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Drastic biodiversity declines have raised concerns about the deterioration of

ecosystem functions and have motivated much recent research on the

relationship between species diversity and ecosystem functioning. A func-

tional trait framework has been proposed to improve the mechanistic

understanding of this relationship, but this has rarely been tested for organ-

isms other than plants. We analysed eight datasets, including five animal

groups, to examine how well a trait-based approach, compared with a

more traditional taxonomic approach, predicts seven ecosystem functions

below- and above-ground. Trait-based indices consistently provided greater

explanatory power than species richness or abundance. The frequency distri-

butions of single or multiple traits in the community were the best predictors

of ecosystem functioning. This implies that the ecosystem functions we

investigated were underpinned by the combination of trait identities (i.e.

single-trait indices) and trait complementarity (i.e. multi-trait indices) in

the communities. Our study provides new insights into the general mechan-

isms that link biodiversity to ecosystem functioning in natural animal

communities and suggests that the observed responses were due to the iden-

tity and dominance patterns of the trait composition rather than the number

or abundance of species per se.
1. Introduction
Unprecedented species extinctions during the past decades have raised concerns

about the consequences of biodiversity loss for the functioning of ecosystems and

associated ecosystem services that are fundamental for human well-being [1].

Ample evidence shows that species richness and diversity can enhance ecosystem

functioning [2,3]. However, much variation in the relationship between biodiver-

sity and functioning (BEF) remains to be explained. To improve predictions and

mechanistic understanding of BEF, it has been increasingly accepted that instead

of focusing on the taxonomic identity of organisms, the diversity of functional

traits of species within a community should be studied [2–5]. However,
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the usefulness of such trait-based compared with species-

based approaches, as well as the relative importance of single

versus multiple traits for ecosystem functioning remained

largely unexplored in organisms other than plants.

In early attempts to link species traits to ecosystem func-

tioning, species were sorted into functional groups based

on the similarity of their traits often according to experts’

opinion (e.g. [6]). Although this was a step forward and a

useful exercise, the approach was criticized because func-

tional groups failed to consider within-group variation in

traits, and they rarely explained more variation in ecosystem

functioning compared with randomly assembled groups of

species [7]. Recently, quantitative measures have been devel-

oped that use multivariate techniques to integrate multiple

traits into a single continuous trait diversity index. These

measures capture value, range or distribution of functional

traits in a community (hereafter ‘functional diversity’). They

are promising tools that could increase our understanding

of the mechanisms that drive ecosystem functioning [8–11].

However, most studies have used functional diversity

merely as a proxy for ecosystem functioning, but without

actually measuring the function and explicitly linking it to

the functional diversity measure. For functional diversity

measures to be useful for explaining ecosystem functioning,

their predictive ability needs to be tested, and they should

provide information beyond that given by measures based

exclusively on species richness and abundances [5]. Here,

we intend to fill this gap in BEF research by examining the

relationship between trait- or species-based indices and a

number of animal provided ecosystems functions measured

below- and above-ground.

There is an ongoing debate about which of the many

functional diversity measures should best predict ecosystem

functioning, and which mechanisms these relationships

reflect [5]. We summarize the main mechanisms of ecosystem

functioning that different trait-based indices emphasize

(figure 1). First, if differences among species are unimportant,

the overall numerical or biomass abundance of organisms in

a community might be better predictors than any of the

measures that incorporate functional traits (figure 1a). Thus,

overall abundance provides a null model in which all species

in the community are equally efficient regardless of the trait

levels they have. Note that trait-based indices consider

both, which traits are assumed to be important, but also

their trait values (continuous traits, e.g. different values of

body size) or levels (discrete traits, e.g. diet ‘specialist’ or

‘generalist’). For simplicity, we refer only to trait levels

throughout. Second, if a single trait level is strongly linked

to an ecosystem function, abundance of this trait level may

best predict the functioning (the functional identity hypoth-

esis) ([12–14]; figure 1b). Alternatively, the complementarity

of different traits in the community may be important for

the functioning in the ecosystem (the functional complemen-

tarity hypothesis) [4,15]. In this case, indices that measure

presence or absence of certain trait levels (i.e. functional rich-

ness, figure 1c), or those that consider abundance of different

trait levels in the community (figure 1d ) will explain most of

the functioning. In the latter case, weighted functional diver-

sity indices will best predict ecosystem functioning. It should

be noted that only positive functional diversity–ecosystem

functioning relationships indicate functional complemen-

tarity. Negative relationships reflect components of both

functional identity and complementarity with only a few
dominant trait levels being important. Hence, the functional

identity and complementarity hypotheses are not mutually

exclusive and several studies have found that a combination

of the two explained most of the variation for several ecosys-

tem functions [16–20]. Analysing which functional diversity

indices can best explain a set of ecosystem functions may pro-

vide clues to the main drivers of these functions and increase

our mechanistic understanding of the BEF relationship.

Most tests of how well multivariate functional diversity is

linked to ecosystem functioning (figure 1 c,d) have been con-

ducted in small-scale, highly controlled plant communities.

In addition, we have not been able to find any investigations

of this relationship for terrestrial animals (see the literature

summary in electronic supplementary material, table S1).

Hence, we analysed eight datasets collected from the field

along land-use gradients, and covering five terrestrial animal

groups and seven ecosystem functions above- and below-

ground: bees (pollination), carabid beetles (biocontrol of crop

pests, biocontrol of weeds), earthworms (bioturbation), soil

nematodes (nutrient cycling) and dung beetles (dung removal

and seed burial). Increased understanding of the BEF relation-

ship in these systems is important because both species and

functional diversity are under great threat from land-use inten-

sification [21,22]. Furthermore, sustainable development of

human society in the face of rapidly increasing human popu-

lations will depend on the ways we manage these ecosystems

and the services they provide. However, we do not attempt

to describe direct effects of land-use on biodiversity or ecosys-

tem functioning as this is done in numerous previous studies

(e.g. [22–24]). Instead, we use the land-use gradients in order

to assure we capture variability in different aspects of the com-

munity composition such that we can detect and assess its

impacts on functioning.

We tested which of the four groups of indices in figure 1

best predicted ecosystem functioning in our datasets. More

precisely, we explored (i) whether trait-based approaches

offer greater explanatory power of ecosystem functioning

than indices based only on species presence and abundance;

(ii) whether single-trait measures calculated as community

weighted trait means (CWM, reflecting the functional identity

hypothesis) explain ecosystem functioning better or worse than

multivariate functional diversity measures (reflecting the func-

tional complementarity hypothesis) and (iii) whether the

predictive power of multivariate functional diversity measures

increases when the traits are weighted by numerical or biomass

abundance of the species in the communities.
2. Material and methods
(a) Data description
We analysed eight field studies that included five animal groups

(bees, carabid beetles, earthworms, soil nematodes and dung

beetles) which deliver seven key ecosystem functions (pollina-

tion, biocontrol of crop pests, biocontrol of weeds, bioturbation,

nutrient cycling, dung removal and seed burial). We focus on

field studies because knowledge gained by them is an important

complement to the numerous experimental studies in BEF

research. Despite difficulties in demonstrating direct causal

links [25], field studies better reflect the relative importance of

mechanisms in real-world situations that are governed by pro-

cesses acting at other scales than the commonly investigated

small-scale BEF experiments. The data we used had not been

analysed in this context previously. For each animal group, we
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Figure 1. Main mechanisms linking traits to ecosystem function. The x- and y-axes represent different trait levels (e.g. ‘large body size’, ‘medium body size’ and
‘small body size’). For simplicity, only two traits are presented. Darker colours indicate higher trait level abundance in the community. Different mechanisms predict
that high functioning levels can be achieved by having (a) high abundance of any trait present in the community, (b) high abundance of the efficient trait level of
the relevant trait, (c) the presence of complementary trait levels combinations or (d ) an even distribution of complementary trait level combinations. Figures should
be seen as simplified examples and other trait combinations are possible. See text for explanation for the calculation of indices.
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collected species’ trait information from identification keys and

from a number of published research papers and databases. We

included traits that are often measured for a specific animal

group and shown to be key traits in affecting the organisms’

response to environmental change, and/or to have functional sig-

nificance (see electronic supplementary material, S1 for the

discussion about the trait choice and list of traits and references).

Adult specimens were identified to species, except for pollinators

and nematodes where similar species not identifiable in the labora-

tory were assigned to the same morphspecies. Analyses were done

independently for each separate dataset and ecosystem function.

(i) Pollination
We analysed three separate datasets conducted in three crop sys-

tems (field beans, strawberries and spring oilseed rape) in UK,

Germany and Sweden, respectively [26]. Bees were sampled in

10 fields in each crop type by hand-netting along a fixed transect.

Fields were located along a gradient of landscape complexity

measured as percentage arable land. Functioning was measured

as total weight of fruits on five to 10 plants (depending on the

crop) in four plots per field.

(ii) Biocontrol of pests
We analysed data from studies replicated in six European regions:

Ireland, West Germany, East Germany, Poland and two provinces

in Sweden: Uppsala and Scania [27]. In each country, eight cereal

fields were located in contrasting landscapes with low versus

high levels of agricultural intensification. Carabid beetles were col-

lected with five pitfall traps per field. To measure function delivery

by ground-dwelling predators, exclosure experiments were used
to calculate the difference between aphid population growth in

full exclosure (excluding ground-dwelling and flying predators

and parasitoids using cages and barriers), and aphid population

growth when ground-dwelling predators (mainly carabids) had

access to aphids (excluding flying predators and parasitoids

using cages).

(iii) Biocontrol of weeds
We used data from a study conducted in Germany in 22 winter

wheat fields selected along a gradient in landscape complexity

measured as percentage arable land (11 paired fields [28]). Cara-

bids were sampled using four pitfall traps per field. Biocontrol of

weeds was calculated for four common species: goosegrass

(Galium aparine L.; seed consumption Ga), creeping thistle (Cirsium
arvense L. Scop.; seed consumption Ca), rough-stalked meadow-

grass (Poa trivialis L.; seed consumption Pt) and loose silky

bentgrass (Apera spica-venti L; seed consumption As) separately.

To measure percentage of seed loss due to ground-dwelling invert-

ebrates, exclosure experiments were used to calculate the difference

between percentage of remaining seeds from the initial seed

number or seed weight in full exclosure (vertebrates and invert-

ebrates excluded using cages with a small mesh size) and when

only the vertebrates were excluded (using cages with a large

mesh size) so that carabids had access to seeds.

(iv) Bioturbation
Earthworm communities were studied in cereal fields in the

Swedish provinces of Uppland and Scania. In each province, earth-

worm communities were assessed in six sets of three farms that

differed in farm management in close proximity to one another
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(see [29] for design of the study). Earthworm communities were

estimated from four soil samples (30 � 30 � 30 cm) per field,

taken at least 20 m from the field edges and with a 20 m distance

between each sample. Earthworms were carefully hand sorted.

Bioturbation was measured as above-ground cast production esti-

mated by measuring in situ cast production over time on four

observation squares at each field (dry matter soil per unit area

and time). Bioturbation is an important ecosystem function as it

affects soil formation, water supply and flood and erosion control

through its influence on paedogenesis and infiltration and storage

of water in soil [30]. Earthworms actively participate to the process

of bioturbation as they may ingest large amounts of soil and litter,

and hence become major regulators of the dynamics of litter and

SOM in the ecosystem [31].
R.Soc.B
282:20142620
(v) Nutrient cycling
Soil surveys from 44 agricultural sites in The Netherlands

were analysed [32]. In each field, 320 soil cores were randomly

collected and mixed. Nematodes were extracted from 100 g sub-

subsamples. One hundred and fifty randomly chosen individual

nematodes were identified per site. As a measure of ecosystem

function, we used total amount of phosphorous (P total) in soil as

a proxy for nutrient cycling. Nematode abundance is strongly cor-

related to soil P and through their micro-bioturbation activity, high

nematode abundances might contribute to high P retention [33].
(vi) Dung removal and seed burial
We used data collected from six forest sites in Sabah, Malaysian

Borneo (two old-growth forest, two low-intensity selectively

logged forest and two high-intensity logged forest) [34]. Dung

beetles were sampled using 10 dung-baited pitfall traps per

site. Dung removal was measured by placing a pile of cattle

dung at each of the 10 points one month after the trapping and

collecting the remaining dung after 24 h. Plastic beads of three

sizes (small, medium and large) were used as seed mimics and

placed in the dung to measure seed removal rates.
(b) Diversity indices
For each community, we calculated several biodiversity indices

(table 1) divided into the four groups shown in figure 1. For indi-

ces that were weighted by numerical or biomass abundance, we

used the subscripts ‘/n’ and ‘/b’, respectively. Biomass abundance

of each species in a community was obtained by multiplying the

number of individuals of each species by its average body mass.

For bees and carabid beetles, average body masses were estimated

from a measure of body size using allometric relationships (based

on intertegular distance for bees [37]; total body length for carabids

[38]). For earthworms, nematodes and dung beetles, we used body

mass measurements; dry body mass measured directly or fresh

weight converted to dry body mass. For earthworms and nema-

todes, body mass was estimated separately for field populations

of adults and juveniles, and then weighted by their proportional

numerical abundances.

First, we calculated species-based indices from species pres-

ence, and numerical or biomass abundance (Sx, where x is the

diversity index used): species richness (Srich), Pielou’s evenness

based on species numerical or biomass abundance (Seve/n and

Seve/b), Shannon diversity index based on numerical or biomass

abundance (Ssh/n and Ssh/b) and total abundance or biomass of

the community (Stot/n and Stot/b).

Second, we calculated single-trait-based indices, i.e. commu-

nity weighted means for each trait in a community (figure 1b),

weighted by their relative numerical (CWMx/n, [35]) or biomass

abundances (our adjusted index, CWMx/b), where x is the name

of the trait or a trait dominant level for categorical traits. If a trait
was categorical, we used the frequency of the most abundant

trait level in the community.

Multi-trait indices are often described by three independent

groups of measures [39]—functional richness, functional evenness

and functional diversity [11,40], which capture different aspects of

the functional diversity [11]. Each group of measures can be calcu-

lated in several different ways, but there is no consensus on which

index within each group performs best. To test our question about

relative importance of weighted versus non-weighted FD indices,

we calculated 14 commonly used multivariate functional diversity

measures, which we divided into two groups. The first group con-

siders only the presence or absence of trait levels (two functional

richness indices FRx, figure 1c). The second group comprises 12

functional diversity indices weighted by numerical and biomass

abundance (FDx/n and FDx/b, figure 1d), therefore including

both functional divergence and functional evenness measures.

All indices are based on a species per species trait–distance

matrix. Given that all datasets contain traits coded as categorical

variables, all distance matrices based on species traits were calcu-

lated using Gower distance with Podani’s extension to ordinal

variables [11,41,42].

For the two functional richness measures (FRx), we first cal-

culated a measure based on dendrograms (FRdendr, [8]). The

dendrogram was constructed using the UPGMA clustering

algorithm, as it yielded a dendrogram with the highest cophe-

netic correlation with our original distance matrices and has

also been identified to perform best in most cases [42]. The

cophenetic correlation measures how faithfully a dendrogram

preserves the original pairwise distances. Second, we estimated

the minimum volume required to contain a set of points in

trait space (FRminvol, [11]). A Cailliez correction was applied

when the species-by-species distance matrix could not be rep-

resented in a Euclidean space [43]. However, the quality of the

reduced space was not as high as the quality measured as cophe-

netic correlation for the dendogram-based approach (quality

FRminvol ¼ 0.51+ 0.11, quality FRdendr ¼ 0.8+0.04).

Next, we calculated the 12 functional diversity measures

weighted by numerical or biomass abundance (FDx). The first

four indices (FDdendr.wc/n, FDdendr.wc/b, FDdendr.ac/n and

FDdendr.ac/b) are weighted versions of FRdendr implemented

specifically for this paper. In order to construct the weighted

indexes, before summing the branches of a dendrogram, each

branch is weighted by the relative numerical or biomass abun-

dance of each species within the community (FDdendr.wc/n,

FDdendr.wc/b). Hence, for each terminal branch, the weighting

is done according to the abundance of the terminal species in

this branch, but for each internal branch, the weighting is done

by the average of the abundances of all the species descending

form this internal branch. This index is highly correlated with

the weighting procedure proposed in [44], but has the advantage

that instead of building a different dendogram for each commu-

nity, it builds a single dendrogram for all communities, which is

the recommended approach [42]. The next two indices are con-

structed in the same way, but weighted by the mean relative

proportion of numerical or biomass abundance of each species

with respect to the species with highest numerical or biomass

abundance across all communities (FDdendr.ac/n, FDdendr.ac/

b). While the first index relates to the evenness of species in a com-

munity, the second one takes into account the relative numerical or

biomass abundances in a community with respect to all the other

analysed communities. The remaining eight indices are based on

the convex hull space: functional divergence (FDdiv/n, FDdiv/b,

[11]), functional dispersion (FDdis/n, FDdis/b, [10]) and Rao’s

quadratic entropy (FDRao/n, FDRao/b [36]). Functional dis-

persion and Rao’s quadratic entropy are highly correlated, but

we included both to enable comparison with other studies that

have used these indices. Finally, we calculated two measures of

functional evenness (FDeve/n, FDeve/b; [11]).



Table 1. Explanation of the indices used in the analyses. Groups of the
indices (a – d ) correspond to the groups in figure 1. Note that Ssh, Seve,
Stot, as well as all indices in the groups (b,d ) can be weighted by
numerical or biomass abundances.

name index refs

(a) Srich species richness

Seve Pielous’ J species

evenness

Ssh Shannon diversity

Stot total abundances

(b) CWM community weighted

means

[35]

(c) FRdendr functional richness [8,9]

FRminvol functional richness [11]

(d ) FDdendr.wc weighted FRdendr our adjusted

index

FDdendr.ac weighted FRdendr our adjusted

index

FDdis functional dispersion [10]

FDeve functional evenness [11]

FDdiv functional divergence [11]

FDRao Rao’s quadratic

entropy

[36]

0.40

0.45

0.50

0.55

0.60

0.65

0.70

index

re
la

tiv
e 

ra
nk

s

Sx FRx FDx CWMx

a b cabc

Figure 2. Performance of different groups of diversity indices across ecosys-
tem functions and groups of organisms investigated. The mean and standard
error of the relative ranking of species-based indices (Sx, n ¼ 94), functional
richness (FRx, n ¼ 28), functional diversity (FDx, n ¼ 168) and community
weighted means (CWMx, n ¼ 194). Different letters indicate post hoc signifi-
cant differences after correcting for multiple comparisons. Lower rank values
indicate better explanatory power. See the text and table 1 for description of
the ecosystem functions and codes for biodiversity indices, and electronic
supplementary material, table S2 for the results for all predictors.
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(c) Statistical analysis
For each dataset, we ranked the indices according to their relative

performance in explaining functioning. For that, we focus only

on the explanatory power (measured as R2) of different indices.

First, we used linear mixed-effect models and calculated their

marginal R2 [45]. For each ecosystem function (response variable),

we built one single-variable model for each of the diversity indices

(explanatory variable). For datasets that included observations that

were collected at multiple times within a region or a field, we

included these (Field or Region) as random factors. The residuals

from all models were plotted and visually inspected. When necess-

ary, data were transformed by log10(x þ 1) or arcsine square root to

meet model assumptions of normality. To meet the assumptions of

homoscedasticity, we used a constant variance function when

necessary. We only provide p-values in the appendix for complete-

ness, and we do not interpret them as indicators of statistical

significance due to the risk of type I errors from multiple testing

on the same data. Indices were ranked according to the R2 value

obtained and a relative rank bounded between 0 and 1 was

calculated for each dataset, with 0 being the best ranked index.

To compare the relative performance among groups of indi-

ces, we used linear mixed-effects model to regress the arcsine

square-root transformed relative rank of the indices within each

of the 14 datasets (response variable) against its category

(factor with four levels: species-based indices (Sx), functional

richness (FRx), functional diversity (FDx), community-weighted

means (CWMx), and weighting method (factor with two levels:

biomass or numerical abundance). Given that FDRao and

FDdis are mathematically correlated, we excluded FDdis from

this comparison. We used ‘dataset’ in the random structure to

control for multiple calculations of the indices belonging to the

same group in each dataset. We used general linear hypothesis

testing (‘glht’ function) with two-tailed test and Hochberg correc-

tion for multiple testing [46] for post hoc comparisons among
groups of indices. Note that studies are conducted at different

scales (within versus across regions) with a consequence of

having more confidence in the results for highly replicated

designs (i.e. biocontrol of pests and nutrient cycling). However,

we do not correct for this as each dataset contributes with only

one set of values to the linear model.

(d) Influence of traits on functional diversity –
ecosystem functioning relationship

All included traits were chosen a priori based on the authors’ eco-

logical knowledge. To test whether our choice of traits had a large

influence on the observed effect of functional diversity measures

on ecosystem functioning, we used a jackknife approach for

the functional diversity predictors (FRx or FDx) that explained

most variance.

We built models with all traits included, and we then

removed one trait at a time from the full model. We calculated

the difference in explanatory power (DR2) between the full

model and the model without a given trait. Negative DR2’s

reflect traits that are important in explaining the relationship

between diversity and function, whereas positive values indicate

traits that, when excluded, improved the model. All calculations

of diversity indices and statistical analyses where performed

in R (v. 2.15.1, [47]) using packages ‘nlme’ [48], ‘MuMIn’ [49],

‘FD’ [10,50], ‘multcomp’ [51] and our own R script. The R

function to calculate all indices used in our analysis is available

at https://github.com/ibartomeus/fundiv.

All relevant data including all indices calculated for each dataset

can be found in electronic supplementary material, dataset S1.
3. Results
(a) Performance of functional diversity in predicting

ecosystem functioning
We compared explanatory power between groups of bio-

diversity indices: species-based versus trait-based, single trait

versus multiple traits, community weighted versus non-

weighted indices and indices weighted by numerical versus

https://github.com/ibartomeus/fundiv
https://github.com/ibartomeus/fundiv
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biomass abundance. We found large differences in the average

performance between the index groups (F3,478¼ 11.16, p ,

0.0001). Post hoc comparison among relative ranks of indices

groups revealed that weighted trait-based indices, both commu-

nity weighted means (CWMx) and functional diversity (FDx),

performed consistently better than species-based indices (Sx)

across all datasets studies (difference in means: Sx 2

CWMx ¼ 0.23+0.04, p , 0.0001; Sx 2 FDx ¼ 0.13+0.05, p ¼
0.02; figure 2; electronic supplementary material, table S2).

However, non-weighted functional richness (FRx) did not per-

form better than species-based indices (Sx 2 FRx ¼ 0.10+
0.07, p ¼ 0.36), while single-trait measures (CWMx) were on

average better ranked than functional diversity measures

(CWMx 2 FDx ¼ 20.10+0.04, p ¼ 0.02). Multi-trait func-

tional diversity measures weighted by numerical abundance

(FD/n) performed equally good as measures weighted by

biomass abundance (FD/b; F1,478¼ 0.078, p ¼ 0.93). Note that

the lower the relative rank, the better the performance of

the index.

Interestingly, species richness and abundance did not

only obtain low rankings, but their explanatory power was

on average less than half that of FD indices (electronic sup-

plementary material, table S2). Shannon diversity and

species evenness tended to explain most functions better

than species richness and abundance. Within the weighted

multi-trait functional diversity measures, FDeve and FDdiv

were the best performers. In fact, in nine of 14 cases, they

ranked as the overall best predictors. Notably, the direction

of the effects of biodiversity indices on ecosystem functioning

was positive in the majority of cases, the exception being a

few FD indices (electronic supplementary material, table S2).

(b) Influence of traits on functional diversity –
ecosystem functioning relationship

Jackknife analysis showed that our results are relatively

robust with respect to the choice of traits included (see elec-

tronic supplementary material, figure S1). Changes in R2

after excluding any trait were small and mainly negative.

The few exceptions were ‘dung manipulation strategy’ for

large seed burial by dung beetles, ‘light preference’ for con-

sumption of A. spica-venti seeds by carabid beetles, and

‘body length’ and ‘trophic level’ for nutrient cycling by nema-

todes. Traits with high negative values are highly influential

because they increase the explanatory power. By contrast,

we only found one trait, ‘hibernation’, which induced large

positive R2-changes in the consumption of A. spica-venti
seeds and G. aparine seeds by carabid beetles, indicating

that this trait reduces the model performance (electronic

supplementary material, figure S1).
4. Discussion
Indices solely based on the numbers and abundances of

species were consistently poor at predicting ecosystem func-

tioning across the seven ecosystem functions investigated

here. Moreover, they performed worse than indices using a

trait-based approach, both in previous studies of plants (elec-

tronic supplementary material, table S1) and in our current

analysis of animals. As in many plant studies, single-trait

indices (CWMx) were often ranked as the best predictors of

ecosystem functioning in our analyses on animals. Hence,
functioning is in the majority of cases maximized by a single

trait. However, we also found that multi-trait functional diver-

sity measures (e.g. FDeve, FDdiv) can best predict functions

provided by some animal groups. Thus, it appears that the dis-

tribution of functionally dissimilar traits is also relevant for

several functions.

Despite the diversity of ecosystems and of organisms and

ecosystem functions provided by animals investigated here,

and by plants in previous studies, some general conclusions

can be made. First, species numerical and biomass abun-

dance appear to be poor sole predictors of the functions

investigated, although they are often positively correlated

with ecosystem functions (figure 1a, e.g. [52]). Second, non-

weighted indices that have commonly been used as proxies

of functional diversity were also poor predictors of ecosystem

functioning. These include species richness, but also newly

developed multi-trait indices of functional richness (FRx)

that have been useful for analysing community assembly

[40]. This suggests that the number of species in a commu-

nity, or the trait ranges they encompass, are insufficient to

fully explain ecosystem functioning.

Current knowledge of the role of species richness for

ecosystem functioning is mainly based on small-scale exper-

iments [3]. There is increasing evidence that results from such

studies do not always agree with findings from more realistic

and species-rich assemblages where skewed species abun-

dance distributions have been suggested to play a key role

[53,54]. Our findings indicate that we need to integrate the

abundance and distribution not only of species, but also of

their trait levels within the community to better understand

BEF relationships in terrestrial animal communities (figure

1b,d ). On one hand, we show that weighted functional diver-

sity indices (especially functional evenness and divergence)

in many cases were the best predictors of ecosystem function-

ing provided by animals, and this relationship was most

often positive. This means that communities with a more even

distribution of species across the trait space, will deliver

higher levels of ecosystem functioning; a result that supports

the functional complementarity hypothesis. On the other

hand, we also found negative relationships between functional

evenness and functioning in some cases, as well as single

traits being consistently good predictors of functioning. This

exemplifies that a dominant trait level of a single or just a few

traits are needed to maximize functioning in some communities.

The functions studied here were performed by different

taxa with different traits, and hence the mechanisms driving

high functioning levels vary among functions. Given the

exploratory nature of our analyses, we restrain from discuss-

ing specific traits and mechanisms for different organisms,

but rather propose that our findings provide a starting

point for future research in these communities. On a more

general level, there are some interesting questions emerging

from our study that future BEF research should focus on.

First, why does functional identity often appear as the best

mechanism and under which scenarios does it interplay

with functional complementarity? For example, a reason for

the better support of the functional identity rather than func-

tional complementarity hypothesis for some functions may

be that ecosystem functions, such as predation of just one

pest species, provide a narrow niche with less opportunity

for niche partitioning than the predation of different species.

Second, how can increasing the spatial and temporal scales,

or the number of functions performed by the same animal
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group, increase the importance of functional diversity? For

example, it appears that even when the same animal group

(e.g. bees) is performing a given function (e.g. pollination),

the key traits explaining functioning for a particular crop

are specific for each plant. Hence, for pollination to be maxi-

mized at the landscape level and simultaneously for several

crops, the functional diversity of the pollinator community

would have to be increased. In this case, functional diversity

will be more important than single-trait values as it provi-

des insurance across varying conditions across space and

time. However, the situation may be different when there

are trade-offs between functions provided by the same

community [15].

The choices we make in BEF research, such as which traits

and indices to use, can strongly affect the observed relationship

between functional diversity and ecosystem functioning [5].

First, the trait selection is extremely important for characteriz-

ing trait-based indices, especially for single-trait measures,

such as CWM. Preferably, we should use a priori knowledge

based on experimental manipulations investigating which

traits are likely to drive different functions, but this information

is rarely available for animals. However, we found that most

multi-trait functional diversity indices were weakly affected

by trait choice (see also [55]), and while excluding traits wor-

sens explanatory power in some cases, it rarely increased

it. We propose that the jackknife approach can be used to

exclude or weight traits that contribute little to predicting

functioning. Second, we show that the choice of weighted

versus non-weighted indices is important. Weighted indices

always explained ecosystem functions better, demonstrating

the importance of considering the abundance distribution

of traits in communities. Weighting by biomass should be

superior to weighting by numerical abundance in cases

where the process is size-based, often by being related to meta-

bolic rate of individuals (i.e. individual’s performance increase

with body size). However, we found no clear preference for

indices scaled by biomass versus numerical abundances in

the communities we investigated.

Several new avenues have been proposed to better quantify

functional diversity and increase the predictive power of
biodiversity–functioning relationships: taking into account

single and multi-trait indices simultaneously, phylogenetic

diversity [56], within-species trait variability [57], abiotic fac-

tors [58] and nonlinearities in the response [3]. We show that

the power to predict ecosystem functions using trait distri-

butions in natural communities is relatively low (less than

50%). This is not surprising given that most ecosystem func-

tions, such as crop pollination and thereby yield production,

depend on multiple abiotic and biotic processes including sev-

eral organism groups [59,60]. Direct links between organisms

and functions, such as between aphid predation and predators,

are stronger than indirect links, such as between P retention

and nematodes. However, we show that for predicting ecosys-

tem functioning, trait-based measures are substantially better

than measures of species richness and abundances, commo-

nly used by researchers and policymakers. Our study thus

provides new insights into general mechanisms that link

biodiversity to ecosystem functioning in natural animal com-

munities and suggests that the observed responses were due

to the identity and dominance patterns of the trait composition

rather than to the number or abundance of species per se.
Hence, using a trait-based approach in BEF research is a prom-

ising step forward and may greatly increase our understanding

and aid management of multiple ecosystem functions.
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functional diversity matters to ecosystem processes.
Trends Ecol. Evol. 16, 646 – 655. (doi:10.1016/
S0169-5347(01)02283-2)

5. Cadotte MW, Carscadden K, Mirotchnick N. 2011
Beyond species: functional diversity and the
maintenance of ecological processes and services.
J. Appl. Ecol. 48, 1079 – 1087. (doi:10.1111/j.1365-
2664.2011.02048.x)
6. Tilman D et al. 1997 The Influence of functional
diversity and composition on ecosystem processes.
Science 277, 1300 – 1302. (doi:10.1126/science.277.
5330.1300)

7. Wright JP, Naeem S, Hector A, Lehman C, Reich PB,
Schmid B, Tilman D. 2006 Conventional functional
classification schemes underestimate the relationship
with ecosystem functioning. Ecol. Lett. 9, 111 – 120.
(doi:10.1111/j.1461-0248.2005.00850.x)

8. Petchey OL, Gaston KJ. 2002 Functional diversity
(FD), species richness and community composition.
Ecol. Lett. 5, 402 – 411. (doi:10.1046/j.1461-0248.
2002.00339.x)

9. Petchey OL, Gaston KJ. 2006 Functional diversity:
back to basics and looking forward. Ecol. Lett. 9,
741 – 758. (doi:10.1111/j.1461-0248.2006.00924.x)
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