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SUMMARY

Plants produce structurally diverse secondary (specialized) metabolites to increase their fitness for survival

under adverse environments. Several bioactive compounds for new drugs have been identified through

screening of plant extracts. In this study, genome-wide association studies (GWAS) were conducted to

investigate the genetic architecture behind the natural variation of rice secondary metabolites. GWAS using

the metabolome data of 175 rice accessions successfully identified 323 associations among 143 single nucle-

otide polymorphisms (SNPs) and 89 metabolites. The data analysis highlighted that levels of many metabo-

lites are tightly associated with a small number of strong quantitative trait loci (QTLs). The tight association

may be a mechanism generating strains with distinct metabolic composition through the crossing of two

different strains. The results indicate that one plant species produces more diverse phytochemicals than

previously expected, and plants still contain many useful compounds for human applications.

Keywords: Oryza sativa, secondary metabolites, metabolome analysis, genome-wide association study, nat-

ural variation.

INTRODUCTION

Plants have the ability to produce a wide range of structur-

ally diverse secondary (specialized) metabolites to increase

survival fitness in various adverse environments (Schwab,

2003; Pichersky and Lewinsohn, 2011; Saito, 2013). For

instance, certain molecules play roles in plant–insect inter-

actions, such as glucosinolates in Arabidopsis thaliana and

flavone glycosides in cereals (Kliebenstein et al., 2001c;

Simmonds, 2001; Beekwilder et al., 2008). Based on the

structural diversity, several bioactive compounds for new

drugs have been identified through screening of extracts

of various plant species. Recently, metabolomics studies

revealed that the composition of secondary metabolites in

plants is an inherently variable phenotype, as genetic poly-

morphisms cause large qualitative and quantitative varia-

tions in metabolic phenotypes (metabolotypes) among

cultivars and ecotypes (Chan et al., 2010a; Saito and Mat-

suda, 2010; Weigel, 2012; Carreno-Quintero et al., 2013).

Although relatively tight genetic control of natural varia-

tions has been identified through metabolome quantitative

trait loci (mQTL) analyses (Rowe et al., 2008; Schauer

et al., 2008; Lisec et al., 2009; Matsuda et al., 2012; Gong

et al., 2013), knowledge remains limited as to how diverse

secondary metabolites are produced in a given plant spe-

cies and the genetic architecture of qualitative and quanti-

tative variations in the metabolic phenotype.

Genome-wide association study (GWAS) is a method for

mapping the loci responsible for natural variations in a tar-

get phenotype by the identification of significantly associ-

ated genetic polymorphisms in a large population (Brachi

et al., 2011; Weigel, 2012). GWAS has been widely used to

identify loci that are related to various agronomically

important traits, as well as to uncover the genetic architec-

ture that controls these traits (Atwell et al., 2010; Huang

et al., 2010; Chan et al., 2011; Zhao et al., 2011). The devel-
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opment of metabolomics tools in last decade has also facil-

itated the comprehensive phenotyping of metabolomic

traits (Saito and Matsuda, 2010). Genome-wide association

analyses of metabolomic traits of A. thaliana populations

found that genotype–-metabolite associations form clus-

ters of hotspots in regions under strong positive selection

(Chan et al., 2010a). Metabolome-GWAS using maize also

demonstrated that concentrations of multiple lignin precur-

sors showed strong genetic associations with other agro-

nomic traits (Riedelsheimer et al., 2012; Hill et al., 2013;

Wen et al., 2014). Recently, metabolome-GWAS using rice

showed that metabolic pathways could be reconstructed

from genotype-metabolite associations (Chen et al., 2014;

Dong et al., 2014). However, while complex modes of

inheritance have been revealed by GWAS studies of

metabolites, knowledge remains limited about the genetic

architecture behind the structural diversity of secondary

metabolism. Although GWAS of A. thaliana has confirmed

the major polymorphic loci identified in biparental RIL pop-

ulations controlled the large natural variation of glucosino-

late levels, the applicability of these findings to other plant

species requires more immense investigation (Kliebenstein

et al., 2001a,b,c; Keurentjes et al., 2007; Chan et al.,

2010b).

In this study, GWAS was conducted by analyzing the

aerial part of 175 Japanese diverse rice (Oryza sativa) culti-

var seedlings using liquid chromatography-tandem mass

spectrometry (LC-MS/MS) for the non-targeted analysis of

known and unknown metabolites (Bottcher et al., 2008;

Matsuda et al., 2009). The analysis revealed that there are

two types of genetic architectures responsible for the natu-

ral variations in the composition of secondary metabolites

in the rice population. While the small number of mQTLs

tightly associated with levels of one-third of analyzed

metabolites, levels of other one-third of metabolites were

under the smaller effect of multiple QTL.

RESULTS AND DISCUSSIONS

Large structural diversity of rice specialized metabolites

A metabolome dataset composed of 342 metabolite signals

(peaks) in 668 samples was obtained using liquid chroma-

tography-mass spectrometry (LC/MS) (Tables S1–S3) (Mat-

suda et al., 2009, 2010). Metabolite annotation successfully

characterized the structures of 91 metabolites, demonstrat-

ing that phytochemicals produced in rice cultivars were

more diverse than previously reported (Figure 1 and

Table S4) (Besson et al., 1985; Mohanlal et al., 2011).

Among the metabolite signals, 6 and 32 metabolite signals

were ‘annotated’ and ‘identified’, respectively, on the basis

of comparisons of MS/MS spectra, an exact mass number,

and retention time with those of standards (Figure 2) (Yang

et al., 2014). For further characterization of metabolite

structure, a molecular MS/MS network was constructed by

connecting two metabolite signals (nodes) that had similar

MS/MS spectra (See Experimental Procedures, blue edges

in Figure 1). The molecular MS/MS network showed the

presence of several clusters of metabolites. For instance, a

Figure 1. Combined metabolomics networks of rice.

Each node represents one metabolite signal. The molecular MS/MS network on MS/MS spectral similarity is shown as blue edges. Red edges represent the

metabolite co-accumulation network on metabolites with similar accumulation patterns observed among the 175 rice cultivars. Interpretable networks were

obtained by employing a threshold of similarity score above 0.7 for both networks. Clusters mentioned in the text are presented by circles. The structures of rep-

resentative metabolites in each cluster are also shown. Metabolite names by the bold numbers are presented in Table S4. Nodes of metabolites with relatively

large broad-sense heritability (H2 > 0.5) and significantly distorted from the normal distribution by Kolmogorov-Smirnov test (P < 0.01) are shown in orange

color. Green nodes are metabolites with H2 > 0.5 and P > 0.01 (See legend of Figure 6b).
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cluster contains apigenin-6-C-a-L-arabinosyl-8-C-a-L-arabi-
noside 6 (referred to as apigenin-di-C-arabinoside, peak ID

33368), which has a MS/MS spectrum with a characteristic

fragmentation pattern of flavone-C-glycoside (Figure 2a)

(Cavaliere et al., 2005). The MS/MS spectrum of a neigh-

borhood metabolite signal (ID 38198) in the network exhib-

its a similar fragmentation pattern, except for a larger

mass number of the precursor ion (+CH2O, Figure 2b).

Based on the similarity of MS/MS spectra, the metabolite

signal was characterized to be apigenin-C-hexoside-C-

pentoside 7. Using a similar procedure, 53 metabolite

structures were partly ‘characterized’ in this study

(Table S4).

Clustering of metabolites by MS/MS spectral similarities

revealed that, in addition to several amino acids and

putrescine amides (compounds 1–4, 17, and 18 in Fig-

ure 1), a series of flavonoids was produced in rice, includ-

ing flavone-C-glycosides, flavone-O-glycosides, and tricin

derivatives (5–16, blue edges in Figure 1) (Dong et al.,

2014; Yang et al., 2014). While no tricin-C-glycoside was

found in the metabolome data, several tricin-specific deriv-

atives were present, including flavonolignans and tricin-

glycosides (for instance, compounds 13–16 in Figure 1).

The flavonolignans with tricin aglycone such as tricin 40-O-

(erythro-b-guaiacylglycerol) ether 7-O-b-D-glucopyranoside
13 have been found from monocot plants (Bouaziz et al.,

2002; Chang et al., 2010). Furthermore, tricin 7-O-(60 0-O-

malonyl)-b-D-glucoside 14 was first reported in our

previous study(Yang et al., 2014). The tricin derivatives

may contribute to rice physiology; their unique biological

activities have been previously reported (Mohanlal et al.,

2011). Furthermore, the presence of two uncharacterized

clusters (clusters 1 and 2 in Figure 1) indicated that rice

contains unknown metabolic functions that produced

unknown metabolites such as peak ID 11261 (Figure 2c).

To investigate the coordinated regulation of metabolite

levels, the metabolite co-accumulation network was con-

structed (red edges in Figure 1) and superimposed on the

molecular MS/MS network. The metabolite co-accumula-

tion network revealed the presence of several clusters of

co-accumulated metabolites overlapping with the clusters

of structurally similar metabolites. This trend was observed

for amino acid and flavone-O-hexoside, indicating coordi-

nated regulation of these metabolite contents. In compari-

son, the cluster of flavone-C-glycoside in the molecular

MS/MS network was separated into two clusters of the

metabolite co-accumulation network, indicating complex

control of flavone-C-glycoside biosynthesis (clusters 3 and

4 in Figure 1).

Genome-wide association studies

GWAS were conducted for 342 metabolites using the geno-

type data of 3168 SNPs (Table S5) to indentify the mQTL

responsible for metabolic phenotype variations (Yonemaru

et al., 2012). The distribution of �log10 (P values) deter-

mined by the na€ıve analysis was far from the expected

Peak ID 33368: apigenin-6,8-di-C-arabinoside 6
MS2T ID: OSA09p06019
Rt: 4.48 min

Peak ID 38198: apigenin-C-hexoside-C-pentoside 7
MS2T ID: OSA37p07509
Rt: 4.17 min
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+CH2O
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Figure 2. Tandem mass (MS/MS) spectra of

rice metabolites.

(a) Apigenin-6-C-a-L-arabinosyl-8-C-a-L-arabino-
side 6 (peak ID 33368), (b) apigenin-C-hexoside-

C-pentoside 7 (ID 38198), and (c) unknown

metabolite (ID 11261) . MS2T ID indicates the

code of the representative MS/MS spectral tag

of each metabolite in the RIKEN PRIME MS2T

library.
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distribution, probably because of the high level of false

positive signals that were derived from the genetic model

without considering a population structure (Figure S1).

The inflation of P-values by the na€ıve analysis has also

been reported in previous studies (Chan et al., 2010a; Rie-

delsheimer et al., 2012). Thus, in this study, the efficient

mixed-model association (EMMA) was employed to correct

the confounding effects of population and genetic related-

ness in the association mapping (Kang et al., 2008). The

P-value distribution was close to the expected distribution

when using the mixed-model.

As shown in Figure 3(a), 323 significant associations

among 143 SNPs and 89 metabolites were observed when

employing a relatively strict threshold (a = 1.0 9 10�5,

false discovery ratio: 3.4%, Table S6). Red lines in Fig-

ure 3(b) show the associations among the SNPs and the

metabolites (aligned on the upper and lower boundaries in

the figure, respectively). We found that one polymorphism

tends to affect the levels of multiple metabolites, as 113 of

143 SNPs were significantly associated with more than two

metabolites (Figure 3b). Furthermore, gene ontology (GO)

enrichment analysis suggested that polymorphisms in

genes related to glycosylation and protein–protein interac-

tion might play important roles in metabolotype variations.

It is because genes categorized in transferring glycosyl

groups and protein binding are frequently observed

among 2244 genes encoded near the SNPs (Table S7).

It is also assumed that metabolite levels are controlled

by the interaction of mQTLs (Rowe et al., 2008; Klieben-

stein, 2009; Lisec et al., 2009; Chen et al., 2014). If epistasis

is a major mode-of-inheritance with large effect on rice

metabolic phenotypes, the metabolite levels of a cultivar

would be significantly lesser or greater compared to the

two parental cultivars. Since the rice population used in

this study includes 38 sets of the cultivar and their parental

cultivars (Table S1), the occurrence of the epistatic effect

was investigated by comparing the levels of a metabolite

among the cultivar and its parents. Among the 12 312 tests

in total (38 sets of 342 metabolites), a higher and lower

metabolite levels was observed in 166 and 173 cases (one-

sided t-test at a = 0.01), respectively. Since the probabili-

ties were close to false positive levels, the epistatic effect is

unlikely to be a major mode-of-inheritance in rice meta-

bolic phenotypes.

mQTLs responsible for the natural variation of metabolic

phenotypes

The GWAS clearly showed that there are several hotspots

of significantly associated SNPs. Among these genetic

hubs, one of the most prominent hotspot regions is

located around the short arm of chromosome 6, where the

SNP genotype NIAS_Os_ac06000458 with G/A alleles was

tightly associated with the levels of various flavone-C-gly-

cosides (Figure 4a). For instance, the SNP genotype

explained 68.6% of the total variation of the levels of

apigenin-di-C-arabinoside 6 for 175 cultivars. Near the

SNP marker, there were OsCGT gene encoding flavone

C-glucosyltransferase that functions in the selective forma-

tion of 6C-glucosylflavone (Brazier-Hicks et al., 2009) and

its two homologous UGT genes (Os06g0289200 and

Os06g0289900, Figure 4b). The protein sequences of the

two genes were similar to that of OsCGT (E-values deter-

mined by blastx using RAPDB were 1e-142 and 2e-112,

respectively). While 6C-glucosylation is a basal metabolic

function in the rice population, the capability to produce

flavone-6C-arabinosides such as apigenin-di-C-arabinoside
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Figure 3. Genetic architecture of rice secondary

metabolism.

(a) Manhattan plot for genome-wide association

mapping of rice metabolic phenotypes. SNPs

significantly associated with some metabolite

levels were plotted on the rice genome

(a = 1.0 9 10�3).

(b) Associations between 3168 SNPs aligned on

the upper boundary and 342 metabolites

aligned on the lower boundary. Positions of

SNPs correspond to the above panel. Red, blue,

and gray lines represent significant associations

between SNPs and metabolites with threshold

levels of a = 1.0 9 10�5, 5.0 9 10�5, and

1.0 9 10�3, respectively. Positions of metabolite

clusters and representative metabolites are also

represented (Table S4 for metabolite names).
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6 is strictly associated with G genotype of this SNP (Fig-

ure 4c). These results indicate that 6C-arabinosylation

should be associated with polymorphism related to UGT

genes as has been reported in the previous study (Chen

et al., 2014). The detailed structural characterization of

metabolite signals performed in this study highlighted that

the polymorphism is responsible for the 6-C-a-L-arabinosy-
lation of flavones. A similar tight association was observed

between the SNP marker on chromosome 4 (NIAS_O-

s_ac04000042), and the unknown metabolites in cluster 2

(Figure 1) including ID 11155, ID11269, and ID11261 (Fig-

ure 5a,b). The gene annotation data indicated that, among

the six genes positioned in the mQTL candidate region,

arginine decarboxylase gene (Os04g0107600) play a role in

the polyamine biosynthesis and suggests a possible pre-

cursor for the metabolite biosynthesis (Table S8).

The GWAS demonstrated a genetic background for the

coordinated regulations of flavone-O-glycoside and amino

acid contents, which were observed in the metabolite co-

accumulation network (Figure 1). For instance, there was a

SNP on chromosome 1 (NIAS_Os_aa01010133) that was

significantly associated with luteolin-7-O-glucoside 12 and

other flavone-O-glycoside contents (Figure 5c). The SNP

genotype explained 21.5% of the total variance of luteolin-

7-O-glucoside 12 levels in 175 rice accessions (Figure 5d).

Since the position of NIAS_Os_aa01010133 was far from

(0.31–0.38 Mb) the cluster of seven UDP-glucuronosyl/

UDP-glucosyltransferase (UGT) genes such as UGT706D1

(Os01g0736300) responsible for the glucosylation of flav-

ones (Ko et al., 2008), unknown molecular mechanism

should be responsible for the coordinated regulation of the

flavone-O-glycoside levels (Table S8).
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Figure 4. GWAS of 31 metabolites in flavone-C-
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(a) Manhattan plot for 31 metabolites in fla-
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tion of SNPs associated with 6C-arabinosylation

of flavone (NIAS_Os_ac06000458) is indicated

by grey arrow.

(b) Rice genome region around the SNP mar-
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(c) Associations between genotypes of NIAS_O-

s_ac06000458 and apigenin-di-C-arabinoside

levels.
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Figure 5. Genome-wide association study of

rice metabolites.

(a) Manhattan plot for unknown metabolite

ID11621 and (b) its association with SNP geno-

types NIAS_Os_ab040000042. (c) Manhattan plot

for 9 flavone-O-glycosides including luteolin-7-

O-glucoside and (d) association between luteo-

lin-7-O-glucoside and NIAS_Os_aa01010133. (e)

Manhattan plot for 7 amino acids and (f)

association between phenylalaine and

NIAS_Os_ab02000283.
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GWAS data also showed that the genotype of SNP NIA-

S_Os_ab02000283 on chromosome 2 is significantly associ-

ated with phenylalanine 1 levels (�log10 P-value = 3.39

(Figure 5e). However, only 9% of the total variance could

be explained by the SNP genotype (Figure 5f) indicating

that amino acids levels are controlled by a relatively large

number of weak mQTLs. This SNP was also associated

with other amino acids in the cluster, such as leucine 4 and

tryptophan 2. Among the four genes in the mQTL candi-

date region, Os02g0278700 showed homology with GA1 in

Arabidopsis (At4g02780, E-value 6e-07 by TAIR) that

encodes ent-copatyl diphosphate synthetase responsible

for gibberellins biosynthesis (Table S8). However, since

almost equal distribution was observed for the SNP geno-

types (91 and 83 strains have ‘C’ and ‘G’ genotypes,

respectively), the polymorphisms is unlikely to be associ-

ated with agronomically important traits such as plant

height. It suggests that there should be other causal gene

for the natural variation of amino acid levels. Many loci

that were qualitatively associated with various metabolites

were also found in this study. The detailed genotyping or

genome sequencing of various rice cultivars will uncover

the genetic polymorphisms controlling the observed natu-

ral variation (Gong et al., 2013; Wen et al., 2014).

Genetic architecture for house-keeping metabolites

The metabolite levels were controlled by both genetic and

environmental factors. The relative standard deviations of

each metabolite level largely varied across the 175 culti-

vars (Figure 6a). The variations were mainly derived from

the genetic polymorphisms, because relatively large

broad-sense heritabilities (H2 > 0.5) were observed for 234

(68.4%) metabolites (Figure 6b). For the metabolites that

were dominantly controlled by genetic factors, a Kolmogo-

rov–Smirnov test indicated that the quantitative variations

of one-third (115/342) of the metabolites followed a normal

distribution (P > 0.01) (Figure 6b). Metabolites in this

group are represented as green nodes in Figure 1. This

group included amino acids, some flavone glycosides, and

flavonolignans such as phenylalanine 1 (Figure 6c), isovit-

exin 2″-O-(6‴-(E)-p-coumaroyl)-glucoside 9, and tricin 40-O-

(erythro-b-guaiacylglycerol) ether 7-O-b- D-glucopyranoside

13. Our GWAS demonstrated that the metabolites in this

group are under the control of multiple mQTLs that are

weakly associated with metabolic phenotypes. For

instance, only 9% of the total variance in phenylalanine 1

levels can be explained by weakly associated SNP NIAS_O-

s_ab02000283 on chromosome 2 (Figure 5f). Similar GWAS

results with marginal associations have been observed for

several agronomically important traits, such as flowering

time and grain weight (Huang et al., 2010, 2013; Zhao

et al., 2011). Because a level of metabolite under the con-

trol of multiple QTLs hardly shows extreme phenotypes,

this characteristic represents the genetic architecture for

the consistent biosynthesis of essential amino acids and

house-keeping flavonoids as defense compounds, such as

a radical scavenging and UV absorbance activities (Sim-

monds, 2003).
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Figure 6. Natural variations in metabolite com-

positions.

(a) Relative standard deviation among the 175

rice cultivars.

(b) Grouping of metabolites by broad-sense

heritability (H2) and Kolmogorov–Smirnov test

for fitting a normal distribution (P-value). Num-

bers of metabolites classified in each group are

shown in the figure. Group colors (green,
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Figure 1.

(c, d) Variation in phenylalanine (c) and apige-

nin-di-C-arabinoside (d) levels among the 175

rice cultivars.
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Genetic architecture to generate intra-species diversity of

phytochemicals

The metabolome data also revealed that quantitative varia-

tions of the other 119 metabolites are predominantly con-

trolled by heritable factors (H2 > 0.5) and significantly

deviated from the normal distribution (P < 0.01, Figure 6b,

orange nodes in Figure 1). The group included apigenin-di-

C-arabinoside 6 (Figure 6d) and an unknown metabolite

ID11261. These distortions were associated with low num-

bers of QTLs that strongly control the content of multiple

metabolites (Figure 3b). Indeed, pedigree data showed that

the haplotype around the NIAS_Os_ac06000458 was tightly

linked to the high apigenin-di-C-arabinoside phenotype

(Figure 7, highlighted in red). A similar tight association

was observed between the unknown metabolite (ID11261)

and the haplotype around SNP marker NIAS_O-

s_ab04000042 (Figure 7, highlighted in blue). This is

another type of genetic architecture that produces proge-

nies with various phytochemical compositions. As shown

in Figure 7, Norin 22 exhibited low level of apigenin-di-C-

arabinoside 6 (signal intensity was <0.01) and high accu-

mulation of ID11261 (signal intensity was 0.11). In contrast,

Norin 1 exhibited a high apigenin-di-C-arabinoside level

(0.43) and low ID11261 level (<0.01), respectively. By cross-

ing two cultivars, new patterns of apigenin-di-C-arabino-

side and ID11261 accumulation level were generated, such

as the high apigenin-di-C-arabinoside and high ID11261 in

Hatsunishiki and the low apigenin-di-C-arabinoside and

low ID11261 in Koshihikari. The strong effects of the small

number of mQTLs on metabolic phenotypes were also

supported by comparing genotype and metabolic pheno-

type similarities among cultivars, as dissimilar metabolic

phenotypes were observed between several pairs of geneti-

cally similar cultivars (Figure S2). The genetic architecture is

a mechanism generating strains with distinct metabolic com-

position through the crossing of two different strains. The

recombined metabolite composition may have some advan-

tages in interactions with herbivores and microbes because

some insects recognize the composition of plant metabolites

before feeding or spawning (Nguyen et al., 2013).

Greater phytochemical variation in the world rice

population

It has been demonstrated that Japanese cultivated rice

population have rather limited genotypic diversity (Yone-

maru et al., 2012) and that there is a greater phytochemical

variation in the world rice population (Chen et al., 2014).

For instance, in the co-accumulation network, there is a

large cluster of structurally unrelated metabolites (cluster

five in Figure 1) including isoorientin 7,30-dimethyl ether 8

(ID 23522), tricin 7-O-(2″-O-b-D-glucosyl)-b-D-glucuronoside
16 (ID 54700), and tricin 7-O-(6″-O-malonyl)-b-D-glucoside
14. The detailed analysis indicated that a small number of

landrace accessions actively synthesize these metabolites,

whereas these metabolites were rarely observed in the

improved cultivars (Figure 8a). This finding indicates that

the genetic variation of this trait is due to rare alleles in the

population while the linkage disequilibrium decay in japon-

ica is generally larger than that in indica (McNally et al.,

2009; Huang et al., 2010).

To explore additional genetic polymorphism associated

with metabolic phenotype variation, the levels of these

metabolites were determined for the seedlings of Sasani-

shiki (japonica rice)/Habataki (indica rice) chromosome

segment substitution lines (CSSLs). Habataki (indica rice)

is able to produce 8, 16, and 14 (Figure 8a), whereas this

variation is not present in this GWAS population. For

instance, production of 14 was associated with the Haba-

taki genotype of SSR marker RM1234 on chromosome 2

(Figure 8b,c). Gene annotation data indicated that two

genes, OsMaT2 and OsMaT3, are encoded near the marker.

Previous in vitro and genetic analyses suggested that these

genes encode flavonoid malonyltransferase, and a proba-

ble position of malonylation is the 6″-hydroxyl group of

the flavone glycosides (Kim et al., 2009; Gong et al., 2013).

Since the metabolite structure of tricin 7-O-(6″-O-malonyl)-

b-D-glucoside was unequivocally identified, the result indi-

cated that an in vivo function of these genes are malonylation

of 6″ position of tricin 7-O-b-D-glucoside. Similar genotype–

Haplotype near NIAS_Os_ab04000042

Norin8

Norin6

Moritawase

Rikuu132

Ginbozu

Asahi

Norin22
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Yamasenishiki

Joshu

Seridashi
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Rikuu20

Koshijiwase
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TTGAG 0.21
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TTGAG 0.35
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TCAGA <0.01
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TTGAG 0.36

TTGAG 0.43

T-GAG 0.34
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CCCCC 0.11

TCTCC 0.01

TCTCC 0.03

TCTCC <0.01

TCCCC 0.01

TCCCC 0.22

TCTCC 0.02

TCCCC 0.19

Signal intensity of unknown peak (ID 11261)

Haplotype near NIAS_Os_ac06000458
Signal intensity of apigeninedi-C-arabinoside(ID 33368)

?

Figure 7. Phylogenetic tree of the five rice cultivars developed by crossing

Norin 1 and Norin 22.

Cultivar names are shown in bold. The five nucleotide sequences above the

cultivar names represent the window of haplotypes around the SNP marker,

NIAS_Os_ac06000458, that was significantly associated with the levels of

apigenin-di-C-arabinoside (ID 33368). The signal intensities of the unknown

metabolite in each cultivar are also shown. The data below the cultivar

names indicate the haplotypes around SNP marker, NIAS_Os_ab040000042,

that was significantly associated with an unknown metabolite (ID 11261).

Red and blue lines represent the phylogenic origins of high apigenin-di-C-

arabinoside genotypes and unknown metabolite, respectively. ‘?’ indicates
an inconsistent between genotype and metabolotype.
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metabolotype associations were observed for 8 and 16,

whose candidate loci were mapped on chromosomes 4

and 12, respectively (Figure S3).

The analysis of Sasanishiki/Habataki CSSL also showed

that much greater levels of apigenin-di-C-arabinoside 6 in

Habataki compared to Sasanishiki (Figure S4). Interest-

ingly, Sasanishiki has high levels of apigenin-di-C-arabino-

side phenotypes, and has an identical genotype to Norin 1

(Figure 7). This result indicates that Habataki has other

genetic polymorphisms related to apigenin-di-C-arabino-

side biosynthesis that did not exist in the population used

for GWAS. As shown in our previous metabolome-QTL

analysis using Sasanisiki/Habataki CSSLs, the candidate

region of QTL overlapped with the position of NIAS_O-

s_ac06000458 (Matsuda et al., 2012), indicating the impor-

tant role of the hotspot on chromosome 6 for the natural

variation in composition of flavone-C-glycosides in japon-

ica and indica rice varieties.

CONCLUSION

LC-MS-based-metabolomics revealed the structural diver-

sity of flavone glycosides produced in rice cultivars, that is

mainly derived from various modifications of apigenin,

luteolin, and chrysoeriol aglycones (Figure 1). GWAS high-

lighted that approximately one-third of metabolites are

mainly regulated by mQTLs that have a large effect (Fig-

ures 3b and 6b), and the genotypes of a small number of

loci affect an intra-species diversity of metabolic composi-

tions (Figures 7 and 8). Metabolome-GWAS of other crops

would further uncover the genetic architectures generating

the diversity of secondary metabolites to adapt various

environments that will be useful information for future

crop improvement. The findings also indicate that when

screening for biologically active compounds, intra-species

variation of secondary metabolite compositions must be

taken into consideration. A further understanding of the

genetic architecture for generating phytochemical diversity

will guide the discovery of novel pharmaceuticals from

plants (Wang et al., 2012).

EXPERIMENTAL PROCEDURES

Plant materials

A Japanese rice collection of 175 accessions were used in this
study (Table S1) (Yonemaru et al., 2012). The Sasanishiki/Habataki
chromosome segment substitution lines (CSSLs, 39 accessions)
were also used (Ando et al., 2008). Seeds were sterilized in 10%
sodium hypochloric acid solution by vacuum infiltration for 1 h,
and then immersed in aqueous 2% PPMTM solution (Nacalai Tes-
que, Kyoto, Japan, http://www.nacalai.co.jp/) at 28°C for 1 day in
darkness. Seeds were sown in wet commercial fertilized soil (Bon-
sol II; Sumitomo Chemical, Tokyo, Japan, http://www.sumitomo-
chem.co.jp/), and maintained under a 12-h light (28°C)/12-h dark
(20°C) cycle for germination. Plants were kept under constant sub-
irrigation conditions with tap water. After 2 weeks of growth, the
entire aboveground (or aerial) part of one seedling was collected,
weighed, and frozen in liquid nitrogen for analysis. Samples were
stored at �80°C until analysis.

Metabolome analysis using liquid chromatography

quadrupole time-of-flight mass spectrometry (LC-QToF-

MS)

Analysis was performed using samples with three or four biologi-
cal replicates per cultivar. Frozen rice tissue was homogenized in
five volumes of cold 80% aqueous methanol containing an inter-
nal standard (0.5 mg L�1 lidocaine, Tokyo Kasei, Tokyo, Japan,
http://www.tcichemicals.com/), using a mixer mill (MM 300, Rets-
ch, Haan, Germany, http://www.retsch.com/) and a zirconia bead
for 6 min at 20 Hz. Samples were centrifuged at 15 000 g for
10 min. The supernatant (3 ll) were subsequently subjected to
metabolome analysis using liquid chromatography coupled with
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Figure 8. Mapping of the locus controlling tricin 7-O-(60 0-O-malonyl)-b-D-glucoside 14 content.

(a) Levels of 14 in rice cultivars. Relative levels in leaf blades of 2-week-old seedlings from four improved cultivars, 2 landraces, and Habataki are represented.

Each data point expresses the mean of three experiments � standard deviation (SD).

(b) Relative levels of 14 in the shoots of the Sasanishiki/Habataki chromosomal segment substitution lines (CSSLs) and their parental varieties. Levels in the

shoot are expressed as relative values. Each data point presents the mean of three experiments � SD.

(c) Schematic representation of chromosomal substitutions on chromosome 2, showing the genomic region controlling the level of 14 as black. Lines of each

CSSL each indicate the genome regions derived from Habataki. Dashed lines represent molecular markers, and lines represent malonyl transferase genes on

this chromosome.
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electrospray quadrupole time-of-flight tandem mass spectrometry
with an Acquity BEH ODS column (LC-ESI-QToF/MS, HPLC: Waters
Acquity UPLC system; MS: Waters QToF Premier, http://www.wa-
ters.com/). Metabolome analysis and data processing were con-
ducted according to a previously described method (Matsuda
et al., 2009, 2010). Briefly, metabolome data were obtained in
positive ion mode (m/z 100–2000; dwell time: 0.5 sec), from which
a data matrix was generated by MetAlign2 (Lommen and Kools,
2012). Signal intensities were normalized by dividing them by the
intensities of the internal standard (lidocaine). A data matrix con-
taining the 342 metabolite intensities from 668 runs was produced
for the Japanese rice population (Tables S2 and S3).

Metabolite annotation

For structural elucidation of metabolite signals, MS/MS spectral
tag (MS2T) libraries were constructed (Matsuda et al., 2011). The
extracts of 14–15 cultivars were mixed and utilized for MS/MS
spectra data acquisition. Analyses were repeated for 12 mixtures
using automated data acquisition methods as previously
described (Matsuda et al., 2009). Each MS2T entry was assigned a
unique code, OSAXXpXXXXX, indicating the library name (OSA-
XXp) and entry number. MS2T libraries containing 164 051 entries
were constructed. MS2Ts were added to metabolite signals, from
which the structure of each metabolite signal was elucidated by
searching the ReSpect (RIKEN MS/MS spectra database for phyto-
chemicals) (Sawada et al., 2012), MassBank (Horai et al., 2010),
KNApSAcK (Afendi et al., 2012), and PRIMe standard compound
database (Sakurai et al., 2013). The two spectra were considered
to be similar when the similarity score of the ReSpect search was
greater than 0.6. Thresholds were set at m/z Δ0.05 and 0.15 min,
respectively, for the molecular formula search on the KNApSAcK
database and comparison of retention times. Based on the criteria
proposed by the metabolome standard initiative (MSI) (Sumner
et al., 2007), metabolite signals were ‘characterized’ when parts of
a structure were deduced from mass data. Metabolite signals were
‘annotated’ when a common metabolite was observed in the out-
puts from both the ReSpect and KNApSAcK searches. Metabolite
signals were considered to be ‘identified’ when three distinct
pieces of information, including the MS/MS spectra, exact mass
number, and chromatographic behavior, were matched to identi-
cal metabolites (Table S4). Data obtained in this study are avail-
able on the PRIMe website (http://prime.psc.riken.jp/) (Sakurai
et al., 2013). Isolation and structural determination of rice flavones
has been reported previously (Yang et al., 2014).

Broad-sense heritability

In this study, the total variance of metabolite level was calculated
as the sum of genetic and environmental factors, expressed as:
Var(P) = Var(G) + Var(E) (Visscher et al., 2008). Here, Var(G) and
Var(E) represent the variance derived from genetic and environ-
mental effects, respectively. Broad-sense heritability (H2) was esti-
mated to be H2 = Var(G)/Var(P) using one-way analysis of variance
by treating 175 cultivars as a random effect and biological repli-
cates as the replication effect.

Network analyses

A molecular MS/MS network was constructed using previously
reported methods with some modifications (Watrous et al., 2012).
For each metabolite signal, an MS/MS spectrum of MS2T with the
most intense base peak was used as the representative spectrum.
Pairwise similarities with cosine ≥0.7 were used to define molecu-
lar MS/MS networks. To construct the metabolite co-accumulation
network, Pearson product-moment correlation coefficients were

determined using mean values of signal intensities (Table S3). A
pairwise similarity with a score of ≥0.7 was used to construct the
metabolite co-accumulation network. Networks were visualized
using Cytoscape 2.8.3 (Assenov et al., 2008).

Genome-wide association studies

The SNP dataset and population structure of the Japanese rice
population were obtained from the published literature (Yone-
maru et al., 2012). Genotype data for 3168 SNPs with polymor-
phisms sharing at least 5% of 175 cultivars were used for the
GWAS (Table S5). For the na€ıve model, a simple linear model,
without correcting for population structure, was used with the fol-
lowing equation:

Y ¼ bX þ e:

A mixed-model approach implemented in R package EMMA
was employed to correct for confounding effects of population
structure using the equation (Kang et al., 2008):

Y ¼ aX þ bP þ tþ e;

where Y, X, P, and b represent the phenotype vector, the SNP
genotype vector, the population structure vector (K = 4), and the
SNP effect, respectively. The association of each SNP was tested
using a null hypothesis (H0), in which metabolite levels were
assumed not to be associated with the SNP genotype. All statistical
analyses were performed in R 2.15.1 (http://www.r-project.org/).
For 1 SNP marker associated with a metabolic phenotype, a gen-
ome region between two neighborhood SNPs was considered to
be the candidate region of QTL. This is because the mean size of
the candidate region (0.24 Mb) is similar to that of linkage dis-
equilibrium in rice (Yonemaru et al., 2012). A list of genes
encoded in the candidate region was obtained based on SNP and
open reading frame (ORF) positions in the rice genome (RAP
builds 4 and 5) (Itoh et al., 2007). The list was used for gene
enrichment analysis with agriGO to investigate the gene ontology
frequently observed in the candidate region (GO type: Completed
GO, Background/Reference: Rice MSU6.1 non-TE transcript ID)
(Du et al., 2010).
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contents.
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