
Whole-Genome Sequence Assembly
for Mammalian Genomes: Arachne 2
David B. Jaffe,1,2 Jonathan Butler,1 Sante Gnerre,1 Evan Mauceli,1

Kerstin Lindblad-Toh,1 Jill P. Mesirov,1 Michael C. Zody,1 and Eric S. Lander1,3
1Whitehead Institute/MIT Center for Genome Research, Cambridge, Massachusetts 02141, USA; 3Department of Biology,
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

We previously described the whole-genome assembly program Arachne, presenting assemblies of simulated data
for small to mid-sized genomes. Here we describe algorithmic adaptations to the program, allowing for assembly
of mammalian-size genomes, and also improving the assembly of smaller genomes. Three principal changes were
simultaneously made and applied to the assembly of the mouse genome, during a six-month period of
development: (1) Supercontigs (scaffolds) were iteratively broken and rejoined using several criteria, yielding a
64-fold increase in length (N50), and apparent elimination of all global misjoins; (2) gaps between contigs in
supercontigs were filled (partially or completely) by insertion of reads, as suggested by pairing within the
supercontig, increasing the N50 contig length by 50%; (3) memory usage was reduced fourfold. The outcome
of this mouse assembly and its analysis are described in (Mouse Genome Sequencing Consortium 2002).

In the whole-genome shotgun method of genome sequenc-
ing, as presently practiced, the entire genome is sheared to
specified approximate sizes (generally chosen from the range
2–200 kb), yielding random fragments (called inserts), whose
ends can then be determined, yielding sequence reads of size
about 600 bp, given in pairs whose genomic separation is
approximately known from the insert size (Sanger et al. 1977;
Edwards et al. 1990). In principle, the genome can then be
reconstructed in silico from these reads, using their overlap
and pairing as glue, provided that the inserts gave sufficiently
even representation of the genome, that an appropriate mix
of insert lengths (short to long) was used, and that the DNA
itself was sufficiently free of polymorphism (Sanger et al.
1982; Fleischmann et al. 1995; Myers et al. 2000; Aparicio
et al. 2002; Yu et al. 2002).

This assembly process produces sequence units (called
supercontigs or scaffolds), which under the best of circum-
stances can approximate chromosomes, but which in general
are smaller, less contiguous, and have errors. Within a super-
contig, contiguous segments (or contigs) are punctuated by
gaps (captured by paired reads) whose sizes are approximately
known (as a consequence of knowing the insert lengths). The
resulting draft sequence may be an end goal or may be the
starting point for production of finished sequence, through
additional clone-based sequencing.

For whole-genome shotgun reads from large repetitive
genomes such as those of mammals, assembly is a computa-
tional challenge (because a priori any read may overlap any
other read), and an algorithmic challenge, because repetitive
structures and defects in data make it easy to falsely join dis-
tant parts of the genome. Still, assemblies consisting of either
a mixture of whole-genome shotgun and clone-based reads,
or only whole-genome shotgun reads have been produced
(human: Venter et al. 2001; mouse chromosome 16: Mural et
al. 2002).

Presented with the publicly available mouse whole-
genome data set, we and another group (Mullikin and Ning
2003) set out to produce high-quality draft sequence for the
mouse genome. Our starting point was the work presented in
(Batzoglou et al. 2002), wherein the Arachne software was
used to assemble simulated reads from small to mid-sized ge-
nomes. In this paper we describe algorithmic enhancements
to the program, made while assembling the mouse data set
and yielding the mouse assembly described in (Mouse Ge-
nome Sequencing Consortium 2002).

These enhancements fall under three general headings:
global assembly improvement, local assembly improvement,
and computational performance improvement. These
changes were made over a six-month period during which
successively larger collections of mouse reads were made
available to us and which we assembled, while modifying our
algorithms. To expose the motivation for the solutions, we
proceed where possible by explaining our successive attempts
and their outcomes.

Global Assembly Improvement
We begin our analysis at the point where the mouse assembly
had been run up to the end of the released Arachne code
(Batzoglou et al. 2002). The N50 supercontig size was 265 kb
(half the total bases in the supercontigs lay in supercontigs of
size 265 kb or larger). By improving our algorithms, we hoped
to raise this value to 1 Mb.

To that end, we set out to design code to look off the
ends of each supercontig, in the hopes of finding genomically
adjacent supercontigs with which it could be merged.

Manual examination of the data revealed many cases
where it was clear in principle how to merge, but many of the
cases were complicated by the presence of multiple supercon-
tigs that linked off the end of a given supercontig (Fig. 1). To
specify precisely how such cases should be handled, we posed
the following mathematical problem (J, see Methods): Off a
particular end of a given supercontig, consider all supercon-
tigs it links to, and which, based on pairing separations,
should lie off the end; for each ordering of these supercontigs,

2Corresponding author.
E-MAIL jaffe@genome.wi.mit.edu; FAX (617) 258-9108.
Article and publication are at http://www.genome.org/cgi/doi/10.1101/
gr.828403.

Methods

13:91–96 ©2003 by Cold Spring Harbor Laboratory Press ISSN 1088-9051/03 $5.00; www.genome.org Genome Research 91
www.genome.org

find the nonoverlapping positioning of them which mini-
mizes ‘stretching’ of links; mark the order as acceptable if the
stretching is modest, at most 2.5 standard deviations; deter-
mine whether among the acceptable orders, there is only one
supercontig, nearest the given one; if so, merge the given
supercontig with this nearest neighbor.

This technique facilitated some mergers, but other po-
tential mergers were inhibited by misassemblies. This sug-
gested that to optimize supercontigs, we needed to break su-
percontigs at suspicious points, rejoin them as described (J),
and repeat, iteratively.

Multiple breaking schemes were required because there
are diverse sources of assembly error. Genomic repeats are the
most important source, but there are others, which act in
combination with repeats to create “hazardous” sections of
the genome to assemble. For example, there are regions of the
genome whose assembly coverage is low or of low quality,
either for random reasons, or because of the nature of the
genome itself, as reflected in cloning bias or sequencing dif-
ficulty. Misassemblies arise from errors in linking (themselves
arising from chimeric clones, from intraplate contamination,
from labeling errors, from duplicated sequencing of clones).
Misassemblies also arise from chimeric reads (from chimeric
clones or bleed-through of contaminating sequence). Finally,
misassemblies can arise from undiagnosed algorithmic defects
in the assembly process.

Given this complex background, we did not expect a
single supercontig breaking approach to suffice, and so we
developed several methods, not all of which are correlated
with particular sources of assembly error. We describe some of
these methods now, and another later.

Negative Breaking
These methods detect regions of the assembly which are
weakly held together. A simple case (which we call method
B1) is where we break supercontigs between contigs if the
template coverage across the gap is only one. Evidently this
situation arises now because earlier in the assembly process,
we merged supercontigs connected by only one link. Never-
theless, in aggregate, it was not a mistake to do this initially,
as some were reinforced subsequently by longer links. As a
generalization, in method B2, we break supercontigs at gaps
whose covering templates fall nearly on top of each other.
This subsumes the case where the same clone was end-
sequenced more than once, giving rise to the appearance of

multiple links. Next, in method B3, we break supercontigs at
places within a contig where only sequence holds together
the supercontig (no links hold it together; see Methods). In
the most glaring cases, we found that the supercontig was
held together by only a thread: a single poor, short join be-
tween two reads. However, the same criterion was designed to
identify subtler mistakes, in which templates might falsely
overlap by about a read length. Further, after assembling
mouse, we devised criteria to identify disguised instances of
the same phenomenon, exemplified in Figure 2.

Breaking Off Ends
The ends of supercontigs are enriched for misassembly. In
method B4, we removed 10 kb of sequence from the ends of
long supercontigs, breaking mid-contig. No specific evidence
of error was required; we expect that most of these supercon-
tig ends were in fact correct.

In combination, these methods proved effective. After
applying them (iteratively breaking and rejoining), the N50
supercontig size rose to 11 Mb, surpassing our initial expec-
tation of 1 Mb, but possibly aided by false global joins. To
assess this possibility, we aligned the mouse genetic markers
(Dietrich et al. 1996) to the assembly. Because genetic markers
are the most reliable source of long-range ordering, and are
not used by Arachne, this was an independent test for assem-
bly integrity. Yet from the alignments of the genetic markers
to the assembly, we could see instances where supercontigs
crossed chromosomes, proof of global misassembly.

Although the genetic map could be used to evaluate the
assembly, substantial spacing between markers prohibited its
use in editing the assembly. Therefore we devised a supercon-
tig breaking criterion which might remedy the defects uncov-
ered by the genetic map, without using the map itself.

Positive Breaking
We found examples where there were multiple consistent
links from the middle of one supercontig to another. These
supercontigs were adequately held together [as evidenced by
inapplicability of (B1–4)], but strong evidence supported an
alternative structure. A specific criterion was devised to ad-
dress this. In method B5 (described further in Methods), we
found correlated clusters of links between pairs of supercon-
tigs, which could not be explained without breaking them.
Then we broke the supercontigs, immediately after the last
link, mid-contig. This criterion depended on heuristics: The
minimum number of links in a cluster, and especially, the
minimum acceptable spread of the cluster, where the spread is
the minimum (over the two participating supercontigs) of the
total span in bases of the link end reads on a given supercon-

Figure 1 Joining of supercontigs. Three supercontigs (a, b, c) are
seen off the end of supercontig s. There are two or more read pair
links from s to each of them. Each has an optimal position relative to
s, determined by the insert lengths corresponding to the read pairs.
However, each insert length has a standard deviation associated to it,
and so the positions of a, b, and c relative to s also have standard
deviations. Supposing that we allow each of them to slide from their
optimal positions by up to 2.5 standard deviations, but that we do not
allow overlap between any of the supercontigs, is there more than
one possible order for the supercontigs? Among the possible orders,
does a always appear first (after s)? If so, we join supercontig s to
supercontig a.

Figure 2 A disguised instance where sequence join alone holds
together a supercontig. A long supercontig (blue) from one part of
the genome subsumes a small foreign inset (red) from a completely
different part of the genome, held together by a single point of at-
tachment within a contig (bicolor): in fact only a sequence join ties
blue to red. This was not recognized in the version of the code which
produced the released mouse assembly (Mouse Genome Sequencing
Consortium 2002). Resolution: break at the bicolor juncture, move
the red sequence to where it links in another supercontig.

Jaffe et al.

92 Genome Research
www.genome.org

tig (Fig. 3). For mouse, we did not experiment, but used five as
the minimum number of links, and 50 kb as the minimum
acceptable spread. Notably, it is clear that these values are
inappropriate for assemblies where there is less long-range
coverage, and it is clear that in such cases, long-range correct
assembly may be impossible. For mouse, we were fortunate to
have a rich data set, replete with long-range linking.

After positive breaking in the mouse assembly, we
aligned again to the genetic markers, finding no evidence of
global misjoins. This and continued breaking and rejoining
raised the N50 supercontig value from 11 Mb to 17 Mb, again
without evidence of global error. We note that the only way
we used the genetic map during the assembly was to suggest
the method of positive breaking.

Local Assembly Improvement
Once one has globally valid long-range supercontigs, the as-
sembly problem is local. One can scan through small regions
of a supercontig, improving each region. In particular, we
describe here our work to shrink and where possible close as
many gaps as possible, or in short, to patch gaps.

Gap patching is possible because some read overlaps
were undetected or rejected in prior assembly stages: because
of repetitive sequence, or because the overlaps were short, or
because the reads themselves contained defects, such as low-
quality bases, isolated errors at high-quality bases, or un-
trimmed vector. Some of these unexploited overlaps are
wrong. To safely patch gaps, we first formed a pool of reads for
which there was linking evidence to support placement of the
read in the gap. This pool contained the partners of reads
already placed in the neighborhood of the gap. Further, when
we found two paired reads, with neither placed in the neigh-
borhood but with both members having good overlaps to
reads in the neighborhood (including those in the pool), we
added them to the pool; this process was iterated several
times. We then restricted the pool by requiring that place-
ment of its reads within the gap was consistent with pairing
separations.

We then attempted to close (or partially close) the gap,
using the given pool of reads. For this purpose, we recom-
puted the alignments between all involved sequences, choos-
ing not to rely on the precomputed alignments (from much
earlier in the assembly process), to circumvent omissions in
that set. We accepted alignments as short as 15 bases, so long
as they were perfect and consisted of nonrepetitive sequence
(as gauged by abundance of 12-mers in the reads). Then we

tried to walk from one side of the gap to the other, starting at
both sides. In the end, progress would be made when we
extended on either side, or (ideally) closed the gap.

This procedure raised the N50 contig size from 16.3 kb to
24.8 kb, but as a side effect placed some reads more than once
in the assembly. This could happen when both reads in a read
pair had been placed in the assembly, but in different scaf-
folds. Usually one scaffold was very large, and one very small,
with the small scaffold duplicating sequence within the large
scaffold: The small scaffold could be discarded. Similar heu-
ristics allowed us to remove almost all multiply placed reads.
Still, 0.014% of the reads were multiply placed in the chro-
mosomally anchored part of the final assembly. Some of these
multiple placements are associated with misassemblies (of a
type which in principle could be identified by breaking
method B3, above), and we believe that these can be removed
by adjusting the existing algorithms. However, we expect that
some cases will remain where a read can go in more than one
place, and it is not possible to determine which is right with-
out obtaining further data.

In the process of closing gaps, we discovered certain
types of problems which had to be solved earlier in the as-
sembly. These were cases where a sequence read had incorrect
sequence attached at its beginning or end, incorrectly termi-
nating a contig. Where such sequence was attached at the
beginning of the read, it was often a short fragment of vector
which for some reason had not been trimmed from the read.
Where such sequence was attached at the end of a read, it
sometimes arose in the following coincidental situation. Two
different sequences were originally present in adjacent wells
of a plate, but via some unknown mechanism, sequence was
transferred from one well to its neighbor, contaminating it at
a low level. In turn, the dominant sequence in this neighbor-
ing well had sequence (perhaps, e.g., a large number of con-
secutive Gs) which would cause premature termination in the
sequencing reaction. The net effect of these combined phe-
nomena was to create a chimeric trace, arising from sequence
native to the well, up to the point of its premature termina-
tion, followed by trace arising from the contaminating se-
quence, at lower magnitude.

To remove residual vector fragments from reads, we iden-
tified 10-mers overrepresented in the first 20 bases of reads (as
compared to their frequency in the entire reads). We then
used these suspect 10-mers as a guide in trimming the begin-
nings of the reads. To deal with cross-well contamination, we
empirically modeled its signature (as manifested in bases,
quality scores), explicitly looked for physically adjacent reads
consistent with this signature, and trimmed them accord-
ingly. Although this worked (as measured by a small test set),
we also observed reads with “junk” at their ends, not ex-
plained by cross-well contamination, and which we were un-
able to systematically eliminate.

Computational Performance Improvement
For the mouse assembly, we had roughly ten times as many
sequence reads as we had had on any previous Arachne as-
sembly. Consequently, we devoted about two-thirds of our
effort to reducing memory usage and runtime, rather than to
algorithmic development aimed at assembly improvement.

Most of the computation was performed using a single
processor equipped with 32 GB memory (which could not be
increased without great expense; see Methods.) On the other
hand, several processors were attached to the memory, which

Figure 3 Positive breaking of supercontigs. Three correlated links
are seen between supercontigs S1 and S2. The spread of the connec-
tion between S1 and S2 is, in this case, the lesser of 10 kb and 25 kb,
which is 10 kb. Because the positive breaking algorithm as applied to
mouse required five links with spread at least 50 kb, this connection
would not have been sufficient to break the supercontigs. If it were,
the respective supercontigs would have been broken at the exact
ends of reads (green bars).

Assembly for Mammalian Genomes: Arachne 2

Genome Research 93
www.genome.org

we could hope to multithread across. Some progress was made
in this direction, hindered primarily by the number of inde-
pendent executable modules in Arachne (69 for our mouse
assembly, up from 17 for simulations reported in Batzoglou et
al. 2002), many of which would have to be multithreaded to
yield substantial runtime reduction. For the mouse assembly,
we multithreaded a single module, which dealt with the ini-
tial handling of data (trimming, etc.), thereby reducing total
runtime by a day or two.

Instead, our main computational strategy to reduce run-
time was to locate computational hotspots and remediate
them as best we could. For example, we found that the com-
piler for our language (C++) would inefficiently store very
large vectors of smaller objects (such as the vector of all se-
quence reads), by performing a separate memory allocation
for each of the objects. This resulted in runtime which be-
haved roughly quadratically as a function of vector size,
rather than roughly linearly, as we expected from prior expe-
rience with Arachne. Accordingly we designed structures
which stored the data using a single memory allocation, while
looking like a vector to the compiler. This also reduced
memory usage. As another related example, we found that by
storing large data structures contiguously, we could quickly
read them into memory. In combination, about a dozen such
optimizations made it possible for us to assemble the mouse
genome in about 15 days.

The main reason we had difficulty reducing memory us-
age was that many of Arachne’s modules were designed so
that at any time, all of the data could be accessed. For ex-
ample, on demand, the error correction code accesses a read it
wants, the associated quality scores, and the alignments of it
with other reads. In assemblies of smaller genomes, we had
exploited this capability to optimize assembly quality. Now
with the larger mouse data set at hand, we wanted to preserve
gains in assembly quality, while living within the confines of
our allotted memory (32 GB).

This was accomplished by economizing in the storage of
large data structures (discussed above), and by localizing the
computation. We did this by reordering the reads (after com-
puting all read-read alignments; see Methods), in such a way
that genomically proximate reads tended to be nearby in the
new read order. Then for many computations which (a priori)
required all reads to be in memory, we modified the algorithm
so that 10% of the reads were brought into memory at a time,
along with all other reads aligning to them (perhaps only
another 10%, by virtue of the reordering). This change re-

duced memory usage, and in addition increased the locality of
memory accesses, thereby speeding up their execution, while
at the same time allowing the assembly modules to access all
reads aligning to a given read.

In combination, these memory reductions allowed us to
assemble the 41 million mouse reads using only 28 GB of
memory. Vis-a-vis memory usage as reported in the original
Arachne paper, this represents a fourfold reduction.

All in all, it was possible to assemble the mouse genome
in 15 days using a single computer (Compaq ES40, see Meth-
ods), whose total cost including memory and disk storage was
∼$300,000.

DISCUSSION
Our mouse assembly is evidence that high-quality draft as-
sembly of complex and repetitive genomes is possible from
whole-genome shotgun sequence alone, which in combina-
tion with mapping data comprises a fast and cost-effective
starting point for genome-wide sequencing projects. For per-
spective, we note in Table 1 the other eukaryotic genomes
having published assemblies either from whole-genome shot-
gun reads or a hybrid including both whole-genome shotgun
and clone-based sequence. The table should be interpreted
cautiously in view of the diverse character of the sequencing
data itself.

A comparable mouse assembly has been produced from
the same public data set using the Phusion assembler, and
evaluated using comparable criteria: N50 contig, N50 super-
contig, global accuracy (Mullikin and Ning 2003). Algorith-
mically, Phusion and Arachne share many features, but Phu-
sion groups reads early in the assembly process, permitting
parallel computations for each group. Phusion and Arachne
both break contigs based on read pair inconsistencies, but
Arachne is able to break contigs based on long-range incon-
sistencies, only visible at the supercontig level.

There are several reasons why the mouse genome, al-
though large and repetitive, may have been relatively easy to
assemble. First, we assembled sequence from an inbred organ-
ism: Assembly of highly polymorphic data is harder. Second,
although the mouse genome has repeats, it may lack some
more difficult repeat structures. For example, evidence sug-
gests that it may have fewer recent segmental duplications
than found in the human genome. Third, our data included
end reads from three long-insert libraries (one fosmid, two
BAC; Osoegawa et al. 2000; Zhao et al. 2001). Good coverage

Table 1. N50 Supercontig Sizes for Whole Genome Shotgun/Hybrid Assemblies of Eukaryotic Genomes

Species
Genome

(Gb)
Sequencing

type
Sequence
coverage

Clone
coverage

Number of
haplotypes

N50
supercontig (Mb)

D. melanogaster 0.12 hybrid 16.6X 65.5X* 1 14.5*
F. rubripes 0.37 whole genome 5.6X 13.0X 4 0.04*
O. sativa 0.43 whole genome 4.2X 7.7X 1 0.01
M. musculus 2.5 whole genome 6.5X 47.2X 1 16.9
H. sapiens 2.9 hybrid 8.3X 40.0X >12 4.0*

For assemblies of whole genome shotgun (WGS) data, and hybrid assemblies of WGS data together with clone-based sequence, some finished,
we show the N50 supercontig size (exclusive of gaps), together with various parameters of the data set which might influence the N50 value.
Asterisked entries were approximated from other data given in the relevant publication. (N50 values provide a standard measure of assembly
connectivity, reflecting the nature of the bulk of the assembly rather than the cutoff which defines the smallest reportable assembly unit.)
References: Myers et al. 2000, Aparicio et al. 2002, Yu et al. 2002, Venter et al. 2001.

Jaffe et al.

94 Genome Research
www.genome.org

from long-insert clones is likely prerequisite to long-range as-
sembly connectivity. For example, we found that if the BAC
ends are excised from the full mouse assembly, and the su-
percontigs are then broken at gaps spanned by at most one
link (as in method B1, above), then the N50 supercontig value
drops from 17 Mb to 15 Mb. If one also deletes the fosmid
ends (which are from 40-kb inserts), then the N50 value drops
to 2 Mb. Moreover, an assembly from scratch could suffer
much worse degradation if it lacked these long-insert reads.
Fourth, we had high-quality maps at our disposal (genetic,
Dietrich et al. 1996; physical, Gregory et al. 2002; radiation
hybrid, Hudson et al. 2001) which anchored our assembly to
the genome and provided feedback on the assembly process.

In addition, we should emphasize that assembly from
whole-genome shotgun reads produces only draft sequence.
Clone-based sequence still appears essential to produce a fin-
ished genome sequence.

Given these caveats, and given that some new genomes
will require algorithmic innovation to assemble optimally, we
release Arachne 2 as a publicly available system which can
assemble genomes of mammalian size (see Methods). Now,
given the public availability of both a mammalian whole-
genome shotgun data set and a program capable of assem-
bling them, it should be possible for researchers to undertake
experiments involving assemblies of subsets of the data to
shed light on fundamental questions regarding sequencing
strategy. In particular, such experiments could tell us what
would be lost if coverage were reduced or if a less diverse range
of insert sizes were used. Answers to these questions will pro-
vide insight for sequencing the next mammalian genome.

METHODS

Supercontig Joining: How We Solved Problem (J)
Given a single link between two supercontigs, and given an
offset for them (i.e., the difference between their starting po-
sitions), the amount which the link is stretched by is defined
to be the absolute value of the difference between the given
offset and the offset inferred from the link, divided by the
standard deviation of the insert length for the link. For a given
order of supercontigs linked off the end of a given supercon-
tig, let the vector x denote the variable vector which contains
the separations between the ends of successive supercontigs
in the order. Because we assume that the supercontigs do not
overlap, the entries of x are nonnegative. For an appropriate
constant matrix A and vector b, the problem of minimizing
link stretching may be recast as one of minimizing �Ax-b�, that
is, of minimizing the maximum of the absolute values of the
entries of the vector Ax-b. Our solution to this problem in-
volved successive random perturbations, leading in the end to
an approximate answer.

Negative Breaking Method B3
In principle, this should break a supercontig at places where
only sequence holds it together. As implemented, the method
breaks at points in a supercontig which satisfy all of the fol-
lowing criteria: (1) The point is not in the first or last 25 kb of
the supercontig; (2) the point is not covered by the unse-
quenced part of a template (the part between the end reads);
(3) the reads before the point do not link forward to another
contig, which the reads after the point also link forward
to; and (4) the reads before the point do not link backward
to another contig which the reads after the point also link
back to.

Positive Breaking: How We Defined Correlated
Clusters of Links
A read pair link between two supercontigs defines an offset for
their positions. This offset has a standard deviation associated
with it (which is the standard deviation for the insert length
corresponding to the read pair). Two such read pair links be-
tween the same two supercontigs define two offsets o1, o2,
and two associated standard deviations, d1 and d2. If �o1�o2�
< 2.5 * max(d1, d2), we say that the two links are correlated.
This extends to define an equivalence relation on the set of all
links between two given supercontigs. A correlated cluster is an
equivalence class for this relation.

Computational Platform
Assemblies were performed on a Compaq Alpha ES40,
equipped with four 833 MHz processors and 32 GB of memory
(RAM). The mouse assembly (including the raw data and all
intermediate files) occupies 215 GB of disk space. The
Arachne source code is in C++, compiled under g++.

Reordering of Reads
Start with the first read in the inputted list of reads. Make this
the first read in the new order. Append to the new order all
reads aligning to the first read. Then find the first read in the
new order which has a read aligning to it, not already in the
new order, and append this aligning read to the new order. (If
there is no such read, go back to the input list to get a read.)
Repeat. Exception: If a read aligns to more than 100 reads,
ignore the alignments of it to other reads.

Software Availability
Arachne 2 is available (2/2002) at http://www.genome.
wi.mit.edu/wga. The license terms are described on that site.

Mouse Assembly, Auxiliary Files
Certain auxiliary input files used in the Arachne assembly of
the public (MGSC) mouse data set are available at ftp://
wolfram.wi.mit.edu/pub/mouse_contigs/Mar10_02/
auxiliary_input_files.

ACKNOWLEDGMENTS
We thank Jim Mullikin and Zemin Ning for sharing their
PHUSION mouse assemblies and for valuable discussion.

The publication costs of this article were defrayed in part
by payment of page charges. This article must therefore be
hereby marked “advertisement” in accordance with 18 USC
section 1734 solely to indicate this fact.

REFERENCES
Aparicio, S., Chapman, J., Stupka, E., Putnam, N., Chia, J., Dehal, P.,

Christoffels, A., Rash, S., Hoon, S., Smit, A., et al. 2002.
Whole-genome shotgun assembly and analysis of the genome of
Fugu rubripes. Science 297: 1301–1310.

Batzoglou, S., Jaffe, D.B., Stanley, K., Butler, J., Gnerre, S., Mauceli,
E., Berger, B., Mesirov, J.P., and Lander, E.S. 2002. Arachne: A
whole-genome shotgun assembler. Genome Res. 12: 177–189.

Dietrich, W.F., Miller, J., Steen, R., Merchant, M.A., Damron-Boles,
D., Husain, Z., Dredge, R., Daly, M.J., Ingalls, K.A., O’Connor,
T.J., et al. 1996. A comprehensive genetic map of the mouse
genome. Nature 380: 149–152.

Edwards, A., Voss, H., Rice, P., Civitello, A., Stegemann, J., Schwager,
C., Zimmermann, J., Erfle, H., Caskey, C.T., and Ansorge, W.
1990. Automated DNA sequencing of the human HPRT locus.
Genomics 6: 593–608.

Fleischmann, R.D., Adams, M.D., White, O., Clayton, R.A., Kirkness,
E.F., Kerlavage, A.R., Bult, C.J., Tomb, J., Dougherty, B.A.,
Merrick, J.M. 1995. Whole-genome random sequencing and
assembly of Haemophilus influenzae Rd. Science 269: 496–512.

Assembly for Mammalian Genomes: Arachne 2

Genome Research 95
www.genome.org

Gregory, S.G. et al. 2002. A physical map of the mouse genome.
Nature 418: 743–750.

Hudson, T.J., Church, D.M., Greenaway, S., Nguyen, H., Cook, A.,
Steen, R.G., Van Etten, W.J., Castle, A.B., Strivens, M.A., Trickett,
P., et al. 2001. A radiation hybrid map of mouse genes. Nat.
Genet. 29: 201–205.

Mouse Genome Sequencing Consortium. Initial sequencing and
comparative analysis of the mouse genome. 2002. Nature (this
issue).

Mullikin, J.C. and Ning, Z. The Phusion assembler. 2003. Genome
Res. (this issue).

Mural, R.J., Adams, M.D., Myers, E.W., Smith, H.O., Miklos, G.L.,
Wides, R., Halpern, A., Li, P.W., Sutton, G.G., Nadeau, J., et al.
2002. A comparison of whole-genome shotgun-derived mouse
chromosome 16 and the human genome. Science
296: 1661–1671.

Myers E.W., Sutton, G.G., Delcher, A.L., Dew, I.M., Fasulo, D.P.,
Flanigan, M.J., Kravitz, S.A., Mobarry, C.M., Reinert, K.H.,
Remington, K.A., et al. 2000. A whole-genome assembly of
Drosophila. Science 287: 2196–2204.

Osoegawa, K., Tateno, M., Woon, P.Y., Frengen, E., Mammoser, A.G.,
Catanese, J.J., Hayashizaki, Y., and de Jong, P.J. 2000. Bacterial
artificial chromosome libraries for mouse sequencing and

functional analysis. Genome Res. 10: 116–128.
Sanger, F., Nicklen, S, and Coulsen, A.R. 1977. DNA sequencing with

chain terminating inhibitors. Proc. Natl. Acad. Sci.
74: 5463–5467.

Sanger, F., Coulson, A.R., Hong, G.F., Hill, D.F., and Peterson, G.B.
1982. Nucleotide sequence of bacteriophage � DNA. J. Mol. Biol.
162: 729–773.

Venter, J.C., Adams, M.D., Myers, E.W., Li, P.W., Mural, R.J., Sutton,
G.G., Smith, H.O., Yandell, M., Evans, C.A., Holt, R.A., et al.
2001. The sequence of the human genome. Science
291: 1304–1351.

Yu, J., Hu, S., Wang, J., Wong, G.K., Li., S., Liu, B., Deng, Y., Dai, L.,
Zhou, Y., Zhang, X., et al. 2002. A draft sequence of the rice
genome (Oryza sativa L. ssp. indica). Science 296: 79–92.

Zhao, S., Shatsman, S., Ayodeji, B., Geer, K., Tsegaye, G., Krol, M.,
Gebregeorgis, E., Shvartsbeyn, A., Russell, D., Overton, L., et al.
2001. Mouse BAC ends quality assessment and sequence
analyses. Genome Res. 11: 1736–1745.

Received September 19, 2002; accepted in revised form October 30, 2002.

Jaffe et al.

96 Genome Research
www.genome.org

