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Chemokine-mediated inflammation in the
degenerating retina is coordinated by Mduller
cells, activated microglia, and retinal pigment
epithelium
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Abstract

Background: Monocyte infiltration is involved in the pathogenesis of many retinal degenerative conditions. This
process traditionally depends on local expression of chemokines, though the roles of many of these in the
degenerating retina are unclear. Here, we investigate expression and in situ localization of the broad chemokine
response in a light-induced model of retinal degeneration.

Methods: Sprague-Dawley (SD) rats were exposed to 1,000 lux light damage (LD) for up to 24 hrs. At time points
during (1 to 24 hrs) and following (3 and 7 days) exposure, animals were euthanized and retinas processed. Microarray
analysis assessed differential expression of chemokines. Some genes were further investigated using polymerase chain
reaction (PCR) and in situ hybridization and contrasted with photoreceptor apoptosis using terminal deoxynucleotidyl
transferase dUTP nick-end labeling (TUNEL). Recruitment of retinal CD45™ leukocytes was determined via fluorescence
activated cell sorting (FACS), and expression of chemokine receptors determined using PCR.

Results: Exposure to 24 hrs of LD resulted in differential expression of chemokines including Ccl3, Ccl4, Ccl7, Cxcl1, and
Cxcl10. Their upregulation correlated strongly with peak photoreceptor death, at 24 hrs exposure. In situ hybridization

revealed that the modulated chemokines were expressed by a combination of Mller cells, activated microglia, and
retinal pigment epithelium (RPE). This preceded large increases in the number of CD45" cells at 3- and 7-days post
exposure, which expressed a corresponding repertoire of chemokine receptors.

Conclusions: Our data indicate that retinal degeneration induces upregulation of a broad chemokine response whose
expression is coordinated by Muller cells, microglia, and RPE. The findings inform our understanding of the processes
govern the trafficking of leukocytes, which are contributors in the pathology of retinal degenerations.

Background

Chemokines are a large family of genes whose potent
chemoattractant properties help drive the recruitment
of leukocytes during immune surveillance and inflamma-
tion. When induced, chemokines form gradients that
establish directional cues for leukocytes - such as
monocytes - to sites of injury, and aid their arrest and ex-
travasation into the parenchyma [1]. Chemokines are
grouped according to the relative position of their first
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N-terminal cysteine residues, comprising C (y chemokines),
CC (B chemokines), CXC (a chemokines), and CX3C
(8 chemokines) families [2,3]. They exert their biological
activity through binding cell surface chemokine receptors,
which are part of the superfamily of seven transmembrane
domain receptors consisting of C, CC, CXC, and CX3C
receptor subclasses [2].

Monocyte recruitment is a well-characterized feature
in retinal pathologies including age-related macular de-
generation (AMD) [4-7], retinitis pigmentosa [5], retinal
detachment [8,9], glaucoma [10-12], and diabetic retin-
opathy [10,13]. In some instances such recruitment
proves more detrimental than fortuitous, and monocyte
aggregation is directly implicated in retinal models of
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neovascular-AMD [14], light-induced damage [15-17],
diabetic retinopathy [18,19], and glaucoma [20,21]. Che-
mokine signaling is believed to play a role in mediating
monocyte migration in several CNS disorders including
multiple sclerosis, Alzheimer’s disease, and brain ische-
mia and trauma (reviewed in [2,22-24]). In the retina,
upregulation of a and B chemokines, such as Ccl2,
Cxcll, and Cxcl10 have been detected by gene expression
analyses in both wet and dry forms of age-related macular
degeneration (AMD) [25]. Ccl2 is particularly well-
characterized in the retina, and knockout studies indicate
that ablation of Ccl2 or its receptor Ccr2 reduces mono-
cyte infiltration and retinal degeneration in experimental
choroidal neovascularization (CNV) [26,27] and in light-
damaged Cx3crl™™ mice [28]. Additionally, we have
shown that expression of Ccl2 is upregulated in Miiller
cells in light-induced retinal degeneration [29], and tar-
geted knockdown of Ccl2 with siRNA reduces recruitment
of microglia/monocytes and photoreceptor death [30].

Despite a growing understanding of the Ccl2 axis in
relation to retinal dystrophies, there is a relative paucity
in knowledge of the greater chemokine milieu of the
retina and the cellular events that contribute to their ex-
pression. In this study, we aimed to investigate transcrip-
tional regulation and spatiotemporal distribution of the
chemokine response in the retina in situ, following light-
induced degeneration. We find that multitude a and f
chemokines are upregulated following light damage, in
correlation with photoreceptor death. Further, we show,
using in situ hybridization, that a coordinated trio of
Miller cells, retinal pigment epithelium (RPE), and micro-
glia express a suite of o and p chemokines following injury,
for which recruiting CD45" cells bear corresponding che-
mokine receptors.

Methods

Animals and light damage paradigm

All experiments conducted were in accordance with the
ARVO Statement for Use of Animals in Ophthalmic
and Vision Research; the study was approved by the
Animal Experimentation Ethics Committee (AEEC) of
the Australian National University (R.BSB.05.10). Young
adult Sprague—Dawley (SD) rats aged were exposed to
1,000 lux of light damage (LD) following a previous
protocol [31]. Animals were exposed to LD in increments
of 1, 3, 6, 12, 17, or 24 hrs. Additionally, some animals
were returned to dim-light (5 lux) conditions immediately
following 24 hrs of LD for a period of 3 or 7 days, to assess
post exposure changes. All time points were compared
back to age-matched, dim-reared animals.

Tissue collection and processing of whole retinas
Animals were euthanized using an overdose of barbitur-
ate, which was administered via intraperitoneal injection
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(Valabarb; Virbac, NSW, Australia). The left eye from
each animal was marked for orientation then enucleated
for cryosectioning (n = 6), while the retina from the right
eye was excised through a corneal incision for RNA ex-
traction (n = 6). Retinas were processed using previously
described protocols [31].

Fluorescence-activated cell sorting of retinal microglia
Rats at each time point were euthanized as described
previously. Retinas from both eyes were promptly re-
moved through a corneal incision. Retinas from each
animal were pooled and immediately placed in chilled
Hank’s balanced salt solution (HBSS) (n=5 per time
point) and then subjected to light mechanical separation
using a razor blade. Samples were transferred into 0.2%
papain digestion cocktail as described in a previous
protocol [32] with minor modifications, and incubated
at 8°C for 45 minutes, then 28°C for 7 minutes. The
resulting homogenate was centrifuged at 250 g for 5 mi-
nutes at 4°C, and the pellet was resuspended in
neutralization buffer [32]. The homogenate was centri-
fuged again at 420 g for 5 minutes at 4°C, and the pellet
resuspended in staining buffer containing 1.0% bovine
serum albumin (BSA), and 0.1% azide. The samples were
incubated in staining buffer containing a CD45 antibody
conjugated to Alexa 647 (Biolegend, San Diego, CA,
USA) for 45 minutes at 4°C, then washed twice in HBBS
and resuspended in staining buffer. The resultant CD45-
stained samples were run through a fluorescence-activated
cell sorter (FACS) (BD FACSAria II; BD Biosciences,
Franklin Lakes, NJ, USA). Viability of the sorted cells was
assessed by labeling with DAPL The isolated CD45" cells
were collected in staining buffer and kept chilled on ice
until RNA extraction could be commenced.

To prepare for RNA extraction, isolated samples were
centrifuged at 420 g for 5 minutes at 4°C, and the super-
natant removed. RNA extraction was performed with
a combination of TRIzol Reagent (Life Technologies,
Carlsbad, CA, USA) and an RNAqueous-small scale kit
(Life Technologies, Carlsbad, CA, USA) utilized in tan-
dem to extract and purify the RNA respectively, as de-
scribed previously [33]. Isolated total RNA was analyzed
for quantity and purity with a ND-1000 spectrophotometer
(Nanodrop Technologies, Wilmington, DE, USA).

Microarray experimentation and analysis

Microarray analysis of RNA from whole retinas was con-
ducted using raw microarray data derived from an inves-
tigation by our group [31], using Rat Gene 1.0 ST arrays
(Affymetrix, Santa Clara, CA, USA); the microarray data
is accessible from the NCBI Gene Expression Omnibus
repository (GSE22818). Analysis compared samples from
dim-reared and 24-hrs of LD experimental groups (n =3
for each). The microarray data was analyzed with Partek
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Genomics Suite 6.4 software (Partek Inc., St. Louis, MO,
USA), using the same parameters as in our previous in-
vestigation [31].

Statistical analysis was conducted using the analysis of
variance (ANOVA) statistic with the threshold of signifi-
cance set at P <0.05, with a differential expression cut-off
of >50%. The differentially expressed genes were screened
for those pertaining to chemokine activation, and were
grouped according to pathway information summarized
from the Gene Ontology Consortium [34].

Polymerase chain reaction

Quantitative real-time polymerase chain reaction (qQPCR)
was used to validate the expression of genes identified in
the microarray analysis, over the protracted light damage
time course (n=6). First-strand ¢cDNA synthesis was
performed as described previously [29]. Expression was
measured using commercially available TagMan hydroly-
sis probes (Life Technologies, Carlsbad, CA, USA); the
particulars are provided in Table 1. The hydrolysis
probes were applied in the same fashion as our pre-
vious study [29]. Fold change was determined using
the AAC, method, where the expression of the target
gene was normalized relative to the expression of the
reference gene glyceraldehyde-3-phosphate dehydro-
genase (GAPDH). Expression of GAPDH does not change
with respect to retinal light damage, as indicated by several
investigations [31,35,36].

Standard PCR was performed on RNA samples purified
from FACS-isolated monocytes/microglia, using primers
specific to chemokine receptor genes (Table 2). Primers
were designed using the Primer3 web-based design pro-
gram [37], and tailored to transverse an intron splice site.
First-strand ¢cDNA synthesis was performed from 50 ng
of RNA using the Tetro ¢cDNA synthesis kit (Bioline,
London, UK), and applied according to the manufacturer’s

Table 1 Tagman hydrolysis probes
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instructions. Standard PCR was then conducted on the
samples using MyTaq DNA polymerase; the presence of
PCR product and specificity of the reaction were assessed
by gel electrophoresis.

In situ hybridization

A number of chemokines (Ccl3, Ccl4, Ccl7, Cxcll, and
Cxcl10) were cloned from PCR products (540-bp, 212-
bp, 540-bp, 487-bp, and 504-bp amplicons, respectively)
using ¢cDNA prepared from rat retinas (as described in
the qPCR section). Cloning was performed using the
pGEM-T DNA vector system (Promega, Madison, WI,
USA) and JM109 competent E.coli (Promega, Madison,
WI, USA). A DIG RNA Labeling Kit SP6/T7 (Roche, Basel,
Switzerland) was used to transcribe linearized plasmid and
generate DIG-labeled antisense and sense riboprobes. The
in situ hybridization was performed using a previously
established protocol [38]; individual riboprobes were hy-
bridized overnight at 57°C and then washed in decreasing
concentrations of saline sodium citrate (pH 7.4) at 60°C.
The bound probe was visualized with either NBT/BCIP or
HNNP/Fast-Red (Roche, Basel, Switzerland).

Following hybridization, sections stained with HNNP/
Fast-Red were also counter-stained using immunohisto-
chemistry. In situ-stained sections were incubated with
primary antibody overnight at 4°C, which was raised
against either IBA1 (1:500; Wako, Osaka, Japan), Vimentin
(1:100; Sigma-Aldrich, St. Louis, MO, USA), or RPE65
(1:200; Abcam, Cambridge, UK). Sections were then incu-
bated with biotinylated antibodies raised against either
rabbit or mouse IgG’s (Life Technologies, Carlsbad, CA,
USA) for 2 hrs at room temperature and followed by incu-
bation in streptavidin conjugated to Alexa488 (Life
Technologies, Carlsbad, CA, USA) for 1.5 hours at room
temperature. Slides were then cover slipped with Aqua
Poly/Mount (Polysciences, Warrington, PA, USA), and

Gene symbol Gene name

CCL3 Chemokine (C-C motif) ligand 3

CcCl4 Chemokine (C-C motif) ligand 4

CCL7 Chemokine (C-C motif) ligand 7

CXCL1 Chemokine (C-X-C motif) ligand 1

CXCL10 Chemokine (C-X-C motif) ligand 10

CXCL11 Chemokine (C-X-C motif) ligand 11

ADAM17 ADAM metallopeptidase domain 17

IL1B Interleukin 13

MYD88 Myeloid differentiation primary response gene 88
TLR2 Toll-like receptor 2

TNF Tumor necrosis factor

SIGIRR Single immunoglobulin and toll-interleukin 1 receptor (TIR) domain

Catalog Entrez Gene ID
Rn00564660_m1 NM_013025.2
Rn00587826_m1 NM_053858.1
Rn01467286_m1 NM_001007612.1
Rn00578225_m1 NM_030845.1
Rn01413889_g1 NM_139089.1
Rn00788262_g1 NM_182952.2
Rn00571880_m1 NM_020306.1
Rn00580432_m1 NM_031512.2
Rn01640049_m1 NM_198130.1
Rn02133647_s1 NM_198769.2
Rn00562055_m1 NM_012675.3

Rn01501616_g1

NM_001024887.1
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Gene symbol NCBI RefSeq Forward primer (5' - 3') Reverse primer (5' - 3')
Cen NM_020542.2 GTTGGGACCTTGAACCTTGA TGTGGTTGTGGGGTAGGTTT
Ccr2 NM_021866.1 CCAGTGTGAAGCAAATTGGA TGGAAAATAAGGGCCACAAG
Car5 NM_053960.3 GTCAAACGCTTCTGCAAACA CTTGTTCCCAGCCTTCTCAG
Cxcr2 NM_017183.1 CAGAGACTTGGGAGCCACTC TCAGCAAAGTCACCAGAACG
Cxcr3 NM_053415.1 AAGTTCCCAACCACAAGTGC GGCAGGAAGGTTCTGTCAAA

immunofluorescence was viewed using a Zeiss laser scan-
ning microscope (Zeiss, Oberkochen, Germany), and ac-
quired using PASCAL software (Zeiss, v4.0).

Analysis of cell death

TUNEL labeling was used to quantify photoreceptor
apoptosis in cryosections, and utilized a protocol that
has been documented previously [39]. Counts were
made of TUNEL positive cells in the outer nuclear layer
(ONL), and were performed along the full-length of retinal
sections cut in the vertical meridian (superio-inferior), in-
cluding the optic disc. The final count from each animal is
the average at comparable locations in two nonsequential
sections.

Statistical analysis

Statistical analysis was performed using the Kruskal-Wallis
one-way analysis of variance, with Dunn’s multiple com-
parison post-test applied where desired; differences with a
P value <0.05 were considered statistically significant.

Results

Microarray analysis for chemokine-related genes following
24 hours of light damage

Analysis of microarray data compared gene expression
in retinas of animals reared in dim-light conditions
with those exposed to 24 hrs of LD. The reliability of
the microarray data was assessed with hierarchical clus-
tering and principal component analysis in our previous
investigation [31]; both analyses indicated high repro-
ducibility for samples in their respective treatment
conditions. From the microarray data, a list of differ-
entially expressed chemokine-related genes (P <0.05)
was compiled (Table 3), which were grouped according
to their functional roles outlined in the gene ontology
consortium [34].

Chemokine ligands (GO:0008009) were the most prom-
inent among the differentially expressed genes and in-
cluded upregulation in a multitude of a (Ccl2, Ccl3, Ccl4,
Ccl7, Ccl12, Ccl20), and B (Cxcll, Cxcl9, Cxcl10, Cxclll,
Cxcl116) chemokines. Conversely, expression of Ccl9 and
Cxcl6 was found to decrease following LD. Another highly
represented group comprised genes involved in promoting
chemokine synthesis (GO:0045080/G0:0032722), which

included upregulation in II13, Tnfa, Adam17, Tlr2, and
Myd88, and a decrease in Nod2. There was also an
increase in expression of Sigirr, which is associated
with inhibition of chemokine synthesis (GO:0045079/
GO0:0032682). Expression of chemokine receptors (GO:
0019956) showed little wide modulation, although an in-
crease in Ccr5 was observed, and the expression of Cxcr7
was reduced somewhat.

The validity of the microarray data was assessed by
analyzing the expression of 12 genes from Table 3 using
qPCR. These included a selection of chemokine ligands
(Ccl3, Ccl4, Ccl7, Cxcll, Cxcl10, Cxcll1l) and regulators
(I11B, Tnfa, Adam17, Tlr2, Myd88, Sigirr). Differential
expression of these genes at 24 hrs of LD, was found by
PCR to be in agreement with the corresponding data ob-
tained from the microarray (Figure 1).

Relation of chemokine expression to photoreceptor

cell death

The expression of the 12 gene selections was further
examined over the protracted LD time course, and con-
trasted with the number of TUNEL+ photoreceptors
(Figure 2). The time course encompassed incremental
periods during- (1, 3, 6, 12, 17, and 24 hrs) and post-LD
exposure (3 and 7 days).

Large increases in the number of TUNEL+ photore-
ceptors were observed from 12 hrs of LD onward and
reached a peak at 24 hrs (Figure 2A), as reported previ-
ously [29,31]. By 3- and 7-days post-exposure, the num-
ber of TUNEL+ nuclei had decreased substantially.
Expression of « (Ccl3, Ccl4, Ccl7), and B (Cxcll, Cxcl10,
Cxcl11) chemokine ligands was upregulated at 12 hrs of
LD, before reaching a peak at 24 hrs - consistent with
the emergence of TUNEL+ cells (Figure 2B-C). By 3-
days postexposure, expression of all chemokine ligands
was reduced, with only small upregulation evident by
7 days, compared to dim-reared controls. Expression of
chemokine promoters 1113, TNFa, Tlr2, and Myd88 and
the inhibitor Sigirr exhibited similar trends in upregula-
tion over the LD time course to the chemokine ligands
(Figure 2D). 111 and TNEP were the most strongly up-
regulated, beginning at 12 hrs of LD; this upregulation
decreased in the post exposure period, although the de-
creases were smaller for Tlr2 and Myd88. In contrast,
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Table 3 Differentially expressed chemokine related genes following 24 hrs LD exposure
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Gene title Gene symbol  Differential expression (%)  Affymetrix probe set ID
Chemokine activity (GO:0008009)
Chemokine (C-C motif) ligand 2 Ccl2 3609.72 10736700
2968.75 10736701
3683.67 10736699
Chemokine (C-C motif) ligand 3 Ccl3 1137.80 10745678
4996.67 10745679
2146.75 10745680
74847 10745681
30631 10745682
Chemokine (C-C motif) ligand 4 Ccla 32899 10736866
247.01 10736865
279.34 10736864
Chemokine (C-C motif) ligand 7 Ccl7 1166.78 10736704
75247 10736705
Chemokine (C-C motif) ligand 9 Ccl9 -90.89 10745664
Chemokine (C-C motif) ligand 12 Ccl12 49033 10736714
39397 10736715
Chemokine (C-C motif) ligand 20 Ccl20 220.82 10924783
Chemokine (C-X-C motif) ligand 1 Cxcl1 94555 10775901
1559.57 10775902
555.07 10775903
Chemokine (C-X-C motif) ligand 6 Cxclé -163.77 10775923
Chemokine (C-X-C motif) ligand 9 Cxcl9 53.71 10771668
Chemokine (C-X-C motif) ligand 10 Cxcl10 1464.18 10771658
3087.93 10771659
1553.85 10771657
Chemokine (C-X-C motif) ligand 11 Cxcl11 271.26 10771652
439.80 10771651
268.55 10771650
Chemokine (C-X-C motif) ligand 16 Cxcl16 14541 10744462
Chemokine Binding (GO:0019956)
Chemokine (C-C motif) receptor 5 Cer5 5898 10914620
Chemokine (C-X-C motif) receptor 7 Cxcr7 -60.16 10925293
Positive regulation of chemokine production (GO:0045080/G0:0032722)
ADAM metallopeptidase domain 17 Adam17 84.01 10889348
54.93 10889357
124.88 10889340
82.72 10889346
55.11 10889355
Interleukin 18 mnp 21061 10849843
192.00 10849844
Myeloid differentiation primary response gene 88 Myd88 152.30 10920861
261.01 10920862
224.07 10920863
14433 10920866
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Table 3 Differentially expressed chemokine related genes following 24 hrs LD exposure (Continued)

Nucleotide-binding oligomerization domain containing 2
Toll-like receptor 2

Tumor necrosis factor (TNF superfamily, member 2)

Negative regulation of chemokine production (GO:0045079/G0:0032682)

Single immunoglobulin and toll-interleukin 1 receptor (TIR) domain

Nod2 —5242 10809667
Tir2 123.65 10823972
Tnfa 106.36 10828025
119.80 10828023
11145 10828024
Sigirr 71.95 10726694
92.00 10726700

Adam17 was upregulated over the entire time course,
with a modest peak in expression at 24 hrs of LD.

In situ localization of chemokines following light damage
exposure

Chemokine ligands Ccl3, Ccl4, Ccl7, Cxcll, and Cxcl10
were selected for further characterization in 24-hr LD
retinas, by in situ hybridization (Figures 3, 4, 5, 6). No

expression of chemokines was detected in retinas of dim-
reared animals (Figures 3, 4, 5, 6). For Ccl3 and Ccl4,
mRNA staining was evident by 24 hrs of LD in irregular-
shaped nuclei/processes (Figure 3A-D, J-M), scattered
throughout the ONL. These cells were more numerous in
the superior part of the retina, which is the focal region for
LD-mediated degeneration (data not shown). Counter
immunolabeling for IBA1 revealed a strong co-localization
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contrasted with their gPCR counterparts (n = 6). Increases were observed in all in genes by gPCR, which corroborated the microarray analysis,
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peak at 24 hrs of LD. The trend in expression for all genes, as well as TUNEL, was significant by one-way ANOVA (P <0.05); n = 6.

of both Ccl3 (Figure 3E-I) and Ccl4 (Figure 3N-R) with
activated IBA1" microglia in the ONL at 24 hrs post
exposure/LD.

In situ hybridization for Ccl7 also evident in cells scat-
tered throughout the ONL at 24 hrs of LD (Figure 4B-D),
but in addition was detected in cell processes radially ori-
ented in the INL. As with the Ccl3 and Ccl4, this staining
was more frequent in the superior retina (data not shown).
Counter immunolabeling for IBA1 indicated that staining
for Ccl7 in the ONL coincided with activated microglial
cells (Figure 4H-K). In the INL, Ccl7 mRNA labeling of cell
processes was IBAl-negative (Figure 4O-P). Instead, these
cells co-localized Ccl7 mRNA with immunoreactivity for
vimentin (Figure 4L-N), consistent with an identification of
Miiller cell processes.

The localizations of Cxcll and Cxcl10 resembled each
other (Figures 5 and 6). Following 24 hrs of LD, Cxcll
(Figure 5B-C) and Cxcl10 (Figure 6B-C) mRNA was
labeled in putative RPE cells, predominately in the su-
perior retina (Figures 5D, 6D). The identity of these
Cxcl1/Cxcl10 expressing cells was confirmed by posi-
tive counter immunolabeling for RPE65 (Figures 5I-K,
61-K). Cxcll and Cxcl10 mRNA labeling was also de-
tected in radial processes within the INL, mainly in
the superior retina, at 24 hrs of LD (Figures 5E, 6E).
In this location, Cxcll and Cxcl10 mRNA labeling co-
localized strongly with vimentin immunoreactivity con-
sistent with an identification of Miler cell processes.
(Figures 5G-H, 6G-H). A summary of these data is pro-
vided in Table 4.
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A Dim-reared

J Dim-reared

M 24hrs LD

o

N 24hrs LD

Figure 3 In situ hybridization for Ccl3 and Ccl4 mRNA in the retina following exposure to 24 hours of light damage. /n situ hybridization
for Ccl3 is documented in A-l, while Ccl4 is shown in J-R. A: In retinas from dim-reared animals, staining for Ccl3 was not observed in the retina.
B-D: After 24 hrs light damage (LD), there was staining for Ccl3 in irregularly shaped nuclei - ranging from elongated to globular - traversing the
outer nuclear layer (ONL) of the superior retina (arrowheads). Conversely, few Cc3-expressing cells were found in the inferior retina (data not shown).
E-I: Nuclei stained for Ccl3 mRNA (red) showed strong correlation (arrowheads) to activated microglia, which were counterimmunolabeled with an
antibody to IBAT (green). J: Ccl4 mRNA staining was not apparent in sections of dim-reared retinas. J-M: At 24 hrs, LD staining for Ccl4 was detected
among clusters of irregular nuclei in the ONL from the superior retina (arrowheads); little-to-none were observed in the inferior retina (data not shown).
N-R: Ccl4-expressing nuclei (red) in retinal sections show strong immunofluorescence (arrowheads) for IBAT+ microglia (green), much like Ccl3 (E-l).

INL, inner nuclear layer; IHC, immunohistochemistry; ISH, in situ hybridization; ONL, outer nuclear layer; OS, outer segments.

Recruitment of CD45" and expression of chemokine
receptors

Changes in the number of CD45" monocytes/microglia
following LD were identified using FACS; representative
gating strategies and scatter blots are noted in Figure 7A.
In dim-reared retinas, CD45" cells comprised a relatively
small population of the gated retinal isolates, at approxi-
mately 0.098% (Figure 7B). After 24 hrs of LD, the retinal
CD45+ population rose substantially to 0.340% (P <0.05),
then reaching 0.875% by 3 days (P <0.05). A further in-
crease to 1.24% was observed at 7 days, although this was
not significantly different from the population size at 3 days
(P >0.05).

PCR of RNA from the CD45-FACS isolates at each
time point showed differential expression of the chemokine
receptors Ccrl, Ccr2, Cer5, Cxc2, and Cxcr3 (Figure 7),
which are known to bind the differentially expressed
ligands validated by qPCR in Figure 1 [40]. CD45 isolates

express all chemokine receptors assessed (Figure 7C-G),
although the density of the PCR bands varies depending
on the time point. Ccrl, Ccr2, Cer5, and Cxcr2 appear to
be lowly expressed in dim-reared animals and more highly
expressed following 24 hrs of LD and at the post-exposure
time points (Figure 7C-F). Cxcr3 showed no amplification
in dim-reared samples, was highly expressed at 24 hrs of
LD, and was low by 7-days post-exposure (Figure 7F).

Discussion

These findings identify a complex network of chemokine
activity elicited by light-induced retinal degeneration and
include several novel findings. First, we show that a suite
of a (Ccl3, Ccl4, Ccl7) and B (Cxcll, Cxcl10, Cxclll)
chemokines are upregulated following 24 hrs of LD, and
these chemokines correlate strongly with the emergence
of photoreceptor death and upregulation of chemokine
regulatory genes (1113, Tnfa, TIr2, Myd88, Adam17, Sigirr).
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Figure 4 In situ hybridization for Ccl7 mRNA in the retina following exposure to 24 hours of light damage. A: Staining for Ccl7 was not
observed in the retinas of dim-reared animals B-D: In retinas exposed to 24 hrs light damage (LD), Ccl7 expression was found in infrequent clusters
of nuclei within the outer nuclear layer (ONL) of the superior retina (arrowheads), with few in the inferior (data not shown). E-F: Ccl7 expression was
also apparent in radial processes (arrowhead) dispersed within inner nuclear layer (INL) of the superior retina, following 24 hrs of LD. G: Ccl7 staining
was less evident in the inferior portion of the retina following LD. H-K: Ccl7-stained nuclei (red) in the ONL were found to coincide with
activated IBAT-immunolabeled microglia (green; arrowheads). L-N: Staining for Ccl7 mRNA (red) in the INL showed strong co-localization for
vimentin-immunreactive Muller cell processes (arrowheads). O-P: Ccl7-expressing cells in the INL (red; arrowheads) were negative for IBA1
immunostaining. INL, inner nuclear layer; IHC, immunohistochemistry; ISH, in situ hybridization; ONL, outer nuclear layer; OS, outer segments.

Second, in situ hybridization demonstrates that Miiller
cells, RPE, and activated microglia comprise a ‘trio” of cells
that express select chemokine ligands (Ccl3, Ccl4, Ccl7,
Cxcll, Cxcll0) after LD. Third, we show that LD-induced
upregulation of chemokines is proceeded by infiltra-
tion of CD45" monocytes/microglia, which bear corre-
sponding receptors (Ccrl, Ccr2, Ccr5, Cxcr2, Cxcr3)
at 3-days postexposure.

Several investigations have previously identified upregu-
lation in chemokine ligands following retinal light damage,
including Ccl2, Ccl3, Ccl4, Ccl7, Cxcll, and Cxcll0
through PCR and microarray analysis [35,41-43]. However,
these studies did not identify the source of their expression
in the retinal environment in situ, nor did they closely re-
late chemokine expression to photoreceptor cell death and
regulatory factor expression. To our knowledge, this is the
first investigation to demonstrate a preferential localization
of chemokine mRNA in activated microglia (Ccl3, Ccl4,

Ccl7), Miiller cells (Ccl7, Cxcll, Cxcl10), and RPE (Cxcll,
Cxcl10) in the degenerating retina. These observations are
supported by a number of in vitro studies, which have re-
ported expression of Ccl3 by microglia [43], and Cxcll
[44-46] and Cxcl10 [47,48] in Miller cells or RPE in re-
sponse to various stimuli including cytokines and bacterial
pathogens. The expression profiles of chemokine ligands
by microglia, Miller cells, and RPE following LD were
highly defined and cell-specific. The precise roles of these
discrete chemokine phenotypes in the degenerating retina
are unclear, despite a bourgeoning understanding of che-
mokine activity in recent years. Functional significance
may be inferred, however, based on current understanding
of the chemokines identified.

Chemokine secretion by activated microglia
We find that Ccl3, Ccl4, and Ccl7 are expressed by acti-
vated microglia after LD. Previous in vitro and in vivo
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Figure 5 In situ hybridization for Cxcl1 mRNA in the retina following exposure to 24 hours of light damage. A: In sections from dim-reared
animals, staining for Cxcl1 was absent. B-D: Retinas exposed to 24 hrs of LD showed staining for Cxcl1 in putative retinal pigment epithelium (RPE)
cells (arrowheads) in the superior retina (B-C), and few-to-none in the inferior (D). E-F: Staining for CxclT mRNA was also present in the inner
nuclear layer (INL) of superior retina following 24 hrs of LD (E; arrowheads), and mostly absent in inferior retina (F). G-H: Retinas with stain for
Cxcll mRNA in the INL (red; arrowhead), which was found to co-localize with vimentin-immunolabeled Muller cell processes (green; arrowheads).
I-J: Localized Cxcl1 stain in putative RPE cells (red; arrowheads) correlated strongly with immunolabeling for RPE65 (green; arrowheads); Cxcl1 stain
appeared to be localized in the nucleus, rather than cytoplasm. C, choroid; INL, inner nuclear layer; IHC, immunohistochemistry; ISH, in situ

studies indicate that Ccl3 is involved in the proliferation
and mobilization of mature myeloid progenitor cells, as
well as in recruitment of bone marrow-derived mono-
cytes [49-52]. This function may be exerted through the
binding of receptor Ccrl [53,54], although Ccl3 also in-
teracts with Ccr5, which mediates monocyte recruit-
ment, and mobilization of Thl T cells [52,55,56]. In the
retina, deficiencies in Ccl3 reduce progressive photo-
receptor death and monocyte recruitment in degenerative
Abcad™"~ Rdh8™'~ mice, and in the Mertk™"~ mouse model
of retinitis pigmentosa [43]. Ccl4 also interacts with Ccr5,
to promote recruitment of monocytes into the retina when
subjected to oxygen induced retinopathy [57].

In contrast, Ccl7 is a ligand of the better documented
receptor Ccr2, and is major determinant in chemotaxis
of monocytes. Deficiencies in Ccr2 impair monocyte re-
cruitment to tissues in disease models ranging from
arthrosclerosis [58] and autoimmune encephalitis [59],
to choroidal neovascularization [26]. Several studies in-
dicate that Ccl2 and Ccl7 are the primary agonists of
Ccr2, in which ablation of either of these ligands re-
duced monocyte recruitment from bone marrow to per-
ipheral vessels in thioglycollate-induced peritonitis [60]
and Listeria monocytogenes infection [61]. Taken together,
the findings suggest that activated ‘resident’ microglia are

potent drivers of monocyte filtration from the vascula-
ture to the parenchyma following LD. The present re-
sults suggest that this activity is mediated, at least in
part, by activated microglia through the expression of
specific chemokines. This expression is possibly trig-
gered by migrating microglia that encounter stressed
photoreceptors in the ONL. This suggestion is supported
by our findings that recruited CD45" cells bear the corre-
sponding Ccrl, Ccr2, and Ccr5 receptors following LD
and found to be expressed by monocytes and macro-
phages in other studies [56,62,63].

Chemokine secretion by retinal pigment epithelium and
Miiller cells
In contrast to the monocyte-centric chemotactic profile
of activated microglia, chemokine expression by Miiller
cells and RPE suggests they have a broader role in
modulation of the leukocyte response. Miiller cells and
RPE shared a similar expression profile of upregulation
of Cxcll and Cxcl10 following LD, while Miiller cells also
expressed Ccl7. We have shown previously that Miiller
cells also express Ccl2 following LD [29].

Cxcll, and its cognate receptor Cxcr2, are commonly
associated with recruitment of neutrophils from the vas-
cular supplies [64-66], and signaling via this receptor is
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Figure 6 In situ hybridization for CxcI10 mRNA in the retina following exposure to 24 hours of light damage. A: Expression of Cxcl10 was
not apparent in dim-reared sections. B-C: Sections from the superior retina (B) showed stain for Cxcl10 mRNA in putative retinal pigment
epithelium (RPE) cells (arrowheads) following 24 hrs light damage (LD), while no staining was observed in the inferior retina (D). D-E: Following

24 hrs of LD, stain for Cxcl10 mRNA appeared in the INL within superior retina (D-E; arrowheads). F: Staining for Cxcl10 was not readily apparent in
the inferior retina. G-I: Sections with labeling for Cxcl10 mRNA (red; arrowheads) in the INL, which correlated with Muller cells immunolabeled with
vimentin (green; arrowheads). J-K: Putative RPE cells, which were positive for Cxcl10 mRNA labeling (red; arrowheads), were also immunoreactive
for the marker RPE65 (green; arrowheads). C, choroid; INL, inner nuclear layer; IHC, immunohistochemistry; ISH, in situ hybridization ONL, outer

nuclear layer; OS, outer segments.

implicated in the pathogenesis of rheumatoid arthritis
[67,68], lung injury [69], and adenoviral keratitis [70].
Furthermore, neutrophil recruitment contributes to path-
ology in choroidal neovascularization [71] and in loss
of blood retinal barrier integrity in RPE-choroid explants
[72]. Cxcll and Cxcr2 are also implicated in mobilization
of monocytes, in models of atherosclerosis [73,74] and
is Cxcr2 expressed by CNS- and retinal-derived mono-
cytes [75,76].

On the other hand, Cxcl10 plays a role in chemotaxis
of T cells via Cxcr3 signaling. Cxcr3 signaling is required
for recruitment of cytotoxic T cells in West Nile virus
encephalitis [77,78], and in the eye, Cxcll0 mediates
Thl T cell trafficking in response to chronic ocular

Table 4 Summary of retinal Ccl and Cxcl localization
following light damage

Gene Miiller cells IBA1+ microglia Retinal pigment epithelium
Ccl3 - + -
Ccl4 - + -
Ccl7 + + -
Cxcl  + - +
Cxcl10 + - +

Toxoplasmosis [79]. Besides T cells, Cxcr3 is also ex-
pressed on monocytes/microglia as described in vitro
and in vivo [80-82] and may modulate their recruit-
ment in response to noxious stimuli. Supplementation
with Cxcl10 also promotes the survival of photorecep-
tor in vitro and in retinal explants, which suggest
additional neurotrophic properties [48]. Neutrophil
and T cell activity are poorly characterized in light-
induced retinal degeneration, possibly because, in in-
stances where it has been investigated, their numbers
are relatively small compared monocytes/microglia [43].
Therefore, the precise recruitment and function of neutro-
phils and T cells in retinal light damage warrants further
investigation.

Synthesis of Cxcll and Cxcl10 by RPE and Miiller cells
and their juxtaposition to the choriocapillaris and retinal
vasculature, respectively, possibly reflects their role as ef-
ficient mediators of chemotaxis of monocytes, neutro-
phils, and T cells from the circulation. The additional
secretion of Ccl7 by Miiller cells - in conjunction with
Ccl2 [29] - may suggest a stronger emphasis on monocyte
recruitment from the retinal vessels following LD, consist-
ent with observation of an influx of bone marrow-derived
monocytes from the retinal vasculature in retinal injury
following exposure to bright light [83].
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Figure 7 Changes the number of CD45" cells using fluorescence activated cell sorting (FACS), and their expression of chemokine receptors.
A: Representative FACS plots, with gating strategies, for a 7-days postexposure sample stained for CD45. Gating methodology was applied equally for
all samples. B: Histogram depicts changes in the population of retinal CD45" cells following light damage (LD). Proportion of CD45" cells roughly
tripled following 24 hrs of LD (P <0.05), and continued to increase substantially during the post-exposure period after 3 days (P <0.05); a further
increase at 7 days was not significant (P >0.05). The overall trend was significant by one-way ANOVA (P <0.05); n = 5. C-G: Representative images
of PCR products via electrophoresis for Ccrl, Ccr2, Cer5, Cxcr2, Cxcr3, in samples of CD45-sorted cells. Receptor expression was low in dim-reared
control samples (C-F), and absent for Cxcr3 (G). Expression increased substantially following 24 hrs of LD for every receptor assessed (C-G), and
was maintained through the post exposure period, with the exception of Cxcr3 (G).
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Factors that promote chemokine expression in the
degenerating retina
We also find in this study the upregulation of factors
that have broad modulatory roles in chemokine secre-
tion, including the pro-inflammatory cytokines IL1{ and
TNFa. These factors induce expression of both a and 3
chemokines in vitro [84] and under various conditions
including mycobacterial infection [85], nephrotoxicity
[86], LPS-induced endotoxemia [87], and arthritis [88].
Other genes identified in this study that may induce che-
mokine expression are TIr2 [89,90] and Myd88 [91,92].
The events leading to collective synthesis of che-
mokines by microglia, Miiller cells and RPE following
LD are uncertain, although recent evidence conducted
in vitro points to an interactive role with microglia in

chemokine secretion. Miiller cells co-cultured with LPS-
activated microglia were found to upregulate expression
of Ccl2 and Ccl3 [93]. These microglia-stimulated
Miller cells in turn induced reciprocal activation of un-
stimulated microglial cultures, including upregulation
of II1B. Co-culturing with activated microglia also in-
duced upregulation chemokines in RPE cultures, such
as Ccl2 and Ccl5 [94]. The data suggest that the trio of
cells identified as expressing chemokines in the LD
model co-activate; whether direct interaction between
cell types is required is unclear, although, if so, would be
most likely mediated by activated microglia, which are
the only motile cell of the trio. It should be noted that
in vivo Miller cells and RPE do not express Ccl3 and
Ccl2, respectively.
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Conclusions

The study shows that microglia, Miiller cells, and RPE
each contribute to the trafficking of leukocytes following
retinal damage through coordinated chemokine secre-
tion. We show that chemokine expression by this trio of
cells precedes mass recruitment of CD45" cells, which
bear the corresponding chemokine receptors and which
increased in number in the retina over the time course
of the experiment. Our findings provide valuable insight
into chemokine activity in retinal degenerations.
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