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The availability of draft sequences for both the mouse and human genomes makes it possible, for the first time,
to annotate whole mammalian genomes using comparative methods. TWINSCAN is a gene-prediction system
that combines the methods of single-genome predictors like GENSCAN with information derived from genome
comparison, thereby improving accuracy. Because TWINSCAN uses genomic sequence only, it is less biased
toward highly and/or ubiquitously expressed genes than GENEWISE, GENOMESCAN, and other methods
based on evidence derived from transcripts. We show that TWINSCAN improves gene prediction in human
using intermediate products from various stages of the sequencing and analysis of the mouse genome, from
low-redundancy, whole-genome shotgun reads to the draft assembly and the synteny map. TWINSCAN
improves on the prior state of the art even when alignments from only 1X coverage of the mouse genome are
available. Gene prediction accuracy improves steadily from 1X through 3X, more slowly from 3X to 4X, and
relatively little thereafter. The assembly and the synteny map greatly speed the computations, however. Our
human annotation using the mouse assembly is conservative, predicting only 25,622 genes, and appears to be
one of the best de novo annotations of the human genome to date.

One important motivation for sequencing the mouse genome
was to aid in the discovery of human genes. Before the se-
quencing of the mouse genome, analysis of cDNAs showed
that orthologous mouse and human coding exons are typi-
cally conserved at 75%–95% nucleotide identity, with an av-
erage of 85% (Makalowski et al. 1996; Ansari-Lari et al. 1998;
Makalowski and Boguski 1998). This is much higher than the
average level of nucleotide conservation in noncoding re-
gions. Intensive study of specific genomic regions showed
that inspection of percent identity plots (PIPS) in combina-
tion with GENSCAN predictions (Burge and Karlin 1997),
cDNA alignments, and other database searches were useful
tools for expert genome annotation (Ansari-Lari et al. 1998;
Schwartz et al. 2000). A relatively simple algorithm based on
finding open reading frames with >50% identity was able to
locate a missing exon in a low-expression gene (Jang et al.
1999), contributing to a sense of great optimism that mouse–
human conservation would reveal both coding and regula-
tory regions (Bouck et al. 2000). Enthusiasm for this approach
was motivated, in part, by the observation that genomic con-
servation of coding regions is likely to be evident even for
genes that are expressed at low levels or under very specific
conditions and hence cannot easily be identified by ESTs or
cDNAs. (Jang et al. 1999).

These and other regional studies also noted the presence
of variable but non-negligible levels of conservation in non-
coding regions, typically covering about 50%–100% as much

genomic sequence as the coding regions (Koop and Hood
1994; Koop et al. 1996; Oeltjen et al. 1997). Notably, long,
highly conserved noncoding regions were found. For ex-
ample, Ansari-Lari et al. (1998) found that 34 out of 174 gap-
free aligned regions of at least 100 bp did not overlap an exon
of any type, whether coding or noncoding. These findings are
confirmed and extended by the analysis of the draft mouse
genome sequence, which suggests that the amount of se-
quence under purifying selection is more than three times the
amount of coding sequence (Mouse Genome Sequencing
Consortium 2002). Nonetheless, the presence of conserved
noncoding sequence did not greatly inhibit expert annota-
tion in the context of all available evidence. As more mouse
genome sequence became available, however, it became clear
that the conserved noncoding sequence posed a great chal-
lenge for using mouse–human conservation in genome-wide
automated gene prediction. A number of innovative and el-
egant algorithms were developed (Bafna and Huson 2000;
Batzoglou et al. 2000), but it proved difficult to exceed the
accuracy of GENSCAN (Burge and Karlin 1997)—one of the
best single-genome gene predictors for mammalian ge-
nomes—on a genomic scale. This may be, in part, because the
signal from mouse–human conservation in coding regions is
obscured by noise from conservation in noncoding regions.

One of the first gene predictors to substantially exceed
the performance of GENSCAN on a genomic scale by using
mouse–human comparison was TWINSCAN (Korf et al. 2001).
One key to this success was building on the Genscan model.
TWINSCAN preserves GENSCAN’s entire probability model
for predicting genes using a single genome, with enhancements
for exploiting mouse–human alignments. TWINSCAN’s
decisions about the most likely gene structures are influenced
by these alignments, but this influence is generally
smaller than that of intrinsic patterns in the sequence to be
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annotated. Other programs that were successful in exploiting
mouse–human alignment to improve gene prediction also
tended to invest a great deal of effort in modeling intrinsic
patterns in the target genome. For example, SGP2 (Parra et al.
2003) is built on top of gene-id (Guigó et al. 1992; Parra et al.
2000), a well-known, single-genome predictor.

TWINSCAN begins with local alignments between a tar-
get genome and a database of sequences from an informant
genome. These alignments are converted into a representa-
tion called conservation sequence, which assigns one of several
symbols to each nucleotide of the target genome. The version
of TWINSCAN described in this paper (TWINSCAN 1.1) uses
three different symbols. Each nucleotide of the target genome
is paired with one of these symbols if the highest-scoring local
alignment overlapping that nucleotide contains a match, an-
other symbol if the highest-scoring alignment contains a gap
or mismatch, and a third symbol if there is no overlapping
alignment.

TWINSCAN, SGP2, and SLAM (Pachter et al. 2002) were
all used in the analysis of the draft sequence of the mouse
genome (Mouse Genome Sequencing Consortium 2002). Like
TWINSCAN, SGP2 uses the best local alignment at each
nucleotide of the target genome. TWINSCAN uses nucleotide
alignments (BLASTN, http://blast.wustl.edu) and has specific
models for how alignments modify the scores of coding re-
gions, UTRs, splice sites, and translation initiation and termi-
nation signals. SGP2, in contrast, uses translated alignments

(TBLASTX, http://blast.wustl.edu) to modify the scores of po-
tential coding regions only. SLAM is based on a generalized
pair HiddenMarkovModel (HMM) that simultaneously aligns
the two genomes and predicts gene structures using a joint
probability model. The TWINSCAN results reported here use a
new parameter set that substantially improves accuracy as
compared with the parameters used in the mouse genome
analysis (Guigó et al. 2002; Mouse Genome Sequencing Con-
sortium 2002).

Korf et al. (2001) demonstrated the effectiveness of
TWINSCAN for annotating finished mouse sequence by align-
ing it to draft and finished human BAC clones. The draft
sequence of the mouse genome, however, was produced by a
whole-genome shotgun strategy, so the human genome can-
not be annotated by aligning clone-based mouse sequences.
In this paper, we report on the applicability of TWINSCAN to
annotating a large target genome (human) using intermediate
products from various stages of the sequencing and analysis of
an informant genome (mouse) by a whole-genome shotgun
strategy. In particular, we assess the utility of whole-genome
shotgun reads at various levels of redundancy and compare
this with the utility of the draft genome assembly as well as
the map of conserved syntenies.

RESULTS
To evaluate the performance of TWINSCAN, we compared its
predictions on the human genome with an alignment of the

RefSeq mRNAs (Pruitt and Maglott
2001; Kent et al. 2002). RefSeq
alignments with obvious errors
were removed leaving 14,060 tran-
scripts at 12,516 nonoverlapping
genomic loci (see Methods). Pre-
dicted genes were counted as cor-
rect if they exactly matched the
coding region of one RefSeq tran-
script at a given locus, and pre-
dicted exons were counted as cor-
rect if they exactly matched a
RefSeq coding exon. Sensitivity
(number predicted correctly over
tota l number annotated by
RefSeq) and specificity (number
predicted correctly over total num-
ber predicted) were calculated for
exact prediction of genes, exons,
and coding nucleotides. Sensitivity
as compared with RefSeq can be
considered a reasonable estimate
of sensitivity for all genes, to the
extent that RefSeq genes are a rep-

Table 1. Accuracy With Respect to RefSeq as a Function of Mouse Genome Sequence Used

GENSCAN
(none)

1�
mouse

2�
mouse

3�
mouse

4�
mouse Assembly

Syntenic
regions

Exact gene sensitivity 8.91 10.34 11.76 13.16 13.81 14.31 13.47
Exact gene specificity 2.62 5.55 6.02 6.54 6.78 6.99 6.89
Exact exon sensitivity 68.48 64.99 68.50 69.54 70.27 71.21 70.80
Exact exon specificity 24.45 38.72 38.57 40.33 40.57 40.61 39.97
Nucleotide sensitivity 86.29 79.85 81.91 81.92 82.30 82.82 83.39
Nucleotide specificity 29.57 42.35 42.31 43.88 44.09 44.14 42.98

Figure 1 Exact gene accuracy with respect to aligned RefSeq transcripts, as a function of mouse
genome sequence aligned.
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resentative sample of all genes. Specificity as compared with
RefSeq, however, will count all correct predictions for which
there is no RefSeq transcript as errors. Because the RefSeq set
contains transcripts for less than half of all human genes,
based on current estimates, specificity is systematically under-
estimated. With this caveat, however, RefSeq specificity can
still be used to compare different prediction sets (this measure
is sometimes called relative enrichment of the prediction set,
but we will use the term specificity).

Effects of Mouse Shotgun Read Redundancy,
Assembly, and Synteny Analysis
The results show that TWINSCAN performs relatively well on
the human genome using alignments of low-redundancy,
whole-genome shotgun reads from mouse (Table 1, Fig. 1).
Even alignments of an estimated 1X coverage of mouse (see
Methods) produced better results than GENSCAN, a compa-
rable gene prediction system that does not exploit genomic
conservation. As the number of mouse reads in the alignment
database increases, TWINSCAN’s performance also increases.
The improvement is steady up to 3X coverage, but slows
thereafter. Alignments of the final assembly of the draft
mouse genome, based on ∼7X coverage (Mouse Genome Se-
quencing Consortium 2002), yielded only slightly greater ac-
curacy than the 4X alignments. Restricting alignments to re-
gions of conserved synteny did not improve accuracy.

TWINSCAN’s results directly mirror the characteristics of
the alignments themselves. Specifically, the fraction of the
human genome covered by mouse alignments rose steadily
up to 3X, more slowly from 3X to 4X, and very little from 4X
to the assembly (Fig. 2), as expected (Lander and Waterman
1988). The coverage of the genome declined slightly when
alignments were restricted to regions of conserved synteny,
also as expected. More telling is the conditional uncertainty of
the RefSeq annotation, given the alignment (see Methods), an
information-theoretic measure reflecting how reliably pat-
terns in the conservation sequence indicate coding regions.
Conditional information of zero would mean that the coding
status of each nucleotide could be computed exactly from the

conservation symbol aligned to it.
The marginal information content
of the RefSeq annotation (i.e.,
when no conservation sequence is
given) is 0.053 bits per nucleotide,
reflecting the fact that only 0.62%
of the nucleotides are annotated as
coding. Therefore, one could cor-
rectly determine the coding status
of most nucleotides by simply
guessing that all are noncoding. As
shotgun coverage increases, the
conditional uncertainty (given the
conservation sequence) declines
rapidly up to 3X and more slowly
from 3X to the draft assembly (Fig.
2). Conditional uncertainty rises
when alignments are constrained
to regions of conserved synteny.
These observations demonstrate
that the effects of mouse genome
coverage, assembly, and synteny
map on TWINSCAN’s performance
do not result from complex inter-
actions particular to TWINSCAN,

but rather from characteristics of the alignments themselves.
Although moving from 4X shotgun coverage to as-

sembled sequence and then to syntenic sequence has limited
effects on accuracy, it dramatically speeds the computation.
Aligning each 1X mouse-reads database (with repetitive and
low-complexity sequence removed) to the human genome
with BLASTN requires ∼1,700 CPU hours on a cluster of cur-
rent high-end commodity processors (2 Ghz x 86 processors
with 1GB RAM per processor; see Methods for BLAST param-
eters). Moving from 4X whole-genome shotgun reads to the
draft assembly reduces alignment time from 6,868 CPU hours
to 2,068 CPU hours. Aligning only blocks of conserved syn-
teny reduces alignment time to only 35 CPU hours.

Annotation of the Human Genome Using the
Assembled Draft Sequence of the Mouse Genome
TWINSCAN’s human annotation using the assembled se-
quence of the mouse genome represents a notable improve-
ment in de novo annotation of the human genome. In par-
ticular, TWINSCAN is both more sensitive and more specific
than GENSCAN for predicting exact coding regions of exons
and RefSeq mRNAs (Fig. 3). GENSCAN is slightly more sensi-
tive for detecting coding nucleotides in RefSeq annotation,
but this comes at the cost of predicting ∼50% more coding
nucleotides than TWINSCAN. For nucleotides and exons, the
primary benefit of using TWINSCAN is greater specificity.
TWINSCAN predicts one aligned RefSeq perfectly at 1,791
loci, including every coding nucleotide and splice site as well
as the start and stop sites. TWINSCAN predicts all splice junc-
tions in coding sequence correctly at 2,126 loci (17.0%) and
both the start and stop codons correctly at 3,111 loci (24.9%).

Close examination of individual genes provides addi-
tional insight into how TWINSCAN improves exact gene pre-
diction. For example, TWINSCAN predicts the transcript
shown in Figure 4 perfectly, whereas GENSCAN calls an extra
exon, misses two exons, miscalls a number of splice sites, and
continues the prediction beyond the end of the coding
region. TWINSCAN does not insert the extra exon that

Figure 2 Characteristics of alignments of various mouse sequences to the human genome. Bars
indicate the percentage of the human genome covered using our alignment procedure. Diamonds
indicate the conditional uncertainty of the annotation given the alignments. Lower conditional un-
certainty corresponds to more informative alignments.
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GENSCAN does, in part because the mouse alignment (black)
stops in the middle of this predicted exon (Fig. 4B). Similarly,
two of GENSCAN’s miscalled splice sites are not covered by
mouse alignments, whereas TWINSCAN correctly predicts
splice sites that are covered by mouse alignments (Fig. 4C).
Figure 4 also highlights the fact that TWINSCAN does not
predict coding exons in every aligned region, nor does every
TWINSCAN coding exon overlap an aligned region.

TWINSCAN produces a conservative annotation of the
human genome that contains 25,622 genes comprising
198,284 exons and 34,290,737 coding nucleotides (1.15%
coding). This gene number is consistent with the low range of
recent estimates for total mammalian gene count (Mouse Ge-

nome Sequencing Consortium
2002) and remarkably close to the
latest ExoFish (Roest Crollius et al.
2000) estimate of 25,925 human
genes (Roest Crollius, pers. comm.).
In comparison, the Ensembl gene
build (Hubbard et al. 2002), an an-
notation system requiring evidence
of transcription in some organism
for every exon, predicts 22,980 hu-
man genes comprising 182,922
unique exons (Release 8.30a.1,
http://www.ensembl.org/Homo-
_sapiens/). NCBI’s less conservative
annotation starts with 52,842 genes
predicted by GenomeScan (Yeh et
al. 2001) and culls these to 34,539
using additional evidence (http://
www.ncbi.nlm.nih.gov/genome/
guide/human/HsStats.html). Ex-
cept for TWINSCAN, all gene
counts described above include
∼200–300 genes on the Y chromo-
some. The number of genes and ex-

ons in the TWINSCAN, GENSCAN, and RefSeq annotations
(excluding chromosome Y) and the proportions that match
exactly can be visualized as a Venn diagram (Fig. 5). Note that
many of the genes and exons that do not match exactly are
highly similar.

TWINSCAN annotation can be explored further on the
UCSC genome browser (http://genome.ucsc.edu/cgi-bin/
hgGateway?db=hg12) and TWINSCAN can be run over the
Web at http://genes.cs.wustl.edu.

Going beyond accuracy measures, the characteristics of
the genes TWINSCAN predicts are a reasonable match to
those of the aligned RefSeqs. Not only is the mean number
of exons per predicted gene (7.74) in the same range as the

Figure 4 A detailed view of a TWINSCAN prediction (red), a GENSCAN prediction (green), and an aligned RefSeq transcript (blue). Masked
repetitive and low-complexity regions (yellow) and mouse alignments (black) are indicated. (A) Complete gene prediction at the KIAA1630 gene
(NM 018706) from Homo sapiens 10p14. Note that the presence of conservation is neither a necessary (e.g., the first exon), nor a sufficient (e.g.,
the first alignment block condition for TWINSCAN to predict an exon. (B) A magnified region around the second exon predicted by GENSCAN.
TWINSCAN correctly omits this exon because the conserved region ends within it. (C) A magnified region around the 11th and 12th RefSeq exons.
TWINSCAN correctly predicts both splice sites because they are within the aligned regions. These images were produced with AceDB (http://
www.acedb.org/).

Figure 3 Accuracy of GENSCAN and TWINSCAN by the exact gene, exact exon, and coding nucleo-
tide measures. TWINSCAN predictions use alignments from the draft mouse assembly.
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RefSeqs (9.07), but the distributions are also reasonably well
matched (Fig. 6). Perhaps surprisingly, the distribution for the
aligned RefSeqs dips markedly at two and three coding exons
before rising again at four. Aside from this dip, the two dis-
tributions are similar, with the mode at one exon and a steady
decline as the number of exons increases. Beyond six exons,
the curves tend to converge, except that TWINSCAN predicts
fewer transcripts with an extremely large number of exons.
This may be attributable to the fact that TWINSCAN was run
on 1-Mb segments of the genome, which will have a greater
tendency to split genes with very long genomic extent.

Variation in TWINSCAN Performance
With GC Percentage
TWINSCAN uses different parameter sets depending on the
GC percentage of the N-masked input sequence. The four di-
visions are 0%–43%, 43%–51%, 51%–57%, and 57%–100%.
Most 1-Mb segments of the human genome fall into the two
lowest divisions (73.4% and 21.4%, respectively). The fraction
of TWINSCAN-predicted exons at each GC level is a good
match to the fraction of RefSeq exons at that level (ratios vary
from 0.94 to 1.05; Fig. 7). TWINSCAN, however, tends to pre-
dict genes with too few exons in the lowest division, and
genes with too many exons in the highest division. This re-
sults in worse performance on exact gene prediction in these
two divisions, with the greatest impact on whole-genome per-
formance coming from the lowest division (Fig. 8).

DISCUSSION
We have presented the first detailed, published description of
an annotation of the entire human genome using alignments
from the draft sequence of the mouse genome. Our analysis
shows that the mouse genome can be used to improve de
novo gene-structure prediction on the human genome. The
state of the art in exact human gene prediction remains poor
in absolute terms, reflecting the inherent difficulty of the
problem. The small fraction of RefSeqs that are predicted per-
fectly may also reflect the limited representation of human
transcripts in RefSeq and occasional errors in the RefSeqs
themselves and/or their alignment (J. Kent, pers. comm.) that
escaped our automated screen (see Methods). Nonetheless,
TWINSCAN represents a tremendous relative improvement in
exact gene prediction. The progress it represents is real, repro-
ducible under various conditions, and significant in biologi-
cal applications (Korf et al. 2001; Guigó et al. 2002; Toyoda et
al. 2002). Experimental verification by RT-PCR and direct
product sequencing has shown that comparative gene predic-
tion methods, including TWINSCAN, can identify genes not
found by Ensembl (a transcript-based automated annotation
method). Furthermore, these genes tend to have relatively
tissue-restricted expression patterns (Guigó et al. 2002), vali-
dating the concept of genome comparison as a method to
identify genes that are under-represented in cDNA libraries.

One of the great strengths of the TWINSCAN approach is
its ability to improve gene-structure prediction using align-
ments of low-redundancy whole-genome shotgun reads. This
is possible because TWINSCAN uses local alignments and
makes no assumption that aligned regions are orthologous or
that they have conserved exonic structure. We found that
unassembled 4X mouse shotgun reads are almost as useful for
TWINSCAN as the full draft assembly. TWINSCAN’s ability to
exploit low-redundancy shotgun reads reflects the fact that
BLASTN (as we have run it) aligns truly related (though not
necessarily orthologous) sequences quite specifically. Al-
though the long, contiguous sequences of the mouse assem-
bly can, in theory, be aligned to their true human orthologs
more reliably than individual reads, this provides limited
practical benefit for TWINSCAN.

Contrary to our expectations, aligning regions of con-
served synteny in the same way that we aligned the entire
genomes gave slightly less accurate predictions. We believe
this is due, in part, to the fact that TWINSCAN can assign
negative scores to gene features that have only low-quality
alignments from outside the regions of conserved synteny,
helping to avoid false positive predictions. Therefore, the

Figure 5 Relationships among the genes and exons annotated by
TWINSCAN, GENSCAN, and aligned RefSeq transcripts. (A) Number
of genes annotated by RefSeq, TWINSCAN, and GENSCAN, and num-
ber of exact matches among them. RefSeq and TWINSCAN contain
1,791 identical genes, RefSeq and GENSCAN contain 1,115, TWIN-
SCAN and GENSCAN contain 2,809, and the intersection of all three
sets contains 670. (B) Number of unique coding exons annotated by
RefSeq, TWINSCAN, and GENSCAN, and number of exact matches
among them. RefSeq and TWINSCAN contain 80,530 identical exons,
RefSeq and GENSCAN contain 77,442, TWINSCAN and GENSCAN
contain 134,507, and the intersection of all three sets contains
67,320.

Flicek et al.

50 Genome Research
www.genome.org



elimination of low-quality alignments from outside regions of
conserved synteny can, apparently, hurt performance. Addi-
tionally, TWINSCAN assigns positive scores to gene features
that have high-quality alignments from paralogous genes out-
side regions of conserved synteny. This sometimes helps iden-
tify real genes that would otherwise have been missed. These
observations apply, however, only to alignments performed
with the same database preparation and parameter set that we
found most practical for whole-genome alignment. If we omit
masking of low-complexity sequence in the syntenic mouse
region, we obtain accuracy similar to that obtained from the
entire mouse assembly. Therefore, aligning syntenic regions
using more sensitive procedures than we can apply to whole

genomes is likely to yield some ac-
curacy improvement.

Direct comparison of systems
for annotating the whole human
genome is not a simple matter.
Complications arise from the lack
of an independent gold standard
for evaluation, regular changes to
the sequence, active development
of the annotation systems, sensi-
tivity of results to details of repeat
masking and segmenting the se-
quence, and the huge computa-
tional resources required for run-
ning many systems. To evaluate
TWINSCAN, we compared its pre-
dictions with genome annotations
derived from RefSeq, a manually
curated collection of mRNA se-
quences provided by NCBI. Using
RefSeq as a standard, however, re-
quires that the mRNA sequences
be computationally unspliced and
mapped back to the genome. This
process is subject to error because

of the substantial portion of the human genome that is cur-
rently unfinished, the inherent uncertainty of unsplicing, and
occasional errors in RefSeq. Nonetheless, we believe that
aligned RefSeqs are the best currently available standard for
evaluation of whole-genome annotation systems. We were
able to compare the performance of TWINSCAN to that of
GENSCAN because (1) neither program uses RefSeq as an in-
put; (2) GENSCAN is run in a well-thought-out way on every
new release of the human genome; and (3) GENSCAN is no
longer under development.

Other systems we would have liked to compare TWIN-
SCAN with either have not been run on recent versions of the
human genome or use known transcripts as an input. For

example, we are not aware of any
whole-genome annotations using
either CEM (Bafna and Huson
2000) or Rosetta (Batzoglou et al.
2000). At the time of submission,
SLAM (Pachter et al. 2002) and
SGP2 (Parra et al. 2003) have only
been run on earlier, more fragmen-
tary drafts of the human genome.
Systems such as GenomeScan (Yeh
et al. 2001), the starting point for
the NCBI annotation, and Gene-
Wise (Birney and Durbin 2000),
the starting point for the Ensembl
gene build (Hubbard et al. 2002),
use known transcripts as an input.
The performance of these systems
on known genes cannot be ex-
trapolated to their performance on
novel genes—known genes should
be easier than novel genes for
these systems, because known
genes are provided as input.

We did a three-way compari-
son of TWINSCAN, Ensembl, and
RefSeq to descr ibe our pre-

Figure 6 Comparison of the distribution of coding exons per transcript in the TWINSCAN predic-
tions and RefSeq annotations. The last data point includes all transcripts containing >20 coding exons.

Figure 7 Fraction of TWINSCAN exons (genes) in each GC bin divided by the fraction of RefSeq
exons (genes) in the same bin. Bars above 1.0 represent over-prediction and those below 1.0 represent
under-prediction. TWINSCAN tends to predict genes with fewer exons in areas of lower GC content.
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dictions further, with no implications for relative accuracy
outside the RefSeq set. We expected that Ensembl would get
nearly all RefSeq exons exactly right. In our evaluation, En-
sembl predicted 82% of coding exons in our aligned RefSeq
set exactly, whereas TWINSCAN (with no prior knowledge of
RefSeq) got 71% exactly right. This surprising observation
may arise from the uncertainties in RefSeq alignment men-
tioned above. When the match criterion is relaxed to 80%
mutual overlap, Ensembl overlaps 95% of RefSeq exons,
whereas TWINSCAN overlaps 77%. Excluding all exons that
overlap RefSeq, TWINSCAN overlaps 65% of Ensembl exons,
whereas Ensembl overlaps 43% of TWINSCAN exons. There-
fore, the two annotations are in good agreement, but both
predict exons not predicted by the other.

For annotation consumers, we recommend looking at a
series of annotation sets. Despite the uncertainties involved,
the aligned RefSeqs represent the most conservative and reli-
able whole-genome annotation available. However, they in-
clude only about half of all human genes, based on current
estimates. Ensembl provides a more comprehensive, although
still conservative annotation, with a gene count equivalent to
about four-fifths of the estimated total. TWINSCAN is more
comprehensive still, insofar as its gene count is in the range of
the estimated total, and its sensitivity (extrapolated from Ref-
Seq) is fairly high. Beyond TWINSCAN, informal analyses sug-
gest that SGP2may be slightly more sensitive and less specific.
Finally, with a gene count in excess of current estimates, the
NCBI annotation may be still more sensitive and less specific.
Based on the analysis presented here, we do not see any reason
for most consumers to consult GENSCAN or other single-
genome, de novo methods for mammalian gene prediction.

In this study, we found that significant gains in the ac-
curacy of human gene prediction can be obtained using low-
to moderate-redundancy whole-genome shotgun sequence
from the mouse. Our experience with other organisms sug-
gests that low-redundancy sequence is evenmore useful when
the genomes are more closely related than human andmouse.
For example, in preliminary experiments TWINSCAN has

shown substantial performance
benefits for gene prediction in Ara-
bidopsis thaliana using less than 1X
shotgun coverage of Brassica olera-
cea (estimated divergence 20 Mya)
and in Cryptococcus neoformans
strain JEC21 using about 1.5X cov-
erage of strain H99. These observa-
tions may be influenced by several
other variables, including absolute
and relative genome size, but we be-
lieve that evolutionary distance is
the most significant variable.
Therefore, a possible cost-effective
route to further improvement in
human gene-structure prediction
would be to obtain ∼3–4X coverage
of a more closely related organism,
such as the gibbon.

The longer contiguous se-
quences that can be obtained from
deeper coverage and assembly are
likely to be valuable for identifica-
tion of conserved intron–exon
structure. TWINSCAN does not
make explicit use of conserved in-

tron–exon structure, in part because it uses purely local align-
ments. Nonetheless, we have shown in other work that this
structure does have value for discriminating between gene
predictions that are experimentally verifiable and those that
are not (Guigó et al. 2002). Other gene prediction algorithms
have integrated the signal from conserved intron–exon struc-
ture directly, rather than using it as a post-processing step
(e.g., Meyer and Durbin 2002; Pachter et al. 2002). Success-
fully combining the strengths of these programs with the ro-
bustness and high-throughput capability of TWINSCAN may
lead to a breakthrough in mammalian gene prediction.

METHODS

Sequences
All predictions were made on NCBI Build 30 (June 2002 data
freeze) of the human genome sequence (http://genome.
ucsc.edu/goldenPath/28jun2002/chromosomes/chr*.fa.gz).
Chromosome Y was excluded from TWINSCAN annotation
because the draft sequence of the mouse genome does not
include chromosome Y. The sequences were divided into
nonoverlapping 1-Mb segments for both the BLAST and
TWINSCAN portions of the analysis. Mouse genomic se-
quences were used as the informant database. We down-
loaded the February 1, 2002, data freeze of the mouse trace
database from http://ftp.ncbi.nih.gov/pub/TraceDB/
mus_musculus/ClipReads/FINAL/SEQ/Mm.WGS*.fa.
dr.mfa.gz and constructed 1X BLAST databases as described
below. The downloaded reads had been RepeatMasked, but
not quality clipped. We downloaded the MGSC v3 assembly
of the mouse genome from http://genome.ucsc.edu/
goldenPath/mmFeb2002/chromosomes/chr*.fa.gz.

Fold Coverage Calculations
The mouse genome assembly is based on ∼7X coverage of the
mouse genome, culled from an original set of 40 million
reads. Our estimates of fold coverage are calculated to be com-
parable with the description of the assembly as using 7X. We
divided the 40 million reads used in the assembly into seven
groups of approximately equal size. The reads are provided by

Figure 8 Effect of GC bin on exact gene prediction. Bars indicate the number of exons per gene in
the TWINSCAN predictions and the RefSeq annotations in each GC bin. Points indicate TWINSCAN’s
sensitivity and specificity for exact gene prediction in each GC bin. Exact gene accuracy is higher when
TWINSCAN’s predictions have 9–10 exons per gene.
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the NCBI in 102 chronological files containing 400,000 reads
each. We divided these files randomly into seven groups. Four
groups contained 15 files (6,000,000 reads) and three groups
contained 14 files (5,600,000 reads). These groups are each
equivalent to ∼1X of quality-clipped reads.

Synteny Map
We used the 500K-cutoff synteny map produced by Michael
Kamal at the Whitehead Genome Research Institute. The map
itself and the procedure by which it was produced are de-
scribed at http://www-genome.wi.mit.edu/mouse/synteny/
index.html. A BLAST database was constructed for each
mouse region mapped to a contiguous region of human, as
described below. The databases therefore varied in size, as did
the effective resolution at which alignments were constrained
to syntenic regions. Human regions not mapped to any
mouse region were considered to be unaligned.

BLAST
Downloaded sequences contained lowercase masking pro-
duced by RepeatMasker (Smit and Green, http://ftp.
genome.Washington.edu/RM/RepeatMasker.html). We con-
verted lowercase letters to N, N-masked remaining low-
complexity sequence using nseg (Wootton and Federhen
1996) with default parameters, and removed all strings of 15
or more consecutive Ns to speed processing. The resulting 1X
BLAST databases and the assembly BLAST database were
closely matched in size. All BLAST jobs were run using
WUBLAST 2.0, 15-Apr-2002, running under x86 Linux. The
analysis reported here uses the following BLAST parameters:
M = 1, N = �1, Q = 5, R = 1, Z = 3,000,000,000,
Y = 3,000,000,000, B = 10,000, V = 100, W = 10, X = 30,
S = 30, S2 = 30, and gapS2 = 30. The seg and dust filter op-
tions were used.

Sequence Annotation
We used the aligned RefSeq mRNA set downloaded from the
UCSC browser site (http://genome.ucsc.edu/goldenPath/
28jun2002/database/refGene.txt.gz) as the basis on which to
compare our predictions. The downloaded RefSeq set con-
tained 16,561 transcripts. Of these, 339 that could not be
located on a specific chromosome and 60 with no coding
exons were removed. An additional 2,102 transcripts were
removed for one of the following reasons: Transcript aligned
to Y chromosome, coding region was identical to that of an-
other transcript included in the annotation, length was not
evenly divisible by three, transcript did not translate on NCBI
build 30, initial codon was not ATG, and/or stop codon was
not TAA, TGA, or TAG. The remaining 14,060 transcripts from
12,516 loci were used as the reference set. The GENSCAN
predictions described here were downloaded from the UCSC
browser (http://genome.ucsc.edu/goldenPath/28jun2002/
database/genscan.txt.gz).

Conditional Uncertainty Calculation
Let C be a random variable representing the status of a given
nucleotide in the genome as coding (c) or noncoding (n). Let
A be a random variable representing the conservation status
of the nucleotide as aligned to an identical nucleotide in the
highest-scoring overlapping alignment (m), aligned to gap or
a mismatch (g), or unaligned (u). Then the conditional uncer-
tainty of the annotation, given the conservation sequence, is
calculated as:

H(C |A) = �Pr(m)(Pr(c|m)log Pr(c|m) + Pr(n|m)log Pr(n|m))
�Pr(g)(Pr(c|g)log Pr(c|g) + Pr(n|g)log Pr(n|g))
�Pr(u)(Pr(c|u)log Pr(c|u) + Pr(n|u)log Pr(n|u))

(Ash 1965). We used maximum likelihood estimates of these
probabilities based on the RefSeq annotation of the human
genome and conservation sequence generated from mouse
alignments. Conditional uncertainty given the aligned con-
servation symbol and the previous five symbols, correspond-
ing to the 5th-order Markov chain used in TWINSCAN, gives
lower absolute numbers but the same trends as the 0th-order
calculation reported above.

TWINSCAN
We used TWINSCAN version 1.1, together with target ge-
nome parameters we identify as human–08-16-02. This pa-
rameter set is significantly different than the one used in our
analyses published previously (Korf et al. 2001; Guigó et al.
2002; Mouse Genome Sequencing Consortium 2002).

Nonprofit institutions may obtain TWINSCAN ex-
ecutables and source code from the authors at no cost. Con-
tact twinscan@cse.wustl.edu for more information or visit
http://genes.cs.wustl.edu. For-profit institutions may obtain
TWINSCAN through Washington University’s Center for
Technology Management.

Comparison of Annotation Sets
The annotation sets produced by TWINSCAN, GENSCAN, and
the aligned RefSeqs were compared using the Eval software
package (Keibler, unpubl.; http://genes.cs.wustl.edu/eval/).
Gene-level sensitivity is the fraction of genes in which at least
one transcript was correctly predicted. For exon-level and
nucleotide statistics, we have not double counted those exons
and nucleotides that appear in more than one transcript.
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