
The Phusion Assembler
James C. Mullikin1 and Zemin Ning
Informatics Department, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus,
Hinxton, Cambridge CB10 1SA, UK

The Phusion assembler has assembled the mouse genome from the whole-genome shotgun (WGS) dataset
collected by the Mouse Genome Sequencing Consortium, at ∼7.5× sequence coverage, producing a high-quality
draft assembly 2.6 gigabases in size, of which 90% of these bases are in 479 scaffolds. For the mouse genome,
which is a large and repeat-rich genome, the input dataset was designed to include a high proportion of paired
end sequences of various size selected inserts, from 2–200 kbp lengths, into various host vector templates.
Phusion uses sequence data, called reads, and information about reads that share common templates, called read
pairs, to drive the assembly of this large genome to highly accurate results. The preassembly stage, which
clusters the reads into sensible groups, is a key element of the entire assembler, because it permits a simple
approach to parallelization of the assembly stage, as each cluster can be treated independent of the others. In
addition to the application of Phusion to the mouse genome, we will also present results from the WGS
assembly of Caenorhabditis briggsae sequenced to about 11× coverage. The C. briggsae assembly was accessioned
through EMBL, http://www.ebi.ac.uk/services/index.html, using the series CAAC01000001–CAAC01000578,
however, the Phusion mouse assembly described here was not accessioned. The mouse data was generated by the
Mouse Genome Sequencing Consortium. The C. briggsae sequence was generated at The Wellcome Trust Sanger
Institute and the Genome Sequencing Center, Washington University School of Medicine.

Whole-genome shotgun (WGS) sequencing is an approach
used since the early 1980s (Sanger et al. 1982); what has
changed since then is the size of genome one considers rea-
sonable for the technology available at the time (Staden 1980,
1982). During the 1980s, the optimal size developed from the
successful WGS of bacteriophage � at 49 kb (Sanger et al.
1982) up to hundreds of kilobases for various viral genomes
by the end of the decade. Workstation class computers during
the 1980s grew from submegabytes of random-access-
memory (RAM) and submillions-of-instructions-per-second
(MIPS) to a fewMegabytes of RAM and a fewMIPS. Cloning of
target DNA into host vectors, such as cosmids, and creating a
physical map, provided a means to tackle larger genomes with
a hierarchical approach; for a brief review, see Olson (2001).
Thus, WGS could continue to apply to these vector genomes
that contained mapped segments of larger target genomes, for
example, yeast and worm. The hierarchical approach effec-
tively diagonalizes these larger genomes into groups of se-
quences from smaller regions through the biological process
of cloning. However, cloning and mapping do add extra steps
to the overall goal of determining the sequence of a target
genome, and in the early 1990s, the WGS approach achieved
a major milestone with Haemophilus influenzae Rd. (Fleisch-
mann et al. 1995) at 1.8 Mbp in size. By the mid 1990s, work-
station class computers became available with hundreds of
Megabytes of RAM, and the TIGR ASSEMBLER used 30 h of
CPU time on a Sun Microsystems SPARCenter 2000 computer
with 512 Mbyte RAM to assemble the 24 k WGS sequencing
reads collected from the H. influenzae Rd. genome. Through
the second half of the 1990s, other megabase size genomes

were determined with theWGSmethod, and the possibility of
applying this approach to mammalian size genomes, and in
particular the human genome, was hotly debated (Green
1997; Weber and Myers 1997). By the end of the decade, the
WGS and assembly of the Drosophila genome (Myers et al.
2000) showed that this approach works for a genome of 120
Mbps (the euchromatic portion). Again, this went in stride
with increasing computer memory and processing speed,
which is necessary to keep track of the large number of reads
and the multitude of pair-wise associations made between
reads. The Drosophila assembly took less than a week, running
on an 8 Compaq Alpha ES40s with 32 Gbytes of memory. As
described in the 2001 publication, the Celera Assembler was
applied to their human WGS data plus shredded public data,
requiring 20,000 CPU hours, and the largest machine used
had 64 Gbytes of RAM (Venter et al. 2001). Had they applied
the software built for Drosophila, a computer with 600 Gbytes
RAM would have been required. So, as computers have in-
creased in speed and amounts of RAM over the last 20 yr by ∼5
orders of magnitude, so too have the size of genomes consid-
ered tractable using a WGS approach.

Over the last few years, many groups have become in-
volved in developing WGS assemblers specifically for ge-
nome, or selected portions of genomes, for example, single
chromosomes or groups of chromosomes, from larger than a
few megabases up to multiple gigabases. All of these assem-
blers use paired-end sequencing of various sized insert tem-
plates to detect and avoid misassemblies, join contigs to-
gether, and guide the scaffolding of contigs. For a hybrid
theory/simulation analysis of the power of paired end se-
quencing, see Siegel et al. (2000). The Celera Assembler, as
described in Myers et al. (2000), carefully prepares the input
reads by trimming back the ends, such that the remaining
portion of each read was at least 98% accurate, followed by
masking known contaminants, a hard screen, and identifica-
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tion of known repetitive elements, a soft screen. To find over-
laps among the trimmed and unscreened portions of the
reads, all reads were compared with all others by use of a very
fast seed-and-extend method, which processed 32 million
pairs of reads per second. The unitigger stage converted overlap
information into consistent subassemblies, and identified the
subassemblies as either containing unique regions (U-unitigs)
or overcollapsed repetitive regions. These U-unitigs were or-
dered and oriented using read-pair information, requiring a
minimum of two mate pairs between U-unitigs in this scaf-
folding stage. Inter- and intrascaffold gaps were then filled
using three levels of increasingly aggressive repeat resolution.
At the final stage, the consensus sequence was generated. The
ARACHNE assembler was designed for paired end WGS data
and their paper (Batzoglou et al. 2002) describes how reads
were initially aligned to each other by a sorting method based
on 24-bp long words, 24-mers, which were extended into
longer alignments and together with read pair information,
contigs were assembled. Repeat boundaries were detected
both by excessive depth, as in Myers et al. (2000), and where
conflicting read pair links to other contigs were found. Contig
scaffolds were created requiring a minimum of two forward-
reverse links between contigs. An updated version of
ARACHNE was used to assemble the mouse genome (Jaffe et
al. 2003). The JAZZ assembler was applied to the Fugu rubripes
genome with WGS coverage at 5.7� (Aparicio et al. 2002),
generating an assembly containing 332.5 Mbps. In theMalign
module of the JAZZ assembler, reads were initially associated
to each other by use of a hash table to find a minimum of 10
exactly matching 16-mers and followed by a banded Smith-
Waterman alignment method. To avoid unnecessary align-
ments, 16-mers that occurred frequently were not used in the
initial read-association step. Read layout and contig scaffold-
ing follows an approach very similar to the ARACHNE and
Celera assemblers using a module called Graphy. Consensus
generation from the read layout applies base quality values
from the reads, resulting in contig assemblies that include
quality values; note that consensus sequence quality values
were also generated by the ARACHNE, Celera, and the follow-
ing RePS assembler. The RePS assembler (Wang et al. 2002)
was applied to the 4.2� coverage WGS sequence data of the
466 Mbp rice genome (Yu et al. 2002). RePS starts by masking
all 20-mers in the input data that occur more than a multiple
of the depth of shotgun sequence coverage, these are called
mathematically defined repeats (MDRs), grouping these
masked reads using BLAST (Altschul et al. 1990) and assem-
bling the groups with PHRAP (http://www.phrap.org/). All
reads were then unmasked, and the reads within each PHRAP
contig were processed with PHRAP again to recover the com-

plete consensus sequence for each contig. Read pairing infor-
mation was used to merge contigs and fill gaps with unas-
sembled reads by use of the read-pair insert size information.
Scaffolding orders and orients contigs using a minimum of
two paired reads shared between contigs.

The Phusion assembler was used to assemble the mouse
genome at ∼7.5� WGS coverage and the C. Briggsae genome
at ∼11�WGS coverage. Table 1 lists the stages of the Phusion
assembler along with a short description. Results of these as-
semblies are given below, followed by a Discussion section
and then a detailed description of the methods used. In the
Methods section, some novel approaches to WGS assembly
are illustrated. The Phusion assembler is modular, like JAZZ
and RePS, and perhaps most similar to RePS in the way it uses
concept of MDRs to identify repeats and PHRAP as its assem-
bly engine.

RESULTS

Mouse Assembly
For the mouse assembly, the initial set of reads from the
Mouse Genome Sequencing Consortium consisted of those
listed in the file ftp://ftp.ncbi.nih.gov/pub/TraceDB/mus_
musculus/Feb_1_Freeze_Ti_List.gz and BACend reads from
TIGR ftp://ftp.tigr.org/pub/data/m_musculus/bac_end_
sequences/mbends. The Feb_1_Freeze_Ti_List file lists the
trace identifiers (Ti’s) as known to the NCBI Trace Archive
Data Base (http://www.ncbi.nlm.nih.gov/Traces/trace.cgi?).
Of the 40,793,320 reads from the freeze list, 32,042,831
(78.6%) passed the screens for contamination, for example,
sequencing vectors, Escherichia coli, phage, etc., and mini-
mum acceptable quality, that is, >99 clipped bases with <5%
base call errors within the clipped region. The BACend reads
from TIGR were used without quality values and clipping and
contamination screening was not applied. Bad plate pairing
detection (see Methods) was applied, which decoupled pair-
ing information for ∼500 k templates, or about 3% of the total
passed reads. Table 2 shows the distribution of reads over the
different insert size ranges. Unpaired reads from all libraries
are grouped together, as a read without a mate only contrib-
utes its sequence to the assembly.

The 32,496,031 clipped reads comprise 19.3 Gbp, giving
a 595-bp average read length, and cover the mouse genome to
an average depth of approximately seven. The Phusion read
grouping algorithm used a k-mer of 17 bases, ignored words
that occurred more than D = 13 times, and the minimum
number of matching k-mers to group reads together was set to
M = 11. The Phusion algorithm automatically increased M to

Table 1. An Overview of the Phusion Assembler Stages

Stage Brief description

Data Preparation Contamination screening, vector and quality clipping.
Phusion Read
Grouping

Reads that share low copy number words are grouped together into clusters that can be assembled independently of
each other.

RPphrap Each cluster of reads, and their associated read pairs, is assembled with PHRAP in an iterative way that allows for
contigs to be extended and broken using read pair information.

RPjoin Joins together contigs based on shared reads and sequence overlap as indicated by read pair information.
RPono Scaffolding of contigs based on read pair information.
Contamination
Screen

Contig and scaffold rejection based on an imbalance of read template origins.
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20 to satisfy the maximum cluster size of 120,000 reads. Phu-
sion clustered 28.7 M reads into 424 k groups, with 50% of the
reads in groups of 287 or more reads. The largest cluster con-
tained 70,059 reads. This grouping stage took 36 h of CPU
time, running on one processor and used 97 Gbytes of
memory of a Compaq Alpha GS320 equipped with 128
Gbytes of memory. This quick turnaround from input reads to
clusters allowed tuning of the grouping parameters to find
optimal settings. Less optimal settings were D=12 and D=14,
both producing more clusters and incorporating fewer reads.
A compute farm of 400 CPUs, Compaq Alpha DS10s with 1
Gbyte of memory each, assembled the clusters using RPphrap
in ∼9 h elapsed time, using a total of 132 CPU days. RPjoin
took 24 h to complete and used 70 Gbytes of memory, RPono
took 28 h and 60 Gbytes of memory. The released assembly,
which can be found at ftp://ftp.sanger.ac.uk/pub/image/tmp/
ssahaAssemble/mouse/2002.02.01/, consists of 2.51 Gbps in
311,577 contigs with an N50 size of 20,121 bps and a total
scaffold size of 2.62 Gbps in 70,427 scaffolds with an N50 size
of 6.5 Mbps. Of the starting set of 32.5M reads, 29.3M (90.1%)
are located in this assembly (N50 is a measure of the contig
size at which 50% of the assembled bases are in contigs of this
size or larger). Of the reads not in the assembly, 2.5 M were
not clustered by the Phusion read grouping stage, 87 k reads
were excluded by RPphrap stage, and 569 k were removed
because they formed scaffolds that were smaller than 1 kb or
contained fewer than three reads. There are 241,150 captured
gaps in the scaffolds, totaling 117Mbp, with an average size of
486 bps (rounding of contig and scaffold sizes lead to the
apparent mismatch with the total gap size).

Comparing the assembly to 40 Mbps of finished clones
from the same mouse strain C57BL/6J shows the assembly
covers 94% of the bases, whereas the scaffolds cover 99.7%.
There are three global scaffolding errors indicated from these
40 Mbps. These 40 Mbps also illustrate the sequence accuracy
of the assembly. Because PHRAP is at the heart of the assembly
process, quality values are assigned via this commonly used
assembler, and are expected to be accurately determined (Ew-
ing and Green 1998; Ewing et al. 1998). Given that this is an
inbred mouse strain, single nucleotide polymorphisms (SNPs)
should not occur. By use of these 40 Mbps of finished se-
quence and the Phusion mouse assembly as a reference, ssa-
haSNP (Ning et al. 2001) detected, on average, 1 variation
every 87 kbps. This is well below the finishing criteria of 1
error in 10,000 bases, thus confirming the sequence accuracy

of this assembly. There are 2.43 Gbps (96.9% of contig bases)
with a quality value of 40 (1/10,000 error rate) or higher.

Because a fingerprint map was built from the same BAC
clones, see http://genome.wustl.edu/projects/mouse/index.
php?fpc=1, as the BAC end sequences from TIGR, integration
of this map and the assembly allows placement of the
scaffolds onto chromosomal positions. There are 393,470
BACend reads contained in the assembly, and 9775 scaffolds
contain one or more BACends. This allowed 95.7% of the
bases in the scaffolds to be linked to the FPC map. In some
cases, the map and the BACend reads within the scaffolds
show conflicting information. This would be expected at lo-
cations of global scaffolding error in the assembly. Therefore,
when positioning scaffolds onto map coordinates, conflicts
were resolved by breaking the scaffolds at the nearest contig
boundary.

Caenorhabditis briggsae Assembly
For the C. briggsae assembly, the set of 2,354,875 WGS reads,
available at the Trace Archives http://trace.ensembl.org/ and
http://www.ncbi.nlm.nih.gov/Traces/trace.cgi?, and an addi-
tional 21,720 BACend reads formed the input to the Phusion
assembler. Reads that were identified as purely contamination
or low quality were rejected; however, reads that passed these
screens were left untrimmed of low quality ends. Both the
Phusion read grouping stage and the PHRAP assembler handle
low-quality data very well, thus, it should be advantageous to
leave these data in the assembly. Bad plate pairing detection
decoupled ∼10,000 templates, or about 1% of the passed
reads. Table 3 shows the distribution of reads over the differ-
ent insert size ranges, along with effective clone coverage.

Overall sequence coverage is estimated at 11-fold, thus
presenting a different challenge to the Phusion assembler
compared with the mouse assembly. The main problem is
that at this depth and with various repeat structures of the
genome, the clustering algorithm tends to group all of the
reads together. This is not desirable, as the assembly problem
is not reduced to manageable sized groups. PHRAP can as-
semble groups of reads as large as a few hundred thousand at
a time, but not two million reads within a sensible amount of
time and memory. As shown earlier,M was increased to 20 for
the 7.5� assembly of mouse to achieve cluster sizes below
120,000 reads. For C. briggsae, the Phusion parameters were
set to use a k-mer of 16 bases, ignore words that occur more
than D = 15 times, and the minimum number of matching
k-mers to group reads together was set to M = 8. The cluster
size dropped below 120,000 reads once M reached 34, and

Table 2. Insert Sizes, Number of Reads and Effective Clone
Coverage for the Mouse WGS Data Set

Insert size range
Millions
of reads

Percent
of total

Effective
clone

coveragea

Less than 3 kb 3.16 9.7% 1.3
3 kb–7 kb 19.32 59.5% 15.3
7 kb–12 kb 2.73 8.4% 5.2
12 kb–50 kb 1.05 3.2% 7.4
>50 kb 0.39 1.2% 12.7
Total paired reads 26.65 82.0% 41.9
Unpaired reads 5.85 18.0%
Total reads 32.50 100.0%

aAssuming a 2.75 Gbp genome.

Table 3. Insert Sizes, Number of Reads and Effective Clone
Coverage for the C. Briggsae WGS Data Set

Insert size range
Thousands
of reads

Percent
of total

Effective
clone

coverage

<3 kb 905.9 43.4% 9.3
3 kb–7 kb 834.4 40.0% 15.4
7 kb–12 kb 76.1 3.7% 3.8
>50 kb 16.3 0.8% 5.7
Total paired reads 1832.7 87.9% 34.2
Unpaired reads 252.6 12.1%
Total reads 2085.2 100.0%
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continued up to 44 to satisfy the maximum cluster size of
20,000 reads. Therefore, for C. briggsae, D was set lower rela-
tive to the depth of sequencing and M incremented to a
higher level than for the mouse assembly.

Results of the assembly are as follows. Of the 2,085,214
decontaminated but unclipped reads, Phusion clustered
1,932,906 reads into 16,206 groups, with 50% of the reads in
groups of 394 or more reads. The largest cluster contained
19,292 reads. This grouping stage took 75 min of CPU time
and 10 Gbytes of memory running on a single processor of a
Compaq Alpha ES40 equipped with 32 Gbytes of memory.
These groups were assembled in 2 h elapsed time with
RPphrap using 145 nodes of the 400-node CPU farm. Total
CPU time used was about 9 d. The RPjoin and RPono stages
also proceeded very quickly, taking about 2 h as well. Like the
mouse assembly, an FPC fingerprint map of C. briggsae was
generated, see http://genome.wustl.edu/projects/cbriggsae/
index.php, and the BACends added to the assembly allowed
integration of the two data sets. The assembly contains
1,945,314 reads (93.3% of the starting set of reads), in the
cb25.agp8 assembly, see ftp://ftp.sanger.ac.uk/pub/wormbase/
cbriggsae/cb25.agp8/. The N50 contig size is 41 kb and the
N50 scaffold size is 1450 kb. On the basis of comparison to
the 12 Mb of previously finished sequence, we estimate that
the whole-genome shotgun assembly achieved 98% coverage
of the C. briggsae genome at the contig level, and no global
scaffolding errors were found. The size of the assembled and
FPC mapped genome is 102 Mbp in 142 ultracontig pieces,
with an additional 6 Mbp not placed on the FPC map, which
is in 436 pieces (many highly repetitive). In the final se-
quence, 270 kb finished fosmid data from 155 accessions were
incorporated to bridge scaffold gaps. Because of the absence of
dense chromosomal maps for C. briggsae, we cannot assign
the ultracontigs to chromosomal locations, and, therefore,
cannot give draft chromosome sequences. This assembly was
accessioned through EMBL, http://www.ebi.ac.uk/services/
index.html, using the series CAAC01000001–CAAC01000578.

This assembly used unclipped reads, whereas the mouse
assembly used clipped reads. An earlier assembly of C. briggsae
starting with the same set of reads with quality trimming
applied, resulted in contigs that had a 31-kb N50 measure.
Thus, working with unclipped reads improved the assembly
in terms of contig length by 32%. This was also tried with the
mouse data, and using untrimmed reads increased the contig
N50 size from 20 to 25kb.

DISCUSSION
The development of the Phusion assembler utilized the se-
quence from the mouse WGS data set and the C. briggsae data
set to test and challenge all parts of the code from its incep-
tion in August ,2001. At that time, the C. briggsae data set was
at ∼4.5� coverage and provided a good test set for developing
Phusion because it was very quick to run; about a 2-h turn-
around time. By October, 2001, the mouse data set had
reached about that level of coverage ∼4�, but the mouse data
set was a large amount of data, thus posing new challenges for
memory use. The arrival of the GS320, with 128 Gbytes of
memory, let those concerns fade away for a while, but the
turnaround time was much longer, typically a few days. The
Whitehead Institute Center for Genomic Research (WICGR)
was also actively applying their ARACHNE assembler to the
mouse data, and early on we agreed to use common assembly
output formats to make comparison of the results easier. We

also agreed to use common starting sets so that the assembly
results would not be influenced by different numbers of input
reads. All assemblies can be found at ftp://ftp.sanger.ac.uk/
pub/image/tmp/ssahaAssemble/mouse for the Sanger Insti-
tute, and at ftp://wolfram.wi.mit.edu/pub/mouse_contigs/ for
WICGR. The friendly competition that this dual effort in-
stilled drove both assemblers to achieve the best possible re-
sults. Along the way, assemblies were selected for further an-
notation work. The November, 2001 Phusion assembly was
selected, and can be seen at http://genome.cse.ucsc.edu/cgi-
bin/hgGateway?db=mm1, whereas for the February 2002 data
set assembly, the ARACHNE assembly was selected. The dif-
ferences between the Phusion and ARACHNE assemblies
based on the February, 2002 data set were small when looking
at coverage, but at that time, the ARACHNE assembly had a
longer N50 contig size and scaffold size, and no detectable
global scaffold errors. Thus, the ARACHNE mouse assembly
was selected as the basis of the MGSC version 3 assembly for
analysis and comparison to the human genome in the main
mouse paper (Mouse Genome Sequencing Consortium 2002).

All of the assemblers that have been applied to large ge-
nomes, >100 Mbps, and use read-pair information, that is,
Celera, JAZZ, ARACHNE, RePS, and Phusion, use similar
methods for the scaffolding stages. More differences arise in
how each assembler initially clusters reads, forms alignments,
and detects repeat-induced misassemblies. However, these as-
semblers can be grouped into two classes for this stage. Celera,
JAZZ, and ARACHNE assemblers all compute local alignments
between selected reads, whereas RePS and Phusion prepare
and select reads such that the alignment problem can be
solved by PHRAP. As mentioned in the introduction section,
RePS and Phusion are quite similar in approach, although
there are differences. One of the defining differences between
RePS and Phusion is the way MDRs are applied. In RePS, the
MDRs are hard-masked, such that PHRAP initially does not
see the sequence in these regions. For Phusion, these regions
are not masked. Another difference is that Phusion directly
clusters the reads as an integral part of the histogram word
analysis, whereas RePS uses a subsequent BLAST stage to clus-
ter reads.

As mentioned in the Results section, one of the ways we
improved on the contig N50 size was to use unclipped reads.
This works because the unclipped, low-quality ends of the
reads do contain many valid k-mer words, and leaving these
in allows associations to be made between reads that would
not have occurred if these ends were removed. The trade off is
an increase in erroneous k-mer words, which adds predomi-
nantly to the number of words seen once, see Figure 2, below.
Because the Phusion clustering stage requires a number of
shared words between reads to make an association, these
erroneous words would need to occur in a quite improbable
way for the untrimmed ends to make new read–read associa-
tions. Even if that were to occur, PHRAP would not assemble
these incorrectly associated reads, because the bulk of the
good portion of the read would have come from different
portions of the genome. Thus, not trimming the low-quality
ends of the reads has an overall desirable effect.

The computer requirements for Phusion are substantial.
As presented in the Results section, using a k-mer, which rep-
resents >10 times the number of words than bases in the ge-
nome is desirable, and storage is needed for all bases, quality
values, the sort arrays, and the read relationship matrix. For
the mouse genome, the peak memory use was 97 Gbytes,
which, for today, is quite a large amount of memory and
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places the use of this algorithm out of reach for most labs.
Then, the next stage, RPphrap, used 132 CPU days of compute
time, which again is quite extreme. However, one should keep
in mind that computer specifications keep improving, and at
some point, what may seem extreme today will be within
reach by more labs in the near future. Also, the cost of the
computers used for this assembly effort is still a small fraction
of the cost to produce the sequence for the mouse genome.
The benefit of this approach was a modular system with fast
turnaround time for any of the stages, thus, improvements to
the algorithms and different initial settings could be tested in
a reasonable amount of time.

So far, only the ARACHNE and Phusion assemblers can
be compared in a direct way, having used the same initial
dataset. As the Trace Archives collect more complete datasets
for additional organisms, for example, C briggsae, Ciona sav-
ignyi, Anopheles gambiae, etc., this will allow more compari-
sons to be made between assemblers. However, it is a major
undertaking to commit to assembling large genomes, and of-
ten a lot of knowledge about the processes used in collecting
the data needs to be known. Fortunately, there are numerous
auxiliary information fields to describe this information,
thus, much of this knowledge can be stored with the data. The
number of genomes that will be sequenced using the WGS
approach will surely increase, possibly quite dramatically if
sequencing costs continue to drop, thus, the continued im-
provements in assembly algorithms and comparisons among
them will remain an active field of research for quite some
time.

METHODS

Data Preparation: Clip and Screen Reads,
Remove Contaminants
The reads from the sequencing process are first screened to
remove bad data prior to the start of the assembly process.
Reads that are primarily of poor quality are removed com-
pletely from the data set. Also, the end portions of reads that
are of poor quality are removed. This removal of reads and
portions of reads is typically referred to as clipping. Poor qual-
ity is determined directly from the sequence quality informa-
tion as generated by the PHRED (Ewing and Green 1998; Ew-
ing et al. 1998) base-calling algorithm. The PHRED quality
values give probability of error measures, and the trim points
are selected such that the sum of the error probabilities within
the clip window does not exceed 5% of the windowed bases,
and that all 20-base-long segments within the window have a
sum of error probabilities less than one. Base calls of N are
considered a probability of error equal to one. Any sequence
portions at the end of reads that relate to a vector used in the
sequencing process are removed. Moreover, the reads are
scanned for the presence of sequence portions that match the
sequence of known contaminants, such as E. Coli or bacterio-
phage, and these sequence portions are also removed.

Phusion Read Grouping Stage

First Pass: Select Word Length, Prepare Histogram,
and Select Cut-Off
The input data set, as prepared above, comprises a large num-
ber of reads, typically several hundreds of thousands to tens of
millions. This data set is analyzed to form a histogram. The
histogram analysis determines how many times words of a
length k occur in the data set. A word is defined as a sequence

portion in the read of k bases. These words are referred to as
k-mers. The word length k should be selected so that it satis-
fies the following condition:

4^k >> (size of the genome or genome section
encompassed by the set of reads)

The effect of k-mer size on the assembly of C. briggsae is shown
in Figure 1. Note that although the N50 contig size drops off
substantially for k equal to 13 and 14, only at a k of 13 is there
a drop off in assembly coverage by 1.5%.

To generate the histogram, the complete data set is
scanned for all k-mer words at all base locations in every read.
The reverse complement of each k-mer is also computed at
each location. Only k-mers that contain exclusively A, C, G,
or T’s are considered. For convenience during processing,
these bases are converted to the binary values 00, 01, 10, and
11 for A, C, G, and T, respectively. Thus, a k-mer once con-
verted to this binary representation can take on any value
from 0 to 4^k-1. For each k-mer and its reverse complement,
only the minimum value of these two words is used. Other-
wise, a 2.7 Gbp genome would appear to be 5.4 Gbp if both
strands are taken into consideration.

The k-mer histogram is stored as an array that is 4^k long
and comprised of a byte (8 bits) for each element. Because
some words will occur more times than can be accumulated in
a byte, that is, >255 times, the accumulation is stopped if the
element has reached the maximum value, that is, 255 in the
case of a byte. By using one byte for each word—occurrence
value means the 17-mer array requires 16 Gbytes of memory.

After compiling the k-mer histogram to record the num-
ber of times each k-mer occurs in the data set, the results are
condensed into a second histogram showing the k-mer word-
use distribution, indicating the statistical distribution of the
number of times k-mer words occur in the data set.

Figure 2 shows in its upper curve an example of such a
word-use distribution histogram for a data set obtained from
∼7.5-fold sequencing of the mouse genome. The histogram is
generated with 17-mers and shows that a very large number of
k-mer words occurred only once, reflecting bad data caused by
sequencing errors. Discounting the bad data peak at a value of
1, the distribution shows that the k-mer words occurred most
often 6 times in the data set, which is close to the estimated
7.5-fold redundancy of the sequencing. The long tail indicates
that many k-mer words occurred a large number of times in

Figure 1 This graph shows the effect of k-mer on relative contig
N50 size for C. briggsae assemblies. At k = 15, 4^15 is about 10 times
the genome size.
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the data set. These words are indicative of repetitive elements
in the genome, and are termed mathematically defined re-
peats (MDRs) as in Wang et al. (2002). This is characteristic of
most data sets, as genomes generally contain repetitive ele-
ments.

For comparison, the lower curve in the figure is a Poisson
distribution with a mean value of 7. This is the form that the
word-use distribution would have if the genome did not con-
tain repeats and if the sequencing were error free. At 7� cov-
erage with no sequencing errors, words that occur once
should be 1/23 the number of words that occur 7 times. The
measured value of words seen once is 0.5 G words, which is off
scale in Figure 2, and indicates that the number of erroneous
words is ∼3% of the total number of words, which reflects the
number of erroneous 17-mers left after read-clipping thresh-
olds used at the preprocessing stage. At a word occurrence
level of 12, the graph shows that approximately half the
words arise from unique regions of the genome and the other
half arise from repetitive regions of the genome, with the
assumption that the reads are truly randomly distributed.

The compilation of the word-use distribution described
above is highly valuable, as it identifies all of those reads that
relate to repetitive sequence portions. The highly repetitive
sequence portions should not be used for determining which
reads overlap, as they are not specific to a unique portion of
the genome and will thus be a source of spurious alignment
attempts in the assembler. The next stage of the process thus
excludes from consideration all of the words in the data set
that occur more than a certain number of times, D, based on
the word-use distribution analysis, in which D will typically
be higher than n, the sequencing redundancy factor.

The value of D is set so as to capture most of the under-
lying Poisson distribution of the unique regions of the ge-
nome, thereby excluding the repetitive sequence portions
that do not uniquely identify any particular portion of the
genome or genome section. The value of D may be set auto-
matically or manually from the word-use distribution. Auto-
matic setting may be performed on the basis of exclusion of
all words with an occurrence more than a given factor of the
distribution peak, or on the basis of a certain fraction of the
distribution that captures a given proportion of the words in
the Poisson distribution. With the word-use distribution
shown in Figure 2, a value for D of 13 captures 97% of the
unique and error-free words in the input set.

Second Pass: Create Sorted List of Read Associations
Another pass is then made through the data set of all reads to
fill a new array with the k-mers that occur less than or equal

to D times. Each k-mer word is tabulated along with the read
index of each of its occurrences. For example, if k = 10, one of
the k-mer words may be ACAGAAAAGC. Its read index may
relate to a read named, for example, 10h06.p1c. The occur-
rences of each k-mer word may be collated in a variety of
ways. One convenient way is to fill a table or array with pairs
of numbers using high and low bits of an appropriately size
word, for example, 8 bytes, with the k-mer occupying the
high bits and the read index occupying the low bits. The array
can be sorted conveniently so as to group reads that share
common words, as in Table 4, below. The two selected k-mers
in the example have eight reads sharing the first k-mer and six
reads sharing the second k-mer. Table 4 shows a small part of
a sorted list of selected words and their associated read indi-
ces. The binary values for both fields have been converted
back to the text they represent for ease of understanding. The
sorted list of read indices of each k-mer is now used to gen-
erate a further array that groups all of the reads that are de-
duced to belong to a contiguous section of genome. Each such
group of reads identified in this way is referred to as a cluster.

Third Pass: Read Clustering by Creating Read-Relation Matrix
The sorted list is now processed to fill a read-relation matrix.
In this step, it is determined for each read all of the other reads
that share any of the same k-mers. Moreover, for each pair of
reads associated by at least one common k-mer word, it is
determined how many times common k-mers occur. The
read-relation data is created by filling a matrix that contains
one row for each read. The row location is the index value of
the read. The columns are filled with all other reads that share
common k-mer words with the row’s read together with the
number of times, m, the association was made.

Table 5 below shows some example rows from this ma-
trix. The first row in this example relates to the read
25a08.p1c that shares 232 k-mers with the read 25c12.q1c,
163 with 19c12.q1c, and 135 with 1c05.q1c. It is noted that
the 232 common k-mers between 25a08.p1c and 25c12.q1c
may relate to <232 different words. This will be the case if
words occur more than once in the two reads. It is also noted
that sequencing errors will cause a background level of ran-
dom associations between reads. Fortunately, these random
associations will be limited to a relatively small number of
words and can, therefore, be filtered out by ignoring associa-
tions between reads that do not occur above a certain number
of times. This filtering is achievable by setting a threshold
value of M. The association is thus cancelled from the matrix
if the number of shared k-mers m between the row’s read and
the other read is less than M. A value of M = 11 is used in this

Figure 2 Word use distribution for the mouse ∼7.5-fold sequence
data. The top curve is measured from the prepared dataset, and the
bottom curve shows a Poisson distribution with a mean value of 7.

Table 4. Sorted List of Each k-Mer and Its Read Indices

High bits Low bits

ACAGAAAAGC 10h06.p1c
ACAGAAAAGC 12a04.q1c
ACAGAAAAGC 13d01.p1c
ACAGAAAAGC 16d01.p1c
ACAGAAAAGC 26g04.p1c
ACAGAAAAGC 33h02.q1c
ACAGAAAAGC 37g12.p1c
ACAGAAAAGC 40d06.p1c
ACAGAAAAGG 16a02.p1c
ACAGAAAAGG 20a10.p1c
ACAGAAAAGG 22a03.p1c
ACAGAAAAGG 26e12.q1c
ACAGAAAAGG 30e12.q1c
ACAGAAAAGG 47a01.p1c
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example. As the value of M is set higher, it becomes increas-
ingly likely that some true associations are removed. As ex-
plained further below, removal of weak true associations are
in some cases beneficial to the assembly overall assembly pro-
cess.

The example in Table 5 also shows all other rows that are
listed on the first row and an additional row, 16b09.q1c,
which is linked from 1c05.q1c. One read, 15d02.p1c, is not
followed because it only has five shared k-mers with
25a12.q1c. Table 5 is a very simple example of traversing all
links branching from the read 25a08.p1c. The contents of
Table 5 are thus a closed set of five reads that are deduced to
collectively define a potentially contiguous section of the ge-
nome being sequenced. An important point to note here is
that multiple sequence alignment is not performed at this
stage to create this closed set of reads. The k-mer association
approach described above has allowed determination that
these five reads may concatenate somehow to form a contigu-
ous section, without having to go through the computational
complexity of an alignment process. Therefore, any cluster of
reads is defined as the simply connected components of the
undirected graph of reads that have an edge between them, in
which the edges are defined by pairs of reads that share M or
more selected k-mers.

A key advantage of grouping the reads into contiguous
groups in this way by use of read associations is that it makes
subsequent alignment computationally easy. This is because
the reads of each cluster can be aligned independently of the
reads of any other cluster. The isolated groups of reads can
thus be passed onto any assembly algorithm as independent
sets. This allows multiple sequence alignment processing of
the different clusters to proceed in parallel. Moreover, it
means that the assembler is given an alignment problem that
is known to be easily soluble because the reads are associated
with each other through mostly unique words. Reads that are
primarily made up of repetitive words, which cause assembly
algorithms the most difficulty, will not become associated
with any cluster. The cluster size is also controllable, as de-
scribed below, which allows cluster size to be optimized to the
cluster size most efficiently processed by the assembler.

The clustering of data prior to alignment means that the
process of alignment is confined to groups of reads that are
already known to fit together, that is, contiguous read groups.
Taking a jigsaw analogy, the clustering may be considered to
be the step of creating piles of jigsaw pieces with common
patterns and/or colors before trying to fit any individual
pieces together. The step of fitting the pieces together may be
considered to be analogous to alignment and is only at-
tempted within each pile.

Deliver Clusters to Assembler
Each group of associated reads, that is, each cluster, can then
be assembled independently. For example, if 17 clusters are
identified in the preassembly described above, the set can be
assembled in parallel on 17 different CPUs. The preassembly
has been designed in such a way that it is compatible with any
assembler and in such a way that it does not duplicate the
alignment process carried out by conventional assemblers.

This approach has been followed deliberately, as it is very
powerful to separate the preassembly stage from the subse-
quent alignment steps, which can be carried out by any con-
ventional assembler. The approach described thus provides
preprocessing to allow conventional assemblers to be sup-
plied with easy-to-assemble contiguous groups of reads.

Iterative Recomputation to Adjust Cluster Size
The values of D or M can be adjusted depending on the ge-
nome characteristics to obtain the desired level of clustering.
In an extreme case, the initial analysis may associate all of the
reads with each other in one large cluster, which is clearly not
a useful result. This can occur when the depth of sequencing
is sufficiently large (large sequencing redundancy factor n) to
cause a high level of linking between all the reads. This can
be countered using a higher value of M and/or a lower value
for D.

At the other extreme, it may also occur that the initial
analysis results in a large number of very small clusters. In this
case, the initial analysis is not optimized for alignment and
recomputation is desirable. This can be countered using a
lower value of M and/or a higher value for D.

Considering the case of there being only one large clus-
ter, or an undesirably low number of large clusters, increasing
the value for M can be implemented within the algorithm
whenever a given maximum cluster size, C, is exceeded. For
these clusters, M is incremented iteratively, until the cluster
sizes drop below C. In a typical example,M starts initially at a
value of 11 and is then incremented to 50 in steps of 2, until
a desired maximum cluster size C is no longer exceeded.

Using M as the adjustable parameter for varying cluster
size keeps recomputation to a minimum, as recompilation of
the read indices of each common k-mer is not necessary, and
as the recomputation can be confined to breaking down only
the large clusters. All clusters smaller than C reads do not need
to be recomputed.

If D is used as an adjustable parameter for varying cluster
size, this will require more recomputation than adjusting M,
as it will necessitate returning back to the second pass stage of
creating the lists of all read indices of each k-mer that occur
less than the new value for D, and then recomputing the read
relation matrix.

RPphrap
So far, the Phusion assembly process has grouped reads on the
basis of sequence content only. From this point on, however,
information about read pairing is used extensively. As de-
scribed in the Results section, reads are generated by sequenc-
ing off of both ends of a double-stranded plasmid, fosmid, or
BAC template. The genomic DNA is size selected prior to li-
gation, and both the size and standard deviation of the size
are used when sequence reads from both ends of a template
are found in the assembly stages. We refer to these paired ends
as read pairs, and for a given pair, we will also refer to the
association between these reads as mates.

Once the read clusters are formed, each cluster, along
with read-pair information, read-sequence data, both ends if
available, and quality values, are assembled independently
using PHRAP at the heart of a master program that applies
read-pair information in an iterative way. The version of
PHRAP that we use, version 0.990319, is not capable of using
read-pair information. This master program, RPphrap, uses
read-pair information to split PHRAP-generated contigs at lo-
cations that show read-pair insert size consistency violations.
For PHRAP-generated contigs that contain one but not both
reads of a read pair, the missing read is projected out from its
mate to its expected position, and if that position is within 1
standard deviation of overlapping the contig, then that read is
added to the set of reads in the contig. This process of splitting

Table 5. Selected Example Rows from a Read
Relation Matrix.

25a08.p1c 232 25a12.q1c 163 19c12.q1c 135 1c05.q1c
25a12.q1c 232 25a08.p1c 103 19c12.q1c 5 15d02.p1c
19c12.q1c 163 25a08.p1c 103 25a12.q1c
1c05.q1c 135 25a08.p1c 17 16b09.q1c
16b09.q1c 17 1c05.q1c
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and extending is shown in Figure 3. This process is applied to
all reads in each contig and all new groups of reads are reas-
sembled at the next RPphrap iteration. We add mates into
contigs in this controlled way, so that the contig extension is
controlled. If all mates were added without regard to esti-
mated placement, then disconnected groups of reads may
form new contigs that are isolated from the current contig.
For example, if a contig is 2-kb long to start with, and let’s say
all reads were from read pairs that span 10 kb, then an un-
controlled inclusion of these mates could form two new con-
tigs ∼8 kb away in both directions from the starting contig.

Bad Plate-Pairing Detection
As RPphrap is running, if a read is assembled into a contig and
its mate should also be within the limits of the contig, but is
not there, a warning message is generated. After all clusters
have passed through RPphrap, statistics are measured on pair-
ing failure rates, and when these strongly correlate with po-
tential laboratory tracking errors, then these sets of read pairs

are decoupled, and the entire
RPphrap assembly process is rerun.
For example, some laboratories pro-
duce separate forward and reverse
direction sequencing reaction
plates for a given set of templates. If
these two plates get incorrectly la-
beled so that they are no longer
tracked as originating from the
same template, then RPphrap will
generate many warning messages
for these reads, as the read pairs will
most likely not be grouped into
common contigs.

RPjoin
The final set of contigs from the
RPphrap stage include many reads
that are present more than once in
the assembly. This is caused by the
contig extension phase in which
mates are added iteratively. For ex-
ample, say a 15-kb contig, labeled
C1, is made up of 5-kb insert read
pairs. The iterative extension pro-
cess could extend this contig out-
ward by 5 kb on both ends, result-
ing in C1 growing into a 25-kb con-
tig. If another independent contig,
C2, happened to have been formed
just a few tens or hundreds of bases
away from this other 15-kb starting
contig, then the growth of the C1
will extend over C2 and quite likely
contain shared reads. Remember,
the starting clusters are all pro-
cessed independently so that
RPphrap can be distributed over
many CPUs, thus the overlap can-
not be detected until after the
RPphrap stage.

Therefore, this stage, RPjoin,
first looks for shared reads among
all contigs. For all pairs of overlap-
ping contigs, a merging process in-
termeshes the reads and splices the
sequence together. The locations of
all of the reads are readjusted to
their new contig location.

Because the assembly process is not perfect, some reads
are assembled into the wrong locations. When RPjoin finds
two contigs that share a common read, but the sequence data
do not agree over the extent of the contigs if placed according
to the contig locations of this read, the read is removed from
the smaller of the two contigs.

Once the shared reads are completely depleted, that is,
no read appears more than once in the assembly, a second
type of contig merging is applied, which looks for inferred
overlap based on read pairs that span contigs. For a given
contig, all of the reads in that contig that have mates in an-
other contig are measured for inferred placement of the other
contigs. Because the location and orientation of each read is
known, a contig–contig gap size is computed. As multiple
read pairs may indicate an association between two contigs,
and average gap size is computed. If this gap size is negative,
this indicates a potential overlap and triggers RPjoin to look
for sequence similarity at the overlapping ends. If this is
found and consistent, then these contigs are merged in the
same way as in the shared read stage above.

Figure 3 (A) Inconsistent read pair, the one with the wavy lines over it will break a contig, creating
three independent groups that are reassembled on the next iteration of PHRAP. (B) Read pairs are used
to extend contigs by adding mates’ of reads that should fall near the ends of the contig to the set of
reads assembled for that contig on the following PHRAP iteration.
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RPono
At this stage, no read is represented more than once in the
assembly, and all overlapping contigs should be joined. Thus,
what is left is a collection of contigs that are bounded repeti-
tive regions that never formed clusters, were not extended
into by the iterative RPphrap extension process, lack read cov-
erage due to statistical sampling reasons, or regions that were
not clonable within the template vectors used. This RPono
stage continues to apply read-pair information to place con-
tigs into an ordered and oriented set. It uses the second part of
RPjoin to calculate average contig to contig gap sizes. Contigs
are ordered and oriented in an iterative way, looking first for
contig–contig gaps that are small, and working up to larger
gaps in subsequent iterations. Only contigs that have more
than one link to another contig are considered, which reduces
the likelihood of making an incorrect join.

The iterative approach using increasing allowed gap sizes
eliminates the need to fill in large gaps had this process at-
tempted this in a purely greedy fashion. For example, two
large contigs that span one small 2-kb contig may have many
more links joining them together than the smaller contig, and
a greedy method without a maximum gap size limit would
join the large contigs together first. Using the maximum gap
size, one of the two larger contigs will link in the smaller
contig first, as its spacing would not exceed the maximum gap
size. This method is applied with a typical maximum gap size
increasing through 1, 2, 4, 10, 20, and 40 kb. The end point
depends on the initial N50 contig size and the insert sizes
used. For example, if only 2-kb inserts were used, advancing
beyond a 2-kb maximum gap size would not change the out-
come of this process.

Contamination Detection
Sequence contamination has always been an issue, and at
most sequencing centers there are various methods for detect-
ing and removal of contamination. For example, clones with-
out an insert produce a sequence that is purely the clone’s
vector sequence. This is detected by sequence similarity to
expected sources of contamination, like the sequencing vec-
tors used. This early detection method works well for small
sets of expected contamination, up to a few million bases.
However, while WGS sequencing the mouse genome at the
main sequencing centers, these centers were also sequencing
human BAC clones along with many other genomes, making
the contamination sources arise from many billions of bases.
Fortunately, there is a very clear and detectable signal that can
identify these other sources of contamination. If enough con-
taminant sequencing reads are present in the set of all reads
presented to the assembler, then these will form contigs that
are made up purely from one center’s reads, and typically
even from a particular ligation.

For example, if three centers produce equal amounts of
WGS data, and one center improperly pooled DNA from a
human clone together with whole-genomic mouse DNA, then
the resulting sequence reads from that mixture would pro-
duce assemblies of the human clone that would lack sequence
reads from the other centers. Thus, to detect suspected con-
tamination-derived contigs, one only needs to count the
origin of the reads in each contig, and if that is purely from
one center, then the probability that the contig is contami-
nant is 1–0.3333^n, in which n is the number of reads in the
contig.

Availability
Phusion is undergoing a rewrite of the code to make this a
portable package. It will be made available free of charge to
academic sites, but requires licensing for commercial use. For
more information please contact the authors.
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