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Abstract

Instrumental variable regression is one way to overcome unmeasured confounding and estimate 

causal effect in observational studies. Built on structural mean models, there has been considerale 

work recently developed for consistent estimation of causal relative risk and causal odds ratio. 

Such models can sometimes suffer from identification issues for weak instruments. This hampered 

the applicability of Mendelian randomization analysis in genetic epidemiology. When there are 

multiple genetic variants available as instrumental variables, and causal effect is defined in a 

generalized linear model in the presence of unmeasured confounders, we propose to test 

concordance between instrumental variable effects on the intermediate exposure and instrumental 

variable effects on the disease outcome, as a means to test the causal effect. We show that a class 

of generalized least squares estimators provide valid and consistent tests of causality. For causal 

effect of a continuous exposure on a dichotomous outcome in logistic models, the proposed 

estimators are shown to be asymptotically conservative. When the disease outcome is rare, such 

estimators are consistent due to the log-linear approximation of the logistic function. Optimality of 

such estimators relative to the well-known two-stage least squares estimator and the double-

logistic structural mean model is further discussed.
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1. Introduction

Causal effect in observational studies is often masked by unmeasured confounding 

variables. Instrumental variable regression is commonly used in econometrics to overcome 

the difficulty of inferring causality in the presence of unmeasured confounding [1], provided 

that instrumental variables are independent of unmeasured confounding, and affect the 

outcome only through the exposure. One emerging application of the instrumental variable 

research is the so-called “Mendelian randomization analysis”, where inherited genetic 

variants are used as instrumental variables to assess the causal effect of an intermediate 

exposure on a disease outcome [2, 3].
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Mendelian randomization analysis exploits the concept that genetic predisposition was 

transmitted randomly at meiosis from parents to offspring, and therefore largely independent 

of non-genetic confounding variables. If the genetic variant is associated, preferably 

strongly, with the exposure, and there is no alternative pathway from the genetic variant to 

the disease outcome, the test of causality from the exposure to the disease is equivalent to 

the test of association between the genetic variant and the disease outcome [2, 4]. For 

continuous exposures and outcomes and with additional assumptions, classical instrumental 

variable approaches such as the two-stage least squares method yield consistent and 

asymptotically normally distributed estimator of the causal effect [5, 6].

The disease outcomes in epidemiological research, however, are predominantly 

dichotomous, upon which genetic effects are typically parameterized by odds ratios in 

logistic models. Estimation procedures developed in econometrics, for example the two-

stage least squares method, are motivated by continuous outcomes, and therefore not exactly 

applicable to logistic models. With more restrictive, sometimes untestable, assumptions, 

estimation of causal effects on binary outcomes via instrumental variable regression has 

been studied. See, for example, recent reviews on this topic [7, 8]. In randomized clinical 

trials with noncompliance, instrumental variable regression has been formulated by potential 

outcomes and further developed to estimate the causal effect among those being treated [9, 

10, 11]. Notably, a double-logistic structural mean model (SMM) has been proposed for 

binary trial outcomes [12], augmenting the structural mean model by an association logistic 

model to achieve identifiability. Non-saturated association models can be uncongenial to the 

logistic SMM, especially when there are covariates in addition to instrumental variables, 

leading to bias if misspecified [7]. Alternatively, a selection-bias function can be 

parameterized to avoid the uncongenial issue [11], though computationally demanding in the 

presence of covariates.

In the context of Mendelian randomization studies, various modeling frameworks, causal 

estimands and assumptions were carefully discussed [13, 7]. Use of the double-logistic 

SMM has been proposed [14], accounting for case-control sampling. In contrast to the use of 

randomized treatment assignment as instrumental variables, the use of genetic variants as 

instrumental variables received a fair share of criticisms [15, 16, 17], mainly on whether 

genetic variants can be independent of all confounding variables in the study population. 

Indeed, genetic association analyses typically have to adjust for covariates such as 

demographic factors, population stratification and possibly clinical predictors to avoid 

confounding. In genome-wide association studies top 5-10 principle components are 

routinely added into the regression as covariates to account for hidden population structures 

[18]. Adjusting for high dimensional covariates in double-logistic SMM, though 

theoretically capable, adds complexity to estimating equations on top of the uncongeniality 

issue of the association model [10, 7], therefore can be computationally challenging. 

Moreover, for weak instruments examplified by genetic variants, the moment condition used 

in the double-logistic regression often leads to poor or lack of identification of the causal 

parameter [19].

In this article, we focus on testing the causal effect in a generalized linear model via 

instrumental variables. Indeed, the original idea on Mendelian randomization put forth by 
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Katan was based on the hypothesis test whether low serum cholesterol increase risk of 

cancer [2]. In his seminal paper, Katan reasoned that a simple comparison of APOE 

genotypes between cancer patients and controls should suffice to test the causal effect, that 

is, if the hypothesis of low serum cholesterol increasing cancer risk is true, than cancer 

patients would carry more cholesterol-lowing genotypes than controls. This testing 

framework was later developed more rigorously with proper IV assumptions [4]. In our 

view, assessing causal effect in epidemiological studies is exploratory and hypothesis-

generating, an earlier step toward understanding the pathway of disease etiology. The 

estimation of causal odds ratio has been difficult, and often requires strenuous assumptions. 

Even for the double-logistic SMM that in theory shall deliver consistent estimates, there are 

computation issues as we showed in our simulations. It is therefore of interest to develop 

robust procedures to test the causal effect under a minimal set of assumptions, even if 

estimation of the causal effect can sometimes be difficult. Subsequent functional studies, or 

randomized clinical trials if feasible, will give a more definitive answer on causal effect.

The contributions of this work are summarized below:

• With standard instrumental variable assumptions and in generalized linear models, 

we developed a consistent and valid test of causal effect being zero using a test of 

concordance between two sets of instrumental variable effects. The concordance of 

instrumental variable effects strengthens the well-known dose-response criterion to 

assess causality in medical and epidemiological studies [20, 21, 22, 23].

• When the disease outcome is binary and the exposure is typically a continuous 

biomarker, we show a stronger result that the linear slope (concordance) parameter 

we obtain is indeed asymptotic conservative toward the true causal effect. This 

result echoes the previous result in randomization trials when important predictors 

are omitted [24].

• For rare diseases commonly occurred in epidemiologic studies, where logistic 

models can be approximated by log-linear models, we show the linear concordance 

parameter is indeed the causal parameter, and we compare the efficiency of the 

proposed estimators with the 2SLS estimator and the double-logistic SMM 

estimator.

This article is organized as follows. In Section 2.1, we consider causal effect defined in a 

structural generalized linear model with the presence of unmeasured confounding variables. 

The salient feature of our approach is that it examines whether the relationship between two 

sets of instrumental variable effects is concordant. The concordance of the instrumental 

variable effects means a bigger genetic effect on X leads to a bigger effect on Y, which shall 

be induced by the causal effect of interest. The multiple, distinct genotypes constitute over-

identifying instrumental variables, since only one valid instrumental variable is needed for 

identifiability in this setting. We show in Section 2.3 that testing concordance of the two sets 

of genetic effects provides a valid and consistent test for the causal effect.

To operationalize testing, in Section 2.4 we propose a class of linear concordance 

estimators, which include an ordinary least squares estimator and a generalized least squares 

estimator. Both estimators are more powerful than the naive approach that tests the global 

Dai et al. Page 3

Stat Med. Author manuscript; available in PMC 2015 October 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



genetic effect on the disease outcome. Notably, when the interest resides on causal effect of 

a continuous biomarker on a dichotomous disease trait, a stronger result is obtained in 

Section 2.5 that this class of estimators are asymptotically conservative for a non-zero causal 

effect.

Further results are derived in Section 2.6 when the disease outcome is rare, so that logistic 

models can be approximated by log-linear models. We show that the concordance of 

instrumental variable effects becomes exactly linear. The aforementioned estimators of 

linear concordance are indeed the minimal distance estimators in the econometric literature 

[25, 26], all of which are consistent and asymptotically normal estimator of the causal effect. 

The most efficient estimator is then identified. Interestingly, the two-stage least squares 

estimator belongs to this class of minimal distance estimators. Relative efficiency of various 

estimators and approximation of log-linear models is examined in Section 3 by simulation. 

An example of Mendelian randomization analysis was shown in Section 4, followed by a 

discussion of the proposed method in Section 5.

2. Methods

2.1. Causal effect

Consider an epidemiological study which measures a disease outcome Y and an observed 

exposure variable X for n independent subjects. The inferential goal is to assess the causal 

effect of the exposure X on the disease outcome Y, despite that there is likely unmeasured 

confounding, collectively denoted by U. To be general, let Y and X be any type of outcome 

whose distribution follows a generalized linear model [27]. Assuming there is a set of 

instrumental variables Z satisfying the three conditions Z ⊥ U, E(X∣Z) ≠E(X), and Y ⊥ Z∣(X, 

U). For ease of exposition, we defer the models adjusted for known covariates until Section 

2.7.

We define the causal effect under the structural equation framework, which involves a 

“structural” model with a parameter that can be interpreted causally, conditional on all 

common causes U. For continuously distributed Y, consider a simple linear model in 

expectation

(1)

where U represent the contribution of all confounding covariates correlated with both X and 

Y. Y = E(Y∣X, U) + ∊ where ∊ is the residual error that is independent of X, that could 

include both measurement error and independent predictors of Y. This is a simple structural 

model assuming there is no interaction between X and U, and the causal effect θ1 = E(Y∣X = 

x, U) – E(Y∣X = x – 1, U) is invariant of the level of X. Generalized to any outcome Y whose 

conditional distribution follows a generalized linear model, a causal effect can be defined as

(2)

where g is a continuous and monotone increasing link function and θ1 does not depend on 

the level of X and U. Popular g functions include the identical function for classical linear 
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models, the logarithm function for multiplicative log-linear models, and the logit function 

for logistic models. This definition of causal effect is in the spirit of the standard practice in 

epidemiology that confounding variables, if known, are added into the regression model as 

covariates.

Causal effect can also be defined by the potential outcomes approach [28]. Let Y(x) denote 

the potential outcome of Y when X is experimentally altered to an arbitrary value x within 

the set of all attainable values. Two assumptions are commonly made: the “consistency 

assumption” that Y(x) = Y with probability 1 when X = x, and the “stable unit treatment value 

assumption” (SUTVA) that potential outcomes of any subject are not related to other 

subjects’ potential outcomes. The conditional causal effect in potential outcomes defined in 

SMM is

(3)

which is interpreted as the change of g[E{Y(x)}] when we experimentally alter x by one unit, 

conditional on the observed X = x and Z = z [12, 11]. This is a simple version of the 

conditional causal estimand assuming the causal effect does not depend on the level of X and 

Z. Toward assessing the impact of policy making on the whole population, one may also be 

interested in the population-average causal effect g[E{Y(x)}] – g[E{Y(x – 1)}][7].

The comparison of the structural equation approach and the potential outcomes approach has 

been discussed [7, 8]. Structural models can be equivalently written using potential outcome 

notation [29, 8]. For classical linear causal models and for log-linear causal models, the 

causal effect defined in the two frameworks, e.g. θ1 and , are identical regardless of the 

distribution of U [4]. One criticism of the structural equation approach is that the effect 

measure is defined within the strata of U that are unobserved, thus harder to interpret, 

particularly for odds ratios due to the issue of non-collapsibility [30]. Let ⊥ denote 

stochastic independence between random variables. In the following lemma, we show that 

for the testing purpose, the two parameters are equivalent under the null hypothesis of no 

causal effect and have the same direction under the alternative.

Lemma 1—If g(·) is a strictly increasing function, then θ1 = 0 if and only if . 

Moreover, θ1 > 0 if and only if ; θ1 < 0 if and only if .

The proof is straightforward. By IV conditions and the consistency assumption, X ⊥ Y(x)∣U, 

then E(Y∣X = x,U) = E{Y(x)∣U,Z}. If θ1 = 0 and g(·) is a strictly increasing function, E{Y(x)

∣U,Z} = E{Y(x – 1)∣U,Z} for all U, and so E{Y(x)∣Z} = E{Y(x – 1)∣Z}. This implies , 

because if  then E{Y(x)∣Z} > E{Y(x – 1)∣Z}; if  then E{Y(x)∣Z} < E{Y(x – 1)∣Z}. 

The rest of proof follows immediately.

2.2. Instrumental variables and data-generating models

The fundamental problem in estimating θ1 in observational studies is that U is not observed, 

yet it is potentially correlated with X. In classical linear causal models such as (1), this 

problem is neatly solved by exploiting the set of instrumental variables Z. Using the two-
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stage least squares (TSLS) method [5], θ1 can be consistently estimated by plugging in a 

consistent estimate  in the regression . When there is only one 

instrumental variable, θ1 reduces to the ratio of the instrumental variable effect on Y and the 

instrumental variable effect on X.

In Mendelian randomization study there are often several single nucleotide polymorphisms 

(SNPs). Let  denote the set of p + 1 distinct genotypes in the population, 

collected as instrumental variables to overcome unmeasured confounding.  are formed by 

one or several SNPs, the simplest of which could be the three genotypes at a single SNP 

locus with 0, 1, or 2 mutations respectively. Let G denote the genotype of a subject. Without 

loss of generality, let gp+1 be the reference group to which other genotype groups are 

compared for assessing genetic effects on Y and X. Denote the indicator variable Zj = I[G=gj], 

j = 1, …, p, and let Z = (Z1, …, Zp) so that it divides the population into p + 1 mutually 

exclusive groups with distinctive genotypes.

For dichotomous outcomes, multiplicative and logistic SMMs have been introduced to 

estimate causal risk ratios and causal odds ratios as defined in (3), respectively [12]. The 

estimating equations were based on the moment condition implied by the randomization 

property of IV, for example when Z is a simple dichotomous variable,

where Y(0) is the exposure-free potential outcome. For the multiplicative SMM, the implied 

moment condition is

For the double logistic SMM, assuming a logistic association model

(4)

the implied moment condition is

Although the causal risk ratio and the causal odds ratio are identifiable through SMMs, 

finding a unique root in the estimating functions can be problematic in typical Mendelian 

randomization studies where genes are usually weak instruments and sample size is limited 

[19]. As reported previously as well as we observed in our simulations, a substantial 

proportion of simulations could yield no solution or multiple solution. We used the GMM 

function in R to fit the double-logistic SMM, and we found that the solution of (4) can drift 

to large positive values or large negative values, as either can lead to numerical convergence 

of estimation, causing poor finite-sample performance. The standard error estimates and the 

confidence intervals in this situation can be unreliable.
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In what follows, we propose a simple but robust procedure for testing θ1 = 0 that will 

hopefully complement the SMMs when there are computation issues in finite samples. We 

start from structural equation models to define the causal effect. Suppose that conditional on 

(Z, U), the distributions of the exposure X and the outcome Y follow two structural 

generalized linear models, assuming that there is no interaction in either of the two models,

(5)

(6)

where g1 and g are link functions for X and Y respectively, θ1 is the causal effect of interest, 

θ3j is the genetic effect that is not mediated through X, and θ2 is the effect of the unknown 

confounding covariate U. The conditional distributions of X and Y follow the exponential 

family with a canonical parameter and a dispersion parameter, the latter of which is invariant 

to regression covariates. Model (6) is of primary interest, interpreted as structural in the 

sense that the causal parameter θ1 is the effect of X on Y when holding both U and Z 

constant. The distribution of U is left unspecified for the moment except assuming E(U) = 0.

The effect of U is included in (5) and (6) as an additive term in the linear predictor, identical 

to that of observable (X, Z), as one would have done had U been observed. This same way of 

entry for observed variables and unobserved variables into nonlinear regression models is 

critical, as discussed previously [24, 26]. Built on this sequence of data-generating models, 

we next examine the relationship between the two sets of instrumental variable effects, 

namely the genetic effects on X and the genetic effects on Y, as a way to assess the causal 

effect θ1.

2.3. Working models and concordance of instrumental variable effects

We consider two working models for E(X∣Z) and E(Y∣Z) which define the instrumental 

variable effects. Suppose the same link functions as in (5) and (6) are used. The instrumental 

variable effects of Z on X are defined as α1j in a linear model

(7)

Similarly, the instrumental variable effects of Z on Y are defined as γ1j in a generalized 

linear model

(8)

We view (7) and (8) as working models since, if true models are (5) and (6), neither (7) nor 

(8) is necessarily correctly specified when covariates are neglected. Suppose estimators of 

α1j and γ1j are derived by maximizing the likelihood, the instrumental variable effects 
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defined in (7) and (8) are essentially the limits of the solutions of the respective estimating 

equations [31].

Theorem 1—Suppose (Y,X) are generated based on model (5) - (6). If g(·) is a continuous 

and strictly increasing link function, and if the following conditions are met:

(A1)

(A2)

(A3)

the following results will hold: the causal effect θ1 ≠ 0 if and only if, for any two pairs j ≠ j’, 

(α1j, γ1j) and (α1j’, γ1j’) are concordant; moreover, θ1 > 0 if and only if (γ1j – γ1j’)(α1j – 

α1j’) > 0 for any j ≠ j’; θ1 < 0 if and only if (γ1j – γ1j’)(α1j – α1j’) < 0 for any j ≠ j’.

The proof is provided in the Appendix. Concordance of (α1j, γ1j) means that either α1j 

strictly increases with γ1j, or strictly decreases with γ1j, depending on the sign of θ1. Many 

widely used link functions, e.g., identical, logit and logarithm, are continuous and strictly 

increasing. The conditions (A1), (A2) and (A3) are the standard assumptions for IV 

regression, with the additional requirement that there are multiple, heterogeneous genetic 

effects on X.

Condition (A1-A3) roughly correspond to the usual IV conditions: independent of 

confounding, correlated with the intermediate and the exclusion restriction. The only 

difference between the three conditions we put forth in Theorem 1 and the classical IV 

conditions lies in (A2), that we will need multiple genetic variants with different strength of 

association with X. This is quite plausible in Mendelian randomization studies: there are 

typically multiple genetic susceptibility variants, either because one underlying causal allele 

manifests association through several adjacent loci due to linkage disequilibrium, or there 

are multiple causal genes or variants to the same phenotype. See examples of multiple 

genetic susceptibility genes in published Mendelian randomization studies [32, 33, 34].

Remark 1—Theorem 1 states that X has a causal effect on Y, if and only if there is 

concordance between the changes in X and the changes in Y, both of which are induced by 

the instrumental variable Z. Though conceptually connected, this concordance of 

instrumental variable effects is a stronger condition than the heuristically derived dose-

response criterion to assess causality in medical and epidemiological studies [20, 21, 22], 

because instrumental variables are introduced to perturb X and Y “experimentally”. The 

dose-response criterion, though commonly discussed, may or may not reduce sensitivity to 

hidden bias in observational studies [23].

To illustrate we present a numerical example with 2 SNPs, a Gaussian-distributed exposure 

X and a binary disease outcome Y. The haplotypes formed by the two SNPs are (00, 01, 10) 

with frequencies (0.4,0.4,0.2). Six diploid genotypes were formed according to Hardy-
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Weinberg equilibrium, denoted by (00,01,02,10,11,20). There was an unobserved 

confounder U with a Gaussian distribution N(0, 1), that is independent of Z. The models 

generating X and Y are

where β1 = (β11, …, β15)=(0.1,0.3,0.2,0.5,0.4), and θ2 captures the confounding effect of U.

Figure 1 shows the scatter plot of (α, γ) for causal effect θ1 = 0 or 0.5 (top or bottom panels), 

confounding level θ2 = 0.5 or 1 (left or right panels). The ordinary least squares fit of (α, γ) 

across the origin were shown by the dotted line. When θ1 = 0, the top two panels show that γ 

= 0 regardless the level of confounding. A valid test of causal effect is therefore testing γ = 0 

as a whole [4]. When θ1 = 1, the low two panels show that (α, γ) are concordant, almost 

falling in the least squares fitted line. Both fitted lines have a slope that is smaller than the 

causal effect (the slope of the solid line). The more confounding effect (the bottom right 

panel) seems to lead to the more attenuated slope. Numerical examples using other 

distributions of U and non-identical functions g1(·) show a similar pattern to Figure 1, 

suggesting that a more powerful way to test causal effect is to assess the concordance 

somewhat linearly.

2.4. Testing concordance of instrumental variable effects

We propose to test the linear concordance of instrumental variable effects by a class of 

generalized least squares estimators, regressing γ1j on α1j. Let α = (α11, …, α1p) and let γ = 

(γ11, …, γ1p), both of which are p × 1 vectors. Denote by D a p × p positive definite matrix, 

and define λD to be the minimizer of the quadratic function

(9)

namely λD = (αT Dα)−1αT Dγ. It is the slope of the weighted least squares regression for p 

pairs of (α1j, γ1j) through the origin, since under conditions (A1)-(A3) a zero α1j would lead 

to a zero γ1j. In classical instrumental variable analysis with Gaussian distributed Y and X, 

the concordance is exactly linear so that γ1j = θ1α1j so that λD = θ1. In generalized linear 

models, there is no close-form relationship between λD and θ1, yet λD provides a valid and 

consistent test of θ1 = 0, presented in the following corollary.

Corollary 1—Under the conditions (A1)-(A3) and for any positive definite matrix D, the 

null hypothesis of the causal effect θ1 = 0 is true if and only if λD = 0. Moreover, θ1 > 0 if 

and only if λD > 0; θ1 < 0 if and only if λD < 0.

The proof is provided in the Appendix. Corollary 1 operationalizes testing causal effect by 

testing whether a weighted linear slope estimator equals to zero. A consistent estimator 

can be derived by plugging into (9) the consistent estimators  and , and solving (9) by
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(10)

To establish the asymptotic distribution of  and to optimize the choice of D , it is 

necessary to ascertain the joint distribution of  and . Let α* = (α0, α11, .., α1p), γ* = (γ0, 

γ11, .., γ1p) be the limits to which the estimators from the working models (7) and (8) 

converge. We often represent the estimators for α* and γ* by asymptotically linear 

estimators [35, 10]. An estimator  is asymptotically linear if 

, E(B1i) = 0, . The function B1 is 

referred to as the influence function of  in the sense of [36]. The influence function B2 of 

an ALE for γ* is defined similarly. ALE can be attained by solving a system of estimating 

equations that are sums of n independent score contributions. Let  be the set of 

estimating equations solved for α*, and let  be the set of estimating equations to 

be solved for γ*. Let A1 = E(∂S1i/∂α*), A2 = E(∂S2i/∂γ*). Thus the influence functions can 

be written as , . The random vector (S1i, S2i),i = 1, … , n, is 

independent and identically distributed with zero mean, but for the same i, S1i and S2i are 

possibly correlated. The joint distribution of  and  can be established using the Central 

Limit Theorem, Slutsky’s Theorem and the Cramer-Wold device. Specifically,

(11)

where , l, l’ = 1, 2, are (p + 1) × (p + 1) submatrices of the full covariance matrix.

Following these developments, let . Since U(λD) is linear in 

λD, . Observe that  and 

, so

(12)

It is useful to express  as the sum of two terms in (12): the second term is zero 

under the null hypothesis and under the alternative hypothesis for linear models and log-

linear models, as we will discuss in Section 2.6.

Since  and  are both asymptotically normal,  is also 

asymptotically normal. Let Γ1 denote the asymptotic variance of 

, that is derived by applying the delta method to (11). Let Γ2 

denote the asymptotic variance of  and let Γ12 denote the asymptotic covariance 

between  and , the limiting distribution of  is
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where

The power for testing λD = 0 depends on the choice of D. An immediate choice is the 

identity matrix which leads to an ordinary least squares slope parameter

Alternatively, let , that leads to a generalized least squares slope parameter

The motivation of such estimator is that Ω is often dominated by, in some cases reduces to, 

αTDΓ1Dα. The asymptotic variance Γ1 is derived from the variance of ( , ), which can 

vary greatly depending on sample sizes in genotype groups. Weighting by the inverse of the 

covariance matrix typically yields more stable linear slope estimates. One can plug in a 

consistent estimator of Γ1 to obtain a consistent estimator . In numerical studies we show 

in Section 3, the variance of  tends to be smaller than the variance of .

Both λols and λgls parameterize the concordance between αj and γj, which does not generally 

have an exact linear relationship except for a few special settings, as we discuss in Section 

2.6. Under the null hypothesis θ1 = 0, both λols and λgls converge to zero when sample size 

gets large. Under the alternative hypothesis, however, λols is generally not equal to λgls, so 

that testing λgls = 0 may not be always more powerful than testing λols = 0.

2.5. Dichotomous disease outcome and continuous intermediate

When Y is a dichotomized outcome and X is a continuous biomarker, a stronger result 

pertaining to the bias of  as an estimator θ1 is given in the following corollary.

Corollary 2—Suppose g is the logit function and g1 is the identity function, respectively. 

Under the conditions (A1)-(A3) and for any positive definite matrix D, λD is biased toward 

zero when θ1 ≠ 0.

The proof extends that of Theorem 2 in [24], and is given in Appendix. The significance of 

this result is that, for the most common form of disease outcomes in epidemiology – 

diseased cases and healthy controls, and for the continuous intermediate exposures, the 

estimator of the linear concordance not only provides a valid and consistent test of the causal 
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effect, but also is asymptotically conservative toward the true causal effect. One can 

interpret the causal effect estimate obtained herein as the least size of log odds ratio 

corresponding to 1 unit increase of X.

Remark 2—[24] assessed the bias of the treatment effect estimate in randomized clinical 

trials when covariates are omitted in nonlinear regression. Causal inference can be viewed as 

if confounding variables are omitted in regression, thereby connecting to [24]. In particular, 

when linear models are used for continuous intermediate biomarkers, as in Corollary 2, 

instrumental variable analysis essentially replaces X in (3) by E(X…Z), which is orthogonal 

to the omitted confounding variables. Therefore some of the results on the direction of the 

bias in [24] apply here. Because we don’t know the distribution of U, and we leverage 

multiple instrumental variables by generalized least squares, it is intractable to quantify the 

exact asymptotic bias of .

2.6. Log-linear models

Quite often in Mendelian randomization studies, the disease outcome Y is a rare 

dichotomous endpoint and the intermediate outcome is a continuous biomarker [32, 34]. The 

logistic model for a rare disease outcome can be approximated by log-linear models. The 

biomarker is often modeled by a Gaussian distribution. We show that, similar to the classical 

linear models, the concordance of instrumental variable effects in this setting becomes 

exactly linear. The weighted least squares estimator previously discussed becomes an 

efficient estimator of the causal effect.

To proceed, we define the causal effect and the instrumental variable effects in the following 

models:

(13)

(14)

(15)

For simplicity, we assume X∣Z, U takes a Gaussian distribution with 

 and var(X∣Z, U) = σ2, but noting that a more flexible 

location-shift model should also suffice for the following lemma.

Lemma 2—For a rare disease outcome Y and a Gaussian-distributed exposure X, if the 

causal parameter and the instrumental variable effects are defined in (13) - (15), and the 

conditions in Theorem 1 are satisfied, it follows that γ1j = θ1α1j and , for j = 

1, .., p, where  and c = E{exp(θ2U + θ1β2U)}.
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The proof is given in the Appendix. The result in Lemma 2 states that the concordance of 

α1j and γ1j becomes exactly linear with the slope θ1. We shall extend the generalized least 

squares method discussed in Section 2.2 to estimate ( , θ1) and pursue the optimal 

estimator.

Let = ( , θ1), a 2 × 1 vector. Define  to be the (p + 1) × 2 matrix with the first column (1, 

0, … , 0) and the second column α*, then the equation

describes the linear relationship of instrumental variable effects in Lemma 1. Suppose 

and  are the asymptotic linear estimators of α* and γ*. To estimate θ, we minimize the 

quadratic function

(16)

where D is a (p + 1) × (p + 1) positive definite matrix. Let  denote the estimator of the 

causal effect corresponding to the choice of D.

The joint asymptotic distribution of  and  was shown in Section 2.2. Using the delta 

method, we derive that

(17)

where Γ is the (p + 1) × (p + 1) asymptotic covariance matrix. We define the generalized 

least square estimator for θ, when D = Γ−1, to be

In contrast to generalized linear models in Section 2.2, where the estimators of the linear 

slope with different D could converge in probability to different values, such estimators in 

log-linear models all converge to the causal effect θ1. The asymptotic efficiency of 

among the class of estimators  shall be discussed.

Theorem 2—For every positive definite matrix D,  that minimizes (16) is consistent for 

θ and asymptotically normal, with the asymptotic expansion

Among them,  has the smallest asymptotic variance.

The proof is given in the Appendix.
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It has been noted that the two-stage least squares estimator of the causal effect is also 

applicable for log-linear models [26, 13]. Like the classical two-stage least squares 

estimator, the estimated E(X∣Z) is computed first, then plugged into the second-stage 

regression model log  to obtain the causal effect estimate. For logistic 

models with a rare disease, the 2SLS estimator is thus approximately consistent to the true 

causal odds ratio. Denote the resulted estimator by . One would be interested in 

comparing  and . Indeed,  is one member of this class of minimal distance 

estimators, that has been shown in the econometrics literature on limited dependent variable 

models [25]. Following the notation in Section 2.2, let S2 denote the estimating equation for 

γ* and let A2 = E(∂S2/∂γ). The following corollary gives the comparison between  and 

.

Corollary 3—The asymptotic expansion of the two-stage least squares estimator  is

and so it is one of . According to Theorem 2, the asymptotic variance of  shall be 

greater than or equal to that of .

Remark 3—The efficiency of  relative to  depends on the matrix difference between 

A2 and Γ. The scalar term in A2 and Γ will be canceled out in the variance calculation. In 

linear models, one can verify that the two estimators are equivalent because the design 

matrices of the two models defining instrumental variable effects are same. For generalized 

linear models (14)-(15), under the null hypothesis θ1 = 0, A2 is nearly same as Γ, since the 

former is the model-based variance and the latter is the empirical sandwich variance. Under 

the alternative, we observe in simulations that the two estimators are also numerically close, 

likely due to the fact that the two models (14)-(15) share the same design matrix.

2.7. Known covariates

We have by far omitted known covariates. Regression adjustment for such covariates as 

demographic factors and population stratification is imperative in genetic association 

analyses. In the context of randomized clinical trials, controlling for posttreatment variables 

should be always avoided, for the reasons elaborated previously [37]. In observational 

genetic studies, however, situations are much more complicated. Generally the genetic 

background should be adjusted for, such as race, ethnicity and gender. More sophisticated 

adjustment includes the top eigen vectors from a principal component analysis - surrogates 

for underlying population substructures. If we view genetic variant as a “treatment” 

predisposed at conception, all phenotypes developed in the later stage of life are “post-

treatment” variables. For complex traits such as cardiovascular diseases, many phenotypes 

are correlated such as blood pressure, BMI and diabetes. Such variables were almost always 

adjusted for, partly because the genetic effect of interest, if detected, is for the specific 

phenotype under interrogation, not due to mere genetic association with other related traits. 
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Other reasons could also include that these adjusting variables could serve surrogates for 

environmental or behavioral exposure, for example BMI for diet and exercise, which is 

usually hard to measure directly. This rationale has been considered plausible in [37].

Denote W to be a collection of known covariates, so that the key assumption for 

instrumental variables becomes

Suppose W is added as covariates in the data-generating models:

(18)

(19)

Correspondingly, the working models now become

(20)

(21)

For working model (20), the instrumental variable effects α1j may not have the close form 

expression g1E(X∣G = gj, W)} – g1{E(X∣G = gp+1, W)} unless U ⊥ W. The latter restrictive 

condition is needed for extending the proof of Theorem 1 to GLM (18-21), where W was 

added as covariates. Alternatively, with one regular condition pertaining to the distribution 

of W conditional on Z, the concordance of instrumental variable effects holds for the 

common scenario where the exposure X is continuous and the disease outcome Y is 

dichotomized.

Lemma 3—Suppose g1(.) is the identical link for a continuous X and g(·) is the logit 

function for a dichotomous Y. If for any j and j’, W∣G = gj and W∣G = gj’ are in some 

stochastic order, that is, either pr(W > w∣G = gj) ≥ pr(W > w∣G = gj’) or pr(W > w∣G = gj) ≤ 

pr(W > w∣G = gj’) for all w, then the concordance of (αj, γj) described in Theorem 1 holds 

under similar conditions.

The proof is left in Appendix. The condition that W∣G = gj and W∣G = gj’ are in some 

stochastic order is fairly mild. For example, if W belongs to the location-scale family of 

distributions, then genetic effects that shift the location would satisfy the condition.
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3. Simulations

We simulated data based on the numerical example presented in Section 2.3. As explained 

before, we generated 2 SNPs forming 6 diploid genotypes in linkage disequilibrium as 

specified in Section 2.3, a Gaussian-distributed exposure X and a binary disease outcome Y. 

There was an unobserved confounder U with a Gaussian distribution N(0, 1), that is 

independent of Z. The models generating X and Y are

where β1 = (β11, …, β15) is the instrumental variable effects on X, taking the values at 

(0.1,0.3,0.2,0.5,0.4). The causal effect parameter θ1 is valued at 0, 0.5 and 1, representing a 

ladder of strength in causal odds ratio (1, 1.65, 2.72). A nonzero θ2 indexes the confounding 

effect of U.

Table 1 shows the comparison of the two proposed tests to the standard Mendelian 

randomization test, which tests the global association between six diplotypes and the disease 

outcome, i.e. γ = 0 [2, 4], and the to the double-logistic SMM developed in [7]. The SMM 

was implemented using the GMM function in R, solving for estimating equations for both 

the association and causal parameters simultaneously. The optimization method chosen in 

the GMM function is “BFGS”, a gradient-based searching algorithm with the maximum 

iteration number 500. The initial value for parameters were obtained using a two-stage 

GMM method, in which association parameter were first estimated and the causal 

parameters were estimated subsequently. See, for example, using the GMM function to fit 

the double-logistic SMM in [38].

Across different parameter settings in Table 1, the marginal disease probabilities range from 

0.28-0.54. When θ1 = 0, the numbers shown in Table 1 are type I error; when θ1 ≠ 0, the 

numbers shown in Table 1 are power. When θ1 = 0, the standard IV test, the ordinary least 

squares test and the weighted least squares test maintain the nominal type I error probability 

at level 0.05 for either sample size of 1000 or 5000. The double-logistic SMM appears to 

have inflated type I error and the inflation is reduced for bigger sample size. As we show 

next in Table 2, this is because SMM has poor convergence and poor finite-sample 

performance. When θ1 ≠ 0, both the ordinary least squares test and the weighted least 

squares test yield substantial power gain over the standard test. Across different parameter 

settings, the power of the weighted least square test is improved upon the power of the 

ordinary least square test consistently by 10-15%.

Table 2 shows the performance of the proposed estimators and the double-logistic SMM 

estimator. The GLS estimator has much reduced variance than the OLS estimator, and as 

Corollary 2 predicts, both estimators are biased toward 0 under alternative hypothesis. Note 

that these results suggest that for small to moderate causal effect, the two proposed 

estimators give fairly good estimates. The small-sample performance for SMM is messy due 

to the convergence issue. First there are simulations which did not get to convergence in 500 
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iterations or converge to different roots if starting from different initial values. The second 

set of initial values we used were simply vector 0. Table 2 shows that 15%-30% simulations 

could have no or more than 1 roots using GMM when sample size is 1000. This is a serious 

problem to utility of the double-logistic SMM in moderate sample size studies. This problem 

is improved but not eliminated when sample size is 5000. Even among the simulations 

which did get converged using the two-stage GMM method, there are substantial outliers in 

the distributions of SMM estimators. We have to include robust measures such as median 

and MAD (median absolute deviation) based robust variance.When sample size is 1000 or 

θ1 = 1, the mean bias of SMMis quite substantial, presumably due to outliers. The variance 

estimates can be quite large numerically, rendering resulted inference useless.

To examine the effect of varying spread and strength of instrumental variables, as requested 

by one reviewer, we let β1 takes values at (0.05,0.15,0.1,0.25,0.2), representing a scenario 

where the strength of instrumental variable is much weaker and the heterogeneity of the 

instrumental variable effects is much reduced. As shown in Table 3, the type I error for the 

ordinary least squares method and the generalized least squares method is much more 

conservative, because the estimated variance is usually larger than the sample variance 

(Table 4), suggesting that the small-sample performance of the estimated variance is poor 

due to weak instrument. In Table Table 4, all three estimators show worse small-sample 

behavior compared to Table 2. The performance of SMM is particularly worrisome, in that 

the convergence rate, the estimated parameter and the estimated variance are very poor. 

These observations reinforce the importance of the necessity of strong instrumental variables 

to making meaningful inference.

In the last set of simulations shown in Table 5, we compared the performance of generalized 

least squares estimators to two-stage least squares estimators and double-logistic SMM 

estimators in the rare disease setting. The distribution of (Y, X, G, U) is generated by the 

same aforementioned models, except the intercept of the logistic model was set to be either 

4.5 or 3.5. Table 5 shows the bias, variance and 95% coverage probability of three 

estimators for different sample size, causal effect, and marginal disease probability. The 

performance of the two estimators is nearly identical in all parameter settings. For a 

moderate causal effect with the disease probability less than 4-5%, it seems that log-linear 

models approximate logistic models well, yielding unbiased estimators and proper 

confidence intervals, though this approximation deteriorates with more common disease 

prevalence. For these sample sizes, identifiability and convergence are not an issue for SMM 

but its variance is markedly bigger than the other two estimators, because it is built on 

moment conditions but not much more distributional assumptions.

4. Data analysis

In the Cardiovascular Health Study, single nucleotide polymorphisms in the gene coding C-

reactive protein were genotyped in 3941 white participants and 700 black participants, aged 

65 years or older. Earlier analysis suggests that there is a genetic association between the 

gene and the circulating C-reactive protein levels, as well as cardiovascular events [39]. The 

role of C-reactive protein in the pathogenesis of cardiovascular disease remains in question. 

Using 3 genetic variants (1919 A/T, 2667 G/C, 3872 G/A) as instrumental variables, we 
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assess the causal effect of the plasma C-reactive protein level on the risk of cardiovascular 

related mortality. We restricted our analysis to whites to avoid potential population 

stratification. The cumulative cardiovascular related mortality rate in whites is 12.4%. 

Diplotypes formed by these 3 single nucleotide polymorphisms were collapsed to 7 groups. 

The rare diplotypes with frequencies less than 0.05 were collapsed to one group. The most 

common diplotype was used as the reference group.

We focus on testing causal effect by linear concordance of instrumental variable effects. 

Two sets of genotype effects were computed: one is on the risk of cardiovascular related 

mortality in a logistic model, the other is on the logarithm of the plasma C-reactive protein 

level at baseline in an ordinary least squares model. Both effects are adjusted for baseline 

age, sex, clinic site, body mass index, systolic blood pressure, diabetes mellitus, 

hypertension and smoking status. The ordinary least squares fit yields the slope 1.803, with 

standard error 0.282. A Wald test of whether the slope is zero yields p-value 0.0007; The 

generalized least squares fit yields the slope 1.403, with standard error 0.222 and p-value 

0.003. Because the sizes of diplotype group vary, the generalized least squares estimator is 

perhaps more robust than the ordinary least squares estimator. The instrumental variable 

effects and the fitted lines of two methods are shown Figure 2. The standard instrumental 

variable test, i.e., the global test for the association between diplotypes and the 

cardiovascular related mortality yields a p-value 0.0004, also suggesting a causal effect. In 

this example, although our proposed tests did not produce more significant p-values than the 

standard test, the linear concordance shown in Figure 2 provides additional evidence of 

causality.

5. Discussion

In recent years, there has been a proliferation of Mendelian randomization analyses [32, 33, 

34]. We have shown in this paper that, for generalized linear models under mild 

assumptions, if there is a causal effect of an observed exposure on the outcome, then 

instrumental variable effects on the exposure shall be concordant with instrumental variable 

effects on the outcome. We provide weighted least squares estimators for testing causality in 

general, for estimating causal effect in linear and log-linear models. These results broaden 

the scope of instrumental variable analysis for Mendelian randomization.

The niche of the proposed test resides in Mendelian randomization studies that have multiple 

genotypes serving as instrumental variables, each with distinct effects on the intermediate 

outcome. For complex traits such as cardiovascular diseases and cancers, it is common to 

have multiple susceptibility genes. If one use the diplotype as instrumental variables, as we 

did in the data example, it is quite plausible to have a dosage genetic effect depending on 

how many detrimental genetic variants were contained in the genotypes. Even in the 

situation where there is indeed limited heterogeneity in instrumental effects, the estimation 

should not be much different from other IV approaches, as we show in rare disease scenarios 

that the generalized least squares estimator resembles 2SLS estimators, both of which can be 

viewed as members of minimal distance estimators [25]. Again, as we showed in 

simulations, genetic epidemiologists should be aware of the importance of strong 
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instrumental variables and preferably large sample size for making meaningful causal 

inference.

When the disease is rare, case-control sampling is commonly used to reduce the cost of 

genotyping while preserving estimation efficiency. Intermediate phenotypes may be 

ascertained in the case-control sample as secondary phenotypes. Ignoring this sampling 

scheme may bias genetic effect on the intermediate, if the latter is correlated with the disease 

status. Alternatively, intermediate phenotypes could be available in the entire cohort. Using 

the inverse probability weighted method, minimal distance estimators can readily account 

for the diverse sampling process that arise from complex epidemiological studies, since such 

estimators begin by estimating two separate sets of genetic effects. Future work is warranted 

to improve efficiency under diverse sampling schemes in Mendelian randomization analysis.

The proposed methods can also be used in randomized clinical trials to test the causal 

treatment effect when participants indeed complied [9, 11], if there are multiple, mutually 

exclusive instrumental variables available. For example, when there are several trials 

conducted for the same treatment modality, each treatment assignment in an individual trial 

serves as an instrumental variable. Under models (5-8) and Assumption (A1-A3), the 

concordance of the level of adherence and the intent-to-treat effect across different trials is 

strong evidence of causal treatment effect, as recently shown in pre-exposure prophylaxis 

trials for HIV prevention [40]. In a single trial, when there are subgroups with varying 

treatment effect and differential compliance rate, similar testing strategies developed in this 

article can also be applied, essentially using treatment assignment in each subgroup as 

multiple mutually exclusive instrumental variables.
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Appendix

Proof of Theorem 1

If the conditional distributions of Y and X are as described in (5) and (6), and if E(Y∣G = gj) 

and E(X∣G = gj) exist for every j, then α1j = g1{E(X∣G = gj)} – g1{E(X∣G = gp+1)} and γ1j = 

g{E(Y∣G = gj)} – g{E(Y∣G = gp+1)}, where gp+1 is the reference genotype group. If θ1 = 0, 

then for any j in (1, .., p)

so that γ1j = 0, and so γ1j cannot be concordant with α1j.

Conversely, suppose αj > αj’, E(X∣G = gj) > E(X∣G = gj’) because g1(·) is a strictly 

increasing function. Let . By the mean value theorem,
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for some  in (β1j’, β1j). Since f1(·) is continuous and strictly increasing, . Therefore 

if E(X∣G = gj) > E(X∣G = gj’) then β1j > β1j’. For a generalized linear model in the 

exponential family with a strictly increasing link function, this suggests that for all U, 

pr(X∣G = gj,U)/pr(X∣G = gj’,U) is monotone increasing with x, and so the distribution pr(X∣G 

= gj,U) is stochastically greater than the distribution pr(X∣G = gj’,U). If θ1 > 0, E(Y∣X = 

x,G,U) is a strictly increasing function of x. Since E(Y∣G = gj) = EU[EX∣G=gj,U{E(Y∣X,G = 

gj,U)}], and since pr(X∣G = gj,U) is stochastically greater than pr(X∣G = gj’,U),then E(Y∣G = 

gj) > E(Y∣G = gj’) and hence γ1j > γ1j’. Similarly if θ1 < 0, {−E(Y∣X = x,G,U)} is a strictly 

increasing function of x and {−E(Y∣G = gj)} > {−E(Y∣G = gj’)}. Hence γ1j < γ1j’.

Furthermore, we prove the statement that if (α1j – α1j’)(γ1j – γ1j’) > 0 then θ1 > 0 by 

contradiction. If α1j > α1j’, following previous arguments, pr(X∣G = gj,U) is stochastically 

greater than the distribution pr(X∣G = gj’,U). Since E(Y∣G = gj) = EU[EX∣G=gj,U{E(Y∣X,G = 

gj,U)}], then if θ1 ≤ 0, γ1j cannot be greater than γ1j’.

Proof of Corollary 1

If θ1 = 0, γ1j = 0 for all j. The minimizer of (9) λD takes the form (αTDα)−1αTDγ, and so 

will be zero. Conversely, if θ1 ≠ 0, γ1j ≠ 0 for all j. From the proof of Theorem 1, let gj’ to be 

the reference genotype group. It is clear that if θ1 > 0, then α1jγ1j > 0; if θ1 < 0, then α1jγ1j < 

0. Let γ1j = cjα1j and let C to be a diagonal matrix with diagonal element cj. If θ1 > 0, then cj 

> 0 for all j, then C is also a positive definite matrix. Observe that αTDγ = αTDCα > 0, since 

the product of two positive definite matrix DC is also positive definite. Thus λD > 0. If θ1 < 

0, then cj < 0 for all j, and so λD < 0. Following these arguments, the result for non-zero 

causal effect that λDθ1 > 0 is proved by contradiction.

Proof of Corollary 2

Let , where ∊ is independent and identically distributed 

random error with zero mean. Since Z ⊥ U, α1j = β1j. For a subject with genotype G = gj,

while for a subject with the reference genotype,

Let S = θ1β2U + θ1∊ + θ3U. E(S) = 0 and denote by Ω the variance of S. Let h(·) = g−1(·). 

Second order Taylor series expansion of E(Y∣G = gj) and E(Y∣G = gp+1) leads to good 

approximations
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Since γ1j = g{E(Y∣G = gj)} – g{E(Y∣G = gp+1)}, first order Taylor series expansion of 

g{E(Y∣G = gj)} at h2(θ0 + θ1β0 + θ1α1j) and g{E(Y∣G = gp+1)} at h2(θ0 + θ1β0) results in

For a logistic model, , and so  is a decreasing function. Thus if θ1α1j > 

0, γ1j is negatively biased; if θ1α1j < 0, γ1j is positively biased.

Let γ1j = cjα1j. If θ1 > 0, θ1 > cj > 0 for all j. Let E to be a diagonal matrix with diagonal 

element θ1 – cj. So θ1 – λD = (αTDα)−1αTDEα > 0. If θ1 < 0, θ1 < cj < 0 and so θ1 – λD < 0. 

Therefore λD is biased toward zero.

Proof of Lemma 1

Because Z ⊥ U, and X∣Z,U is normally distributed with mean  and 

variance σ2, it follows that

where c = E{exp(θ2U + θ1β2U)}. Hence γ1j = θ1α1j and .

Proof of Theorem 2

The asymptotic expansion of  closely follows the proof in Corollary 2. The asymptotic 

optimality of  can be established by arguments similar to those used for the Gauss-

Markov Theorem. Observe that
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(22)

The last equation (22) uses Slutsky’s theorem. Some algebra can show that the first two 

terms in (22) are asymptotically uncorrelated. The asymptotic covariance matrix of 

 can be decomposed as

(23)

since the second term in (23) is non-negative definite. The equality holds if D = Γ. This 

establishes the asymptotic optimality of .

Proof of Corollary 3

To obtain , one first compute the predicted value  in (14), replace X in (13) by , and 

solve the estimating equation for (13), denoted by Sn( ; θ). Since , where  is a 

matrix composed of elements in α, the two-stage least squares estimating function can be 

equivalently presented as , where S2i is the estimating function for 

(15). Taylor series expansion with respect to both α and θ yields

On the other hand, the estimating function for  also equals to 

, because  is consistent for γ. It follows that

Proof of Lemma 2

If g1(·) is the identity function, we obtain α1j = β1j by integrating U∣W in E(X∣Z,W,U). So if 

α1j > α1j’, E(X∣G = gj,W) > E(X∣G = gj’,W) for every W. Following the arguments in 

Theorem 1, we have E(Y∣G = gj,W) > E(Y∣G = gj’,W) for every W.
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Some algebra leads to the result that the maximum likelihood estimates of γj and γj’ in the 

working model (21) have to satisfy the following equations

If W∣G = gj and W∣G = gj’ are in some stochastic order, whether stochastically greater or 

stochastically less, E(Y∣G = gj,W) > E(Y∣G = gj’,W) for every W, then γ1j has to be greater 

than γ1j’, otherwise the comparison of the upper two equations runs into contradiction. This 

suggests the concordance of α1j and γ1j.
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Figure 1. 
A numerical example to show the concordance of (α, γ). The top and bottom panels show 

the scatter plot when there is no causal effect (θ1 = 0) or there is a causal effect (θ1 = 0.5). 

The left and right panels show the scatter plot when there is different level of confounding 

(θ2 = 0.5 or θ2 = 1).
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Figure 2. 
The two sets of genetic effects and the linear concordance estimates. Seven diplotypes were 

formed and all effects was compared to the most common diplotype. The sizes of square 

points are proportional to sample sizes in diplotype groups.
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Table 1

Comparison of the standard instrumental variable testing method (IVT), the proposed ordinary least squares 

estimator (OLS), the generalized least squares estimator of linear concordance (GLS), the double-logistic 

structural mean models (SMM) in type I error rate (θ1 = 0)and power (θ1 ≠ 0).

θ2 = 0.5 θ2 = 1.0

θ1 = 0 n = 1000 n = 5000 n = 1000 n = 5000

IVT 0.044 0.055 0.045 0.045

OLS 0.016 0.048 0.024 0.039

GLS 0.028 0.045 0.032 0.039

SMM 0.084 0.066 0.143 0.060

θ1 = 0.5

IVT 0.113 0.455 0.084 0.296

OLS 0.191 0.618 0.201 0.535

GLS 0.230 0.738 0.245 0.660

SMM 0.374 0.749 0.392 0.696

θ1 = 1.0

IVT 0.241 0.930 0.156 0.714

OLS 0.495 0.980 0.443 0.893

GLS 0.583 0.994 0.537 0.952

SMM 0.591 0.993 0.479 0.943

The causal effect θ1 and the confounding effect θ2 are defined in the following data-generating models: 

 and logit{E(Y∣X, U)} = −1 + θ1X + θ2U.

Stat Med. Author manuscript; available in PMC 2015 October 15.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Dai et al. Page 28

Table 2

Comparison of the proposed ordinary least squares (OLS), the generalized least squares estimators (GLS) of 

linear concordance and the double-logistic structural mean models (SMM) in bias and variance.

n=1000 n=5000

λ OLS λ GLS λ SMM λ OLS λ GLS λ SMM

θ2 =0.5 θ1 = 0

% zero or multiple roots – – 15.9% – – 3.3%

Bias: mean −0.010 0.030 0.679 0.001 0.014 0.012

Bias: median −0.022 0.039 0.127 0.011 0.017 0.009

Var 0.236 0.167 30.111 0.054 0.039 0.042

Robust Var 0.216 0.151 0.257 0.054 0.039 0.042

Var̂: mean 0.286 0.222 1347.102 0.052 0.039 0.039

Var̂: median 0.243 0.184 0.159 0.050 0.038 0.037

θ1 = 0.5

% zero or multiple roots – – 24.1% – – 2.2%

Bias: mean −0.080 −0.056 1.131 −0.060 −0.057 0.007

Bias: median −0.052 −0.047 0.073 −0.066 −0.053 0.007

Var 0.189 0.133 2054.416 0.039 0.028 0.040

Robust Var 0.174 0.128 0.238 0.041 0.027 0.036

Var̂: mean 0.214 0.164 3254238 0.039 0.029 0.035

Var̂: median 0.178 0.139 0.145 0.037 0.028 0.034

θ1 = 1.0

% zero or multiple roots – – 28.5% – – 3.1%

Bias: mean −0.257 −0.255 −15.860 −0.270 −0.270 −0.098

Bias: median −0.259 −0.260 −0.013 −0.275 −0.273 −0.024

Var 0.150 0.109 16882.62 0.030 0.022 3.905

Robust Var 0.131 0.091 0.389 0.030 0.023 0.044

Var̂: mean 0.178 0.140 399169268 0.032 0.025 67.251

Var̂: median 0.149 0.119 0.165 0.031 0.024 0.041

θ2 = 1 θ1 = 0

% zero or multiple roots – – 17.5% – – 2.5%

Bias: mean 0.010 0.081 0.672 0.012 0.028 0.033

Bias: median 0.025 0.099 0.197 0.008 0.029 0.031

Var 0.217 0.156 81.707 0.045 0.033 0.048

Robust Var 0.186 0.126 0.274 0.046 0.038 0.046

Var̂: mean 0.299 0.224 9320.521 0.049 0.038 0.046

Var̂: median 0.216 0.166 0.161 0.047 0.035 0.040

θ1 = 0.5

% zero or multiple roots – – 23.2% – – 2.3%

Bias: mean −0.119 − 0.078 −0.951 −0.137 −0.125 0.017

Bias: median −0.091 −0.068 −0.082 −0.127 −0.121 0.011
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n=1000 n=5000

λ OLS λ GLS λ SMM λ OLS λ GLS λ SMM

Var 0.160 0.116 172.469 0.033 0.024 0.062

Robust Var 0.119 0.091 0.333 0.030 0.022 0.040

Var̂: mean 0.213 0.159 127871 0.035 0.027 0.045

Var̂: median 0.150 0.116 0.157 0.033 0.025 0.041

θ1 = 1.0

% zero or multiple roots – – 30.6% – – 5.8%

Bias: mean −0.398 −0.380 −13.591 −0.419 −0.414 −0.514

Bias: median −0.386 −0.368 −0.117 −0.414 −0.407 −0.014

Var 0.140 0.096 12460.730 0.029 0.022 63.947

Robust Var 0.107 0.077 0.642 0.028 0.020 0.069

Var̂: mean 0.176 0.132 128356550 0.029 0.022 3386.188

Var̂: median 0.123 0.098 0.187 0.027 0.020 0.053

The causal effect θ1 and the confounding effect θ2 are defined in the following data-generating models: 

 and logit{E(Y∣X,U)} = −1 + θ1X + θ2U.
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Table 3

Comparison of the standard instrumental variable testing method (IVT), the proposed ordinary least squares 

estimator (OLS), the generalized least squares estimator of linear concordance (GLS), the double-logistic 

structural mean models (SMM) in type I error rate (θ1 = 0)and power (θ1 ≠ 0).

θ2 = 0.5 θ2 = 1.0

n = 1000 n = 5000 n = 1000 n = 5000

θ1 = 0

IVT 0.026 0.032 0.054 0.045

OLS 0.004 0.017 0.033 0.032

GLS 0.008 0.023 0.020 0.034

SMM 0.066 0.074 0.161 0.133

θ1 = 0.5

IVT 0.042 0.133 0.051 0.113

OLS 0.070 0.251 0.094 0.235

GLS 0.095 0.290 0.145 0.309

SMM 0.300 0.422 0.334 0.471

θ1 = 1.0

IVT 0.064 0.315 0.062 0.223

OLS 0.196 0.557 0.223 0.519

GLS 0.229 0.654 0.289 0.614

SMM 0.329 0.684 0.320 0.595

The causal effect θ1 and the confounding effect θ2 are defined in the following data-generating models: 

 and logit{E(Y∣X, U)} = −1 + θ1X + θ2U.
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Table 4

Comparison of the proposed ordinary least squares (OLS), the generalized least squares estimators (GLS) of 

linear concordance and the double-logistic structural mean models (SMM) in bias and variance.

n=1000 n=5000

λ OLS λ GLS λ SMM λ OLS λ GLS λ SMM

θ2 = 0.5 θ1 = 0

% zero or multiple roots – – 37.1% – – 17.5%

Bias: mean 0.021 0.075 7.712 0.008 0.038 0.548

Bias: median 0.050 0.085 0.442 0.022 0.030 0.065

Var 0.738 0.539 14576.26 0.212 0.152 96.363

Robust Var 0.607 0.439 0.717 0.204 0.141 0.166

Var̂: mean 2.428 1.627 5028211 0.223 0.177 2401.809

Var̂: median 0.787 0.613 0.402 0.193 0.152 0.129

θ1 = 0.5

% zero or multiple roots – – 35.9% – – 12.7%

Bias: mean −0.037 0.007 −0.727 −0.045 −0.030 0.258

Bias: median 0.015 0.036 0.099 −0.052 −0.032 0.050

Var 0.609 0.430 334.15 0.154 0.107 77.149

Robust Var 0.495 0.393 0.837 0.149 0.099 0.160

Var̂: mean 1.704 1.057 119651.6 0.166 0.131 8940.424

Var̂: median 0.584 0.463 0.373 0.145 0.114 0.117

θ1 = 1.0

% zero or multiple roots – – 47.8% – – 20.7%

Bias: mean −0.197 −0.195 −21.687 −0.267 −0.261 −12.565

Bias: median −0.217 −0.214 −0.374 −0.261 −0.268 0.005

Var 0.505 0.347 20805.530 0.120 0.091 25014.870

Robust Var 0.374 0.288 1.658 0.113 0.085 0.213

Var̂: mean 1.201 0.927 80359120 0.137 0.109 146064571

Var̂: median 0.478 0.380 0.466 0.120 0.094 0.130

θ2 = 1 θ1 =0

% zero or multiple roots – – 29.8% – – 15.1%

Bias: mean 0.150 0.236 0.318 0.047 0.087 0.213

Bias: median 0.163 0.258 0.462 0.041 0.105 0.172

Var 0.555 0.371 678.602 0.165 0.118 1.727

Robust Var 0.421 0.273 0.500 0.158 0.124 0.199

Var̂: mean 1.735 1.000 256173.5 0.229 0.177 17.972

Var̂: median 0.630 0.468 0.307 0.169 0.135 0.129

θ1 = 0.5

% zero or multiple roots – – 38.1% – – 18.9%

Bias: mean 0.000 0.047 −9.283 −0.103 −0.068 −0.412

Bias: median 0.030 0.050 0.100 −0.084 −0.045 0.128
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n=1000 n=5000

λ OLS λ GLS λ SMM λ OLS λ GLS λ SMM

Var 0.440 0.290 20578.09 0.127 0.090 41.464

Robust Var 0.302 0.219 0.836 0.105 0.078 0.215

Var̂: mean 1.220 0.802 50799975 0.160 0.126 1084.917

Var̂: median 0.425 0.333 0.318 0.121 0.096 0.123

θ1 = 1.0

% zero or multiple roots – – 43.1% – – 26.0%

Bias: mean −0.295 −0.272 −36.371 −0.392 −0.373 −8.683

Bias: median −0.288 −0.273 −0.562 −0.373 −0.367 −0.002

Var 0.351 0.248 82631.690 0.109 0.080 6509.888

Robust Var 0.234 0.176 1.888 0.096 0.069 0.358

Var̂: mean 1.195 0.676 1218444016 0.128 0.102 5301082

Var̂: median 0.351 0.272 0.403 0.101 0.080 0.154

The causal effect θ1 and the confounding effect θ2 are defined in the following data-generating models: 

 and logit{E(Y∣X, U)} = −1 + θ1X + θ2U.
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