Skip to main content
. 2015 Jan 28;10(1):e0117026. doi: 10.1371/journal.pone.0117026

Table 1. Average (n = 6 (±1 standard error)) physical, chemical and biological properties of soil intervals and the results of a split-plot ANOVA.

Soil Fraction %N %C C:N ratio pH Water Content (%) GRSP mg(g soil)-1 Fungal 18S rRNA Gene Copy No.
CT 0.16 (0.01) 1.94 (0.19) 12.0 (0.54) 7.30 (0.12) 2.57 (0.56) 3.95 (0.34) 5.45x107 (4.99x107)
CB 0.10 (0.003) 0.96 (0.03) 9.5 (0.19) 7.91 (0.09) 5.73 (0.29) 2.81 (0.34) 3.79x108 (3.57x108)
ST 0.20 (0.02) 3.05 (0.28) 14.9 (0.40) 7.44 (0.17) 1.37 (0.40) 5.75 (0.66) 7.23x106 (1.59x106)
SB 0.11 (0.003) 1.52 (0.10) 13.4 (0.86) 8.22 (0.02) 3.98 (0.17) 2.53 (0.12) 6.06x107 (1.97x107)
Split-plot ANOVA
veg. type 6.37; 1,9.94; 0.030 22.26; 1,22; 0.0008 28.41; 1,22; 0.0003 nse 15.71; 1,8.63; 0.0036 nse nse
depth 1 190.6; 1,∞; 0 48.11; 1,22; 4.0 x10-5 19.68; 1,22; 0.0013 36.7; 1,22; 0.00012 103.9; 1,∞; 0 21.7; 1,∞; 3.2 X10-6 nse

1As noted in the results section, in the method of Brunner et al. [37], the denominator degrees of freedom for the test for split plot effects and the interaction of whole and split plots will be infinite. As a practical matter, the upper tailed probabilities for large and infinite denominator degrees of freedom will be subequal. Thus, the code for this algorithm in [38] uses 10,000 denominator degrees of freedom for these tests.