proportion of hypotheses generated for
unknown genes agreed with assumptions based on homology
information available for a small number of these genes. This
confirms the cross-validation estimates, suggesting that hy-

potheses produced for unknown genes are of high quality.
The hypotheses created by our classification process should be
validated experimentally. However, this task was outside the
scope of the present work.

Few clustering studies provide a quantitative measure of
the agreement between clusters and biological categories.
Thus, most clustering studies cannot specify to which degree
we can trust assignment of biological role to uncharacterized
genes in these clusters. Cho et al. (2001) used a semisuper-
vised method in which class knowledge was used to help find
clusters in an analysis of gene expression profiles during hu-
man fibroblast cell cycle. Hypothesis testing was used to de-
termine whether biologically related genes were statistically
overrepresented in the expression clusters. Although Cho et
al. did not explore the possible use of their clusters for classi-
fication of genes, this has recently been reported by Wu et al.
(2002) using a similar semisupervised methodology. Statisti-
cally significant overlapping clusters were annotated with
biological process and subsequently used for prediction of the
involvement of 1644 of 3020 uncharacterized yeast genes.
Because the clusters were overlapping, one gene could be pre-
dicted to several processes. Validation on known genes
showed that the method could provide high-quality classifi-
cations for some of the processes represented in the training
set.

To the best of our knowledge, Brown et al. (2000) have
done the only study in which the biological roles of genes are
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Table 9. Classification of Uncharacterized Genes

Gene symbol

Gene name

GenBank
accession number

Predictions for the 23 broad
cellular processes used for learning

LOC80298

EST, unclustered

EST, unclustered

KIAA0455

KIAAT391

EST, unclustered

EST, unclustered

Transcription termination factor-like protein

ESTs

KIAA0455 gene product

Homo sapiens cDNA FLJ13545 fis, clone
PLACE1006867

KIAA1391 protein

ESTs
ESTs

Homo sapiens clone 23645 mRNA sequence
Homo sapiens cDNA: FLJ21482 fis, clone
COL05135

Homo sapiens mRNA; cDNA DKFZp761K2024
(from clone DKFZp761K2024)

Homo sapiens mRNA; cDNA DKFZp564L0822
(from clone DKFZp564L0822)

Homo sapiens mRNA; cDNA DKFZp58611823
(from clone DKFZp58611823)

W95909 Cell surface receptor-linked signal
transduction, cell cycle

AA044605 Protein metabolism and modification,
developmental processes

AA059077 Cell proliferation, protein metabolism and
modification, cell motility,
developmental processes

AA035657 Protein metabolism and modification,
developmental processes

H19324 Cell death, blood coagulation

W89018 Lipid metabolism

H28360 Cell surface receptor-linked signal
transduction, transcription

H16592 Cell motility, cell death

W78151 Cell death, blood coagulation

H14500 Cell death

N75026 Cell death, blood coagulation

R87731 Cell death, blood coagulation

H61274 Cell death, blood coagulation

N63445 Cell death, blood coagulation

W69445 Cell surface receptor-linked signal

R60336, H15535

transduction, cell death, blood
coagulation
Lipid metabolism, transcription

KIAAT628 KIAAT628 protein

ESTs
FLJ20643 Hypothetical protein FLJ20643
KIAA0993 KIAA0993 protein

EST, unclustered

N53427 Lipid metabolism transcription

R60731 Lipid metabolism transcription

AA018444 Cell death, blood coagulation,
oncogenesis

AA031778 Cell surface receptor-linked signal
transduction, transcription, oncogenesis

W86006 Cell proliferation, lipid metabolism, cell

adhesion, developmental processes,
blood coagulation

Classifications for some of the uncharacterized genes in the data set are shown. A full record of classifications of all unknown genes is provided

in Supplemental Material (available on line at http://www.genome.org).

classified from expression data in a supervised manner. They
used 2467 annotated yeast genes to train support vector ma-
chines to recognize six different classes of biological roles con-
taining 230 of the 2467 genes. Five of these classes had earlier
been shown to exhibit homogenous temporal expression pro-
files using hierarchical clustering (Eisen et al. 1998), but for
the last class this was not true. They then used the model to
provide hypotheses on the biological roles for 15 uncharac-
terized genes.

In our study, 23 different biological process classes
with 273 of the 284 known genes were used to train a model.
These classes were not selected according to their suitability
toward learning; the only requirement was that the class con-
tained at least 4 annotated genes. We may thus claim that our
method is close to giving a complete classifier for genes in-
volved in a biological response such as the fibroblast serum
response.

Finally, our work shows that Gene Ontology (The Gene
Ontology Consortium 2000) emulates biological knowledge
that may be associated with gene expression profiles. These
associations may be effectively used in discovering new bio-
logical roles of unknown and known genes. Future research
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will include full use of the hierarchy of biological processes
given by GO (Midelfart et al. 2001).

METHODS

Annotation Sources

The Gene Ontology version used for annotations was revision
1.1152 released August 25, 2000. Annotations used to repre-
sent the 23 classes for learning were according to revision
2.158 released December 4, 2001. Unigene data were from
build #1435 released in 2001. All homology data were taken
from this Unigene build. SWISS-PROT, LocusLink, and
GENATLAS data were mainly from the database versions of
January 2001 with some occasional newer entries used for
some annotations.

The Rule Model

Data

The initial gene expression data (Iyer et al. 1999; http://
genome-www.stanford.edu/serum) consisted of expression
level ratios for 497 differentially expressed genes measured at
12 time points during the serum response. The ratios were
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Table 10. Uncharacterized Genes With Classifications That Match Biological Functions Deduced From Homology Information

Symbol (GenBank
accession number)

Gene name

Homology information

Classification

Classification
matching assumed
biological process
(PMID reference)

LOC55977
(AA037007)

FLj10217
(W721889)

WWA45 (H25014)

PIST (N68337)

ESTs (N33510)

PTGFRN
(AA045111)

H-1(3)mbt-I
(AA026761)

LOC57018
(AAO016305)

HMGE
(AA037156)

G2 (R16047)

(H72723)

Hypothetical protein
24636

Oxysterol-binding
protein-related protein 1

WW domain-containing
gene

PDZ/coiled-coil
domain-binding partner
for the rho-family
GTPase TC10

ESTs, weakly similar to a
chain A, human
Cd69-trigonal
form (SUB 82-199
(H. sapiens)

Prostaglandin F2 receptor
negative regulator

H-1(3)mbt-like protein

Cyclin L ania-6a

GrpE-like protein
cochaperone

G2 protein

ESTs, highly similar to
SMHU1B
metallothionein 1B
(H. sapiens)

Homo sapiens
thromboxane A-2
receptor, 53%/55 aa

H. sapiens
oxysterol-binding
protein, 36%/711 aa

WW domain

Mus musculus syntrophin,
43%/110 aa

H. sapiens cd69, 52%/37
aa

Ortholog of Ratius
norvegicus prostaglandin
F2 receptor negative
regulator (http://www.
ncbi.nlm.nih.gov/
HomoloGene/
homol.cgi)

Drosophila melanogaster
T13797 tumor
suppressor protein,
46%/176 aa

H. sapiens cyclin K,
27%/363 aa

Escherichia coli heat shock
protein grpE, 32%/178
aa

H. sapiens G01449
probable mucin,
100%/1691 aa

H. sapiens SMHU1B
metallothionein 1B,
98%/60 aa

Protein metabolism and
modification, lipid
metabolism,
developmental
processes, blood
coagulation

Cell death, blood
coagulation

Cell surface
receptor-linked signal
transduction,
transcription

Stress response, protein
metabolism and
modification, cell
surface receptor-linked
signal transduction,
transcription

Cell surface
receptor-linked signal
transduction, cell cycle,
transcription

Transcription, oncogenesis

Cell proliferation, lipid
metabolism,
transcription,
oncogenesis

Cell proliferation,
transcription,
oncogenesis

Stress response, protein
metabolism and
modification

Cell adhesion, cell cycle,
DNA metabolism,
protein targeting

Stress response, protein
metabolism and
modification, ion
homeostasis

Developmental processes
(10963722) blood
coagulation (8777579)

Cell death (10617772)
blood coagulation
(10617772)

Transcription (11223034)

Stress response
(10212242, 10797403)

Cell surface
receptor-linked signal
transduction
(11092246)

Oncogenesis (11090944)

Cell proliferation,
oncogenesis
(10445843)

Cell proliferation,
transcription (9632813)

Stress response, protein
metabolism and
modification
(10791710)

Cell adhesion (1412714)

Stress response, ion
homeostasis
(10801901)

This table shows the 11 out of 24 uncharacterized genes for which homology information could be found that allowed assumptions concerning
functional classification of the gene, and one or more of the homology-based annotations matched the predicted (classified) biological process

function.

log,-transformed, and the moving average transformation
t;=(; — t; _ 1)/2 was used to smoothen out spikes because
such spikes often are artifacts and easily influence the tem-
plate language used to describe the time profiles.

Feature Synthesis

To enable focus on relative changes in gene transcript levels
over subintervals of the biological response, the expression
data were transformed using three templates, “increase”, “de-
crease”, and “constant” over time intervals of at least three or
four time points (see supplemental Table 11). The “increase/

decrease” templates required a log, ratio increase/decrease of
at least 0.6 over at least three consecutive time points. The
template “constant” required a maximum log, ratio deviation
from the mean value smaller than 0.2 over at least four con-
secutive time points. The parameter values were selected to
optimize classification quality over several cross-validation
trials in terms of average AUC over all classes and all trials
(different cross-validation trials were produced by randomly
dividing the data into different training and test sets). A dif-
ferent trial was run to produce the final cross-validation esti-
mates in Table 4. Hence, reasonably realistic estimates were
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produced without using a separate test set for fine-tuning al-
gorithmic parameters.

Training the Rule Model

The rule model was trained from examples of template-
transformed expression profiles annotated with biological
process using a Rough Set-based framework for rule induc-
tion. The concept of the method was originally introduced in
Hvidsten et al. (2001). The present version used ROSETTA
kernel version 1.0.1 and was further developed to meet the
requirements of knowledge discovery in molecular biology.
Rough Set theory (Pawlak 1991; Komorowski 1999; Skowron
et al. 2002) constitutes a mathematical framework for induc-
ing minimal decision rules (if-then rules) from examples. The
general idea is to use Boolean reasoning to obtain minimal
sets of features with the same discriminatory properties as the
full set of features. The problem of finding such minimal sets,
called reducts, is computationally very demanding and is
known to be in the class of so-called NP-hard problems. We
therefore used genetic algorithms to find approximate reducts
that only preserve the discriminatory properties for a large
fraction of the examples. Such approximate reducts may pro-
vide better classification rules as they tend to avoid the pitfalls
of overtraining, that is, of being too specific and thus not
being able to classify related but not identical cases. The re-
ducts are used to generate if-then rules that associate a mini-
mal number of characteristic features with a particular class. A
large number of such rules put together constitutes a model
capable of predicting the class(es) of an unknown gene based
solely on its expression profile. Predictions are obtained by
letting each rule matching the example to be classified cast a
number of votes in favor of the biological process modeled by
this rule. The number of votes is proportional to the support
of the rule (i.e., the number of examples annotated with the
process in the right-hand side of the rule that also has a time
profile that matches the left-hand side of the rule). Classifi-
cations are selected among the processes that have a higher
fraction of votes than an experimentally chosen selection
threshold available for each class.

Validation of the Model

A 10-fold cross-validation over the training examples was
used to assess the classification quality of the method. This
corresponds to dividing the set of training examples ran-
domly into 10 nonoverlapping equally sized subsets. One sub-
set is used for testing, whereas the others are used to train a
model. This is repeated 10 times so that each subset is a test set
once and a part of the training set 9 times. The cross-
validation performance estimates constitute the average clas-
sification quality of each submodel on the 10 test sets. In
Table 4 we report the area under the ROC curve (AUC) for
each biological process. AUC is an estimate of the discrimina-
tory power of the classifier independent of the threshold val-
ues. When unseen cases are classified, we need to choose fixed
thresholds. Sensitivity and specificity for the “best” selection
thresholds according to some optimization criterion are
shown in Table 4. Using these thresholds, 84% of all annota-
tions for the training examples could be classified correctly
(sensitivity). Of all classifications, 49% were correct. Using a
stricter criterion (higher selection thresholds) enabled us to
increase the fraction of correct classifications to >90%, with a
corresponding drop in sensitivity to 39%.

All computations were done using the ROSETTA toolkit
kernel version 1.0.1 (Komorowski et al. 2002) for Rough Set
analysis.
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