Table 3. Fungal phyla and orders for which vegetation type, depth and/or an interaction between the two significantly impacted their proportion in the sequence libraries.
Phylum | Vegetation Type | Depth 1 | Vegetation Type x Depth 1 |
---|---|---|---|
Ascomycota | nse | 6.16; 1,∞; 0.013 | nse |
Chytridiomycota | 12.59; 1,7.11; 0.0091 | 7.22; 1,∞; 0.0072 | 6.44; 1,∞; 0.011 |
Fungi incertae sedis | 7.22; 1,9.62; 0.024 | 19.81; 1,∞; 8.56 x10–6 | nse |
Glomeromycota | nse | 12.05; 1,∞; 0.0005 | nse |
Order | |||
Cantharellales | 29.34; 1,9.28; 0.00038 | nse | nse |
Coniochaetales | 5.54; 1,7.86; 0.047 | 14.21;1,∞; 0.00016 | nse |
Pezizales | 12.38; 1,6.24; 0.012 | 27.11; 1,∞; 1.93 x 10-7 | nse |
Spizellomycetales | 8.03; 1,7.98; 0.022 | 18.56; 1,∞; 1.65 x10-5 | 7.47; 1,∞; 0.0063 |
Teloschistales | 12.16; 1,9.27; 0.0065 | 25.38; 1,∞; 4.71 x 10-7 | 7.61; 1,∞; 0.0058 |
Capnodiales | nse | 68.04 1,∞; 2.22x10-16 | 11.06; 1,∞; 0.0009 |
Sordariales | nse | 14.03; 1,∞; 0.0002 | 11.44; 1,∞; 0.0007 |
1As noted in the results section, in the method of Brunner et al. [37], the denominator degrees of freedom for the test for split plot effects and the interaction of whole and split plots will be infinite. As a practical matter, the upper tailed probabilities for large and infinite denominator degrees of freedom will be subequal. Thus, the code for this algorithm in [38] uses 10,000 denominator degrees of freedom for these tests.