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AIMS
This study aimed at describing adalimumab pharmacokinetics (PK) and the
concentration–effect relationship of adalimumab using pharmacokinetic–
pharmacodynamic (PK–PD) modelling in patients with rheumatoid arthritis (RA).

METHODS
Adalimumab PK and PK–PD data were obtained from a multicentric
observational study. Adalimumab (40 mg) was administered subcutaneously
every other week, and its pharmacokinetics was described using a
one-compartment model. The relationship between adalimumab concentration
and C-reactive protein (CRP) concentration was described using an indirect
response model with inhibition of CRP input, whereas the relationship between
adalimumab concentration and disease activity score in 28 joints (DAS28) was
described using a direct inhibition model. Dose regimens that included a
loading dose of adalimumab were simulated.

RESULTS
Thirty patients treated for RA were analysed. The following pharmacokinetic
and PK–PD parameters were estimated (interidividual coefficient of variation):
apparent volume of distribution (Vd/F) = 10.8 l (92%); apparent clearance
(CL/F) = 0.32 l day−1 (17%); first-order absorption rate (ka) = 0.28 day−1; CRP input
(kin) = 22.0 mg l−1 day−1 (65%); adalimumab concentration leading to a 50%
decrease in kin (C50) = 3.6 mg l−1 (88%); baseline DAS28 (DAS0) = 5.5 mg l−1 (11%);
and adalimumab concentration leading to 50% decrease of DAS0

(IC50) = 11.0 mg l−1 (71%). Simulations showed that a 160 mg loading dose
should reduce the time to reach efficacy in terms of both CRP and DAS28 after
the first injection.

CONCLUSIONS
This is the first study to describe adalimumab pharmacokinetics and the
concentration–effect relationship in RA. A 160 mg loading dose may lead to an
increased benefit from treatment in RA patients.

WHAT IS ALREADY KNOWN ABOUT
THIS SUBJECT
• The pharmacokinetics of adalimumab

administered intravenously to rheumatoid
arthritis (RA) patients has been described.

• The response to adalimumab increases with
its serum concentration.

• A 160 mg loading dose leads to less
frequent primary nonresponse and longer
sustained clinical benefit in Crohn’s disease
patients.

WHAT THIS STUDY ADDS
• This study is the first to describe

adalimumab pharmacokinetics and the
concentration–effect relationship in RA
patients following subcutaneous
administration.

• Both adalimumab pharmacokinetics and the
concentration–effect relationship vary
widely between patients.

• Simulations predict that a loading dose may
lead to an increased benefit of adalimumab
in RA patients.
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Introduction

Adalimumab is a human monoclonal IgG1 antibody tar-
geting tumour necrosis factor α (TNF-α). It belongs to the
class of anti-TNF-α biopharmaceuticals, which has pro-
foundly modified the treatment of several inflammatory
diseases. Adalimumab is currently approved for rheuma-
toid arthritis (RA), ankylosing spondylitis, psoriatic arthritis,
Crohn’s disease, ulcerative colitis and psoriasis [1].

Approved doses of adalimumab lead to highly variable
serum concentrations between patients [2–5]. For thera-
peutic antibodies administered intravenously, such as
infliximab, interindividual variability of serum concentra-
tions is due to variability in antibody distribution and
elimination [6–10]. Subcutaneous administration of
adalimumab constitutes an additional source of variability
in concentrations. Adalimumab pharmacokinetics has
been investigated using compartment modelling in only
one study, in which adalimumab was administered intra-
venously. In that study, adalimumab steady-state volume
of distribution, clearance and elimination half-life were
5.6 l, 0.22 l day−1 and 21 days, respectively [11]. No study
has reported pharmacokinetic parameters after subcuta-
neous infusions using modelling. However, these param-
eters were estimated using noncompartmental methods;
the apparent volume of distribution, clearance, elimina-
tion half-life, time to maximal adalimumab concentration
(tmax) and bioavailability (F) were ∼12 l, 0.48 l day−1, 17.3
days, 4–7 days and 60%, respectively [12]. To date, no
study has reported adalimumab pharmacokinetics follow-
ing subcutaneous injections using compartmental model-
ling. Notably, the absorption kinetics of adalimumab was
never reported.

The probability of clinical response to adalimumab was
reported to increase with its trough serum concentrations
[2–5, 13, 14]. However, to our knowledge, an adalimu-
mab concentration–effect relationship has never been
described using pharmacokinetic–pharmacodynamic (PK–
PD) modelling. A sound description of both adalimumab
pharmacokinetics (after subcutaneous administration)
and the PK–PD relationship is, however, a prerequisite to
the development of therapeutic drug monitoring of this
anti-TNF-α biopharmaceutical.

The approved dosing regimen of adalimumab in RA
patients is 40 mg every other week, whereas a 160 mg
loading dose is recommended in Crohn’s disease patients
[1]. Karmiris et al. observed that Crohn’s disease patients
treated with a high loading dose had not only significantly
higher trough concentrations 4 weeks after initiating
adalimumab treatment, but also less frequent primary
nonresponse and longer sustained clinical benefit than
the other patients [13]. The decrease in risk of primary
nonresponse in patients treated with a higher loading
dose may be explained by the fact that these patients
reached adalimumab steady-state concentrations more
rapidly than other patients. Given that the elimination

half-life (t1/2) of adalimumab is long (∼20 days [11]), the
steady state should be attained 4 months after initiation of
regular injections [11]. As for Crohn’s disease patients, RA
patients may therefore benefit from a loading dose of
adalimumab.

Our objectives were to analyse the dose–
concentration–effect relationship of adalimumab in RA
patients and to simulate the consequences of the use of a
loading dose.

Methods

Patients
This study is a post hoc analysis of a prospective, observa-
tional, open, multicentric (Amiens, Caen, Lille, Rouen and
Berck, France) 52 week study [15]. The primary objective
was to determine predictive factors of the response to
TNF-α blockers. This study was approved by the regional
ethics committee (CPP Nord-Ouest 1, France) and
was registered at ClinicalTrials.gov under the number
NCT00234234. All participants gave written informed
consent at the time of enrolment. Thirty patients with
active RA were eligible for this post hoc analysis. These
patients received 40 mg adalimumab subcutaneously
every other week combined with methotrexate, and
follow-up was done for 1 year. Patients were assessed at
baseline and at weeks 6, 12, 24 and 52. At each visit,
patients were evaluated for disease activity score in 28
joints (DAS28), and blood samples were collected.

Data
Adalimumab concentrations Adalimumab concentrations
were measured in the Pilot Centre for Therapeutic Anti-
body Monitoring (CePiBAc) of Tours University Hospital,
France. Adalimumab concentrations were measured using
a validated enzyme-linked immunosorbent assay adapted
from the one developed for infliximab [8]. Briefly, recom-
binant human TNF-α was coated on the solid phase, to
recognize adalimumab present in the sera. A therapeutic
monoclonal antibody was detected by an anti-human
immunoglobulin G Fcγ-specific antibody conjugated to
horseradish peroxidase. The limit of detection of the assay
was 0.04 mg l−1, and the lower and upper limits of quanti-
fication were 0.1 and 4.9 mg l−1, respectively. Sera exceed-
ing the upper limit of quantification were diluted 1:10. The
intraday precision estimates of the enzyme-linked immu-
nosorbent assay were 4.2, 7.5 and 6.8% for the 0.1, 2.0 and
4.9 mg l−1 quality controls, respectively. The corresponding
biases were −10.8, −9.1 and −2.7%, respectively. The
interday precision estimates were −10.2, 5.6 and 10.0%,
respectively. Corresponding bias were −12.9, 1.3 and 2.1%,
respectively.

Other laboratory analyses At each visit, erythrocyte
sedimentation rate (ESR) and C-reactive protein (CRP)
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concentrations were measured locally in the laboratory of
the recruiting centres. Antibodies to adalimumab (ATA)
were detected in the CePiBAc of Tours University Hospital,
France, using double-antigen enzyme-linked immuno-
sorbent TNF-α adalimumab-coated plates and their de-
tection by peroxidase-conjugated IgG. Owing to the inter-
ference of circulating adalimumab, ATA could not be
measured if the adalimumab concentration was >2 mg l−1.
Above this value, the ATA test may lead to false-negative
results. The cut-off value (for false-positive ATA), deter-
mined using untreated samples of patients with an auto-
immune disease, was 0.128 mg l−1 (obtained from the 99th
percentile). However, this applies to the first sample in
each patient for which the interpretation cannot be based
on adalimumab concentration.

Clinical end-points At each visit, treatment efficacy was
assessed by a trained rheumatologist through the meas-
urement of the disease activity score score in 28 joints
(DAS28) [16]. Briefly, DAS28 is an index that measures the
disease activity in patients with RA. This score includes ESR
(in millimetres per hour), the tender joint count (TJC), the
swollen joint count (SJC) and the visual analog scale
general health patient (VAS, in millimetres). The DAS28
is calculated as follows: DAS TJC28 0 56 0 28= × + ×. ( ) .

SJC ESR VAS0 7 0 014+ × + ×( ) . ln( ) . .

Pharmacokinetic and pharmacokinetic–
pharmacodynamic analysis
Software Pharmacokinetic and CRP data were analysed
with a population approach using the nonlinear mixed-
effects modelling software MONOLIX 4.2.2, which com-
bines the stochastic expectation-maximization (SAEM)
algorithm and a Markov chain Monte-Carlo procedure
for likelihood maximization. To ensure the best possible
convergence, a large number of iterations (700 for K1
and 300 for K2) were performed, with K1 and K2 being
‘iteration kernels’ referring to the SAEM procedure of
Monolix. During K1, the sequence of step sizes is con-
stant, which allows exploration of the parameter space.
During K2, the step sizes decrease to ensure conver-
gence. Two Markov chains were used, and simulated
annealing was applied to improve the convergence of
the SAEM algorithm towards the global maximum of the
likelihood. The Fisher information matrix and likelihood
were computed using stochastic approximation and
importance sampling, respectively. These techniques are
longer to compute than linearization, but provide more
reliable results. The random seed was changed between
each run. All pharmacokinetic and PK–PD models were
run simultaneously.

Structural models
Pharmacokinetic model Adalimumab concentrations
were described using compartmental pharmacokinetic

modelling. One and two mammillary models with
first-order absorption, distribution and elimination
constants were tested. Estimated pharmacokinetic param-
eters were apparent volumes of distribution and clear-
ances. These values were apparent because adalimumab
administration is extravascular (subcutaneous). Structural
models were compared using Akaike’s information crite-
rion (AIC), defined as follows: AIC = −2LL + 2p, where −2LL
is the −2 × ln-likelihood and p is the number of model
parameters to estimate. The model with the lowest AIC
was selected.

Pharmacokinetic–pharmacodynamic models C-Reac-
tive protein and DAS28 are considered to be the key rel-
evant variables for evaluation. Given that normalization of
CRP is associated with sustained clinical response, CRP
may be considered as a clinically relevant biomarker [13,
17–20]. In addition, CRP is increased by TNF-α [21]. Usage
of adalimumab leads to a decrease in CRP production.
Therefore, the relationship between adalimumab and CRP
was described using an indirect response model with inhi-
bition of CRP input (Figure 1), as in previous studies [17, 22,
23]. Using this model, the estimated parameters were as
follows: zero-order CRP input (kin; in milligrams per litre per
day); first-order CRP output (kout; per day); and adalimumab
concentration leading to 50% of maximal kin inhibition (C50;
in milligrams per litre). The parameter kout, which was

1 -
Cp

VD

DAS28 = DAS0 •

Direct Emax modelPK model

Indirect response model

CRP
koutkin

CL

ka

C50 +  Cp

1 -
Cp

IC50 +  Cp ))

Figure 1
Pharmacokinetic and pharmacokinetic–pharmacodynamic (PK–PD)
models. Adalimumab pharmacokinetics was described using a one-
compartment model with first-order absorption and elimination rates.
The relationship between adalimumab concentrations and C-reactive
protein (CRP) levels was described using an indirect model with inhibition
of CRP input. The relationship between adalimumab concentrations and
the disease activity score in 28 joints (DAS28) was described using a direct
Emax inhibitory model. Abbreviations: CL, clearance; Cp, model-predicted
adalimumab concentrations; CRP, serum C-reactive protein concentra-
tions; kin, zero-order production rate constant; ka, first-order absorption
rate constant; kout, first-order elimination rate constant; C50, adalimumab
concentration leading to a 50% decrease of kin; DAS0, DAS28 at baseline,
IC50, adalimumab concentration leading to a 50% decrease of DAS0; VD,
volume of distribution
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poorly identifiable, had to be fixed. Given that the CRP
elimination half-life (t1/2CRP) was reported to be 19 h [24], we
fixed kout as ln(2)/t1/2CRP = 0.875 day−1.

The relationship between adalimumab concentrations
and DAS28 was analysed using a direct inhibitory Emax

model (Figure 1). We used direct rather than indirect
PK–PD modelling, as done in other studies, because DAS28
is a continuous measurement [25]. Estimated parameters
were the value of DAS28 at baseline (DAS280) and
adalimumab concentration leading to a 50% decrease in
DAS280 (EC50; in milligrams per litre).

Interindividual and error models
The interindividual variability in pharmacokinetic and
PK–PD parameters was described using an exponential
model, as follows: θi = θTV × exp(ηi), where θi is the esti-
mated individual parameter, θTV is the typical value of the
parameter and ηi is the random effect for the ith patient.
The values of ηi were assumed to be normally distributed,
with a mean of zero and variance ω2. This variance was
fixed to zero for parameters for which ηi could not
be estimated. Correlations between random effects
were tested. Additive, proportional and mixed additive–
proportional residual error models were tested. For
example, the combined additive–proportional model
was implemented as follows: YO,ij = YP,ij × (1 + εprop,ij) + εadd,ij,
where YO,ij and YP,ij are observed and predicted jth meas-
urements for the ith patient, respectively, and εadd,ij and
εprop,ij are additive and proportional errors, with a mean of
zero and respective variances σadd

2 and σprop
2.

Covariates
Owing to the relatively small number of patients, only
three covariates were tested. Binary covariates were sex
and corticosteroid cotreatment. The continuous covariate
was bodyweight. The influence of binary covariate on θTV

was implemented as ln(θTV) = ln(θCAT=0) + βCAT=1, where
θCAT=0 is the value of θ for the reference category and
βCAT=1 is a parameter which provides the value of θTV for the
other category. Reference categories were women and
no corticosteroid treatment for sex and corticosteroid
cotreatment, respectively. The continuous covariate (COV)
was centred on its median, as follows: θi = θ0 × (COV/
med(COV))βcov, where θ0 is the value of θ for the median
value of COV [med(COV)] and βCOV quantifies the influence
of COV on θ.

Model comparison and covariate selection
Interindividual, residual and covariate models were com-
pared using −2LL and AIC. Of two models, that with the
lowest significant −2LL value, assessed by a likelihood
ratio χ2 test (LRT), and the lowest AIC, was selected. First,
the individual influence of each covariate on each
pharmacokinetic and PK–PD parameter was tested using
the likelihood ratio test with α = 0.1. When covariates were
redundant, the most significant were kept in the final

model. Given that the number of selected covariates at
the first step was low, no stepwise forward/backward
covariate selection was needed; the combination of
covariates which influenced parameters was tested to
build the final model. The covariates were kept in the final
model if their influence was significant for α = 0.02. The
goodness of covariate description was assessed by visual
inspection of the plot of random effects (i.e. η) vs. covariate
plots.

Model goodness of fit and evaluation
In general, the goodness of fit for a given model was
assessed by plots of population-predicted (PRED) and
individual-predicted (IPRED) measurements vs. observed
measurements, IPRED and observed concentrations (DV)
vs. time, and by evaluating the residuals via graphical
inspection of population (PWRES) and individual (IWRES)
weighted residual distributions and normalized prediction
distribution errors (NPDE) [26]. Given that NPDE should be
normally distributed, their distribution was tested using
the Kolmogorov–Smirnov test at the level of α = 0.05. We
concluded that there was a departure from normality if the
P value was <0.05.

Simulations
Three dosing regimens were simulated: (i) no change in
dosing scheme (40 mg every other week); (ii) a single
80 mg loading dose followed by 40 mg every other week;
and (iii) a single 160 mg loading dose followed by 40 mg
every other week. The dosing regimen that led to the ear-
liest time to achieve a steady state for adalimumab con-
centrations, CRP and DAS28 values was considered to be
the best. Simulations were made using typical pharmaco-
kinetic and PK–PD parameters that were estimated in the
modelling step. Neither covariates nor interindividual dis-
tributions of pharmacokinetic or PK–PD parameters were
taken into account.

Results

Patients
Of the 30 patients analysed in this study, 23 were women
(77%), 17 were cotreated with corticosteroids, and their
median bodyweight was 67 kg (Table 1). The presence of
ATA was tested in 10 samples from four patients, in whom
adalimumab concentrations were <2 mg l−1, but ATA were
detected in none of them.

Pharmacokinetic and
pharmacokinetic–pharmacodynamic analysis
A total of 129 serum adalimumab concentration, 139
CRP and 141 DAS28 measurements were available for
analysis.

Adalimumab concentrations were best described
using a one-compartment model with first-order
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absorption rate (Figure 1). Parameters describing a periph-
eral compartment were not identifiable. The best residual
error model was proportional. For indirect response and
direct Emax models describing concentration–CRP and
concentration–DAS28 relationships, respectively, best
residual error models were mixed additive–proportional
and additive, respectively. Plots of predicted vs. observed
measurements (i.e. adalimumab and CRP or DAS28)
showed that pharmacokinetic and PK–PD models
described the data satisfactorily (Figure 2). Pharmaco-
kinetic and PK–PD parameters were estimated with satis-
factory accuracy (Table 2). All diagnostic plots were
obtained from the final model. Population (PWRES) and
individual residuals (IWRES) and normalized prediction
distribution error (NPDE) plots showed that there was
no obvious model misspecification (Figure 3). Notably,
no NPDE distribution was significantly different from
Gaussian distributions, with the Kolmogorov–Smirnov
statistic being 0.0465 (P = 0.13), 0.0747 (P = 0.059) and
0.0710 (P = 0.078) for adalimumab concentrations, CRP
and DAS28 values, respectively. Although CRP showed
extreme values that could not be described by an indirect
PK–PD model, graphical analysis of residuals showed no
obvious departure from normality (Figure 3).

A large interindividual variability in pharmacokinetics
and PK–PD parameters was observed. This was notably the
case for estimated apparent volume of distribution (V/F),
C50 and IC50, for which interindividual standard deviations
were 92, 88 and 71%, respectively. During the univariate
step, CL/F was found to be influenced by both sex and
bodyweight, and a tendency was observed for a relation-
ship between kin and bodyweight. In the final model, the
only affected parameter was CL/F, which increased with
weight (LRT = 13.1, P < 0.01) and was higher in men than in
women (LRT = 8.7, P < 0.01). The interindividual standard

deviation of CL/F, corresponding to unexplained variabil-
ity, was 17%. Of note, without covariates, this standard
deviation was 35%. (Figure 4). The elimination half-life (t1/2)
for median-weighted women and men was 24.1 and 17.4
days, respectively. The time to maximal adalimumab con-
centration (tmax) derived from typical values was 9.1 days
after injection. Adalimumab steady-state concentrations
and maximal response (in terms of CRP and DAS28)
were reached around 20 weeks after the beginning of
adalimumab treatment (Figure 5).

Simulations
Our simulation showed that, for a typical patient, a single
80 mg loading dose leads to increased adalimumab con-
centrations but has only a limited effect on the time to
reach the steady state. In contrast, a dosing regimen
including a single 160 mg loading dose leads to concen-
trations above steady-state values between the first and
the fifth injection and allows the maximal response in
terms of CRP and DAS28 to be reached before the second
injection (Figure 6).

Discussion

We used pharmacokinetic and PK–PD modelling to inves-
tigate adalimumab dose–concentration–effect relation-
ship in RA patients administered with adalimumab via
the subcutaneous route. To our knowledge, adalimumab
pharmacokinetics has been analysed using compartmen-
tal modelling in only one study, in which adalimumab was
administered intravenously to RA patients [11]. Therefore,
adalimumab pharmacokinetics has not described in the
case of administration via the subcutaneous route and,
notably, the absorption kinetics of adalimumab following
administration via the subcutaneous route has never been
reported. In addition, the adalimumab concentration–
effect relationship has never described using PK–PD
modelling.

A total of 30 patients were analysed in the present
study. Adalimumab pharmacokinetics was best de-
scribed using a one-compartment model with first-order
elimination rate, whereas Weisman et al. used a two-
compartment model [11]. The pharmacokinetics of thera-
peutic antibodies administered intravenously is often
described using a two-compartment model. However,
when the subcutaneous route is used, e.g. for omalizumab,
an anti-IgE monoclonal antibody, one-compartment
models are appropriate [27, 28]. An exception was
efalizumab, an anti-CD11a antibody previously used in
psoriatic patients. Its pharmacokinetics following sub-
cutaneous administration was described using a two-
compartment model by Ng et al. [29], but the authors used
a population approach based on data from both subcuta-
neous and intravenous administrations.

Table 1
Patient characteristics at baseline

Patients (n = 30)

Sex, women [n (%)] 23 (77)
Age (years) 55 [24–77]

Bodyweight (kg) 67 [45–115]
Comedication

Methotrexate [n (%)] 30 (100)
Corticosteroids [n (%)] 17 (56.7)
NSAIDs [n (%)] 14 (46.7)

ATA+ 0
CRP (mg l−1) 22 [5–139]

DAS28 5.6 [3.7–7.8]

Results are presented as the absolute number (%) or as the median [range].
Abbreviations are as follows: ATA, antibodies toward adalimumab; CRP, C-reactive
protein; DAS28, disease activity score in 28 joints; NSAIDs, nonsteroidal anti-
inflammatory drugs.
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We described adalimumab absorption kinetics using a
first-order absorption rate (ka), as previously done for
omalizumab [27, 28]. We estimated a mean ka of
0.28 day−1. This value is lower than that reported for
omalizumab (∼0.45 day−1 [27, 28]) but similar to that
reported for efalizumab (∼0.25 day−1 [29]). The calculated
time to reach adalimumab maximal concentration after
injection (tmax) is therefore 9.1 days, a value greater than
that reported in the adalimumab approval document
(5.5 ± 2.3 days) [12]. The estimated apparent volume of
distribution (V/F) is 12.4 l. Given that adalimumab
bioavailability (F) is 64% [12], the adalimumab volume
of distribution (V) in our study would be 6.9 l, a value
which is slightly higher than the value reported in the
adalimumab approval document (4.7–6.0 l) [12]. We
observed an increase in apparent adalimumab clearance
with bodyweight and a higher value in men than in
women. The influence of patient characteristics on
pharmacokinetic parameters has not previously been

reported for adalimumab, but has been reported for
other monoclonal antibodies, such as infliximab [7] or
rituximab [30]. The value of clearance estimated in the
present study, corrected according to bioavailability, is
0.20 l day−1, a value similar to that reported by Weisman
et al. (0.22 l day−1 [11]). The interindividual variance of ka

was not identifiable, probably due to the scarceness of
sampling times. This variability may be large; for other
antibodies administered subcutaneously, the value of ωka

was 50–150% [27–29]. In our study, ωV/F was surprisingly
large (92%), and greater than what is commonly found
for other monoclonal antibodies (∼30–40% [31]). The
non-estimation of ωka might have resulted in an overes-
timation of ωV/F. Prospective studies with intensive blood
sampling would be needed in order to analyse the
interindividual variability in adalimumab absorption
kinetics more precisely.

No antibodies toward adalimumab were detected
in the present study. However, three patients may have
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developed ATA; patients #19 and #23 had adalimumab
concentrations around 2 mg l−1, and patient #30 had
concentrations decreasing from 3.5 to 1.3 mg l−1 between
week 6 and week 52 despite the continuation at the
standard dose. For these patients, estimated values
of CL/F were ∼0.70 l day−1, a value twice that of the
typical value (0.31 l day−1). The lack of detection of ATA in
these patients may be explained either by high concen-
trations of free adalimumab molecules, which are known
to interfere with ATA detection, or by the fact that
ATA molecules were engaged into adalimumab–ATA
complexes, which may be cleared faster than free
adalimumab or ATA and may not be detected by our ATA
test.

We report, for the first time, the adalimumab
concentration–effect relationship using PK–PD model-
ling. The effect of adalimumab was assessed by both CRP
and DAS28. For this description, we first used CRP as a
biomarker. Indeed, CRP has been shown repeatedly to
correlate well with sustained clinical response [8, 17, 18,
20], and the relationship between infliximab concentra-

tion and CRP was previously investigated in RA [32, 33].
Being an anti-TNF-α monoclonal antibody, adalimumab
acts as a noncompetitive antagonist of TNF-α and does
not act directly on CRP. This justifies the use of an indirect
PK–PD model with inhibition of CRP production. This
model was used by others to describe the relationship
between concentrations of therapeutic antibodies and
CRP concentrations [17, 22]. However, despite its rel-
evance, this biomarker displayed unexpected fluctua-
tions, probably because of inflammatory phenomena
independent from RA activity (e.g. infections) and/or
polymorphisms on the CRP gene that are responsible for
an interindividual variability in CRP production [34]. In
addition, kout had to be fixed according to the value of
CRP half-life reported in the literature, i.e. 19 h. This value
is considered to be constant in all conditions of health
and disease [24].

We described the relationship between adalimumab
concentration and clinical efficacy assessed by DAS28
using a direct Emax model. Such a model was preferred
to an indirect response model, which is not adapted to
the description of a disease activity score because it
requires the estimation a DAS28 ‘input’ and a DAS28
‘output’, parameters that would be difficult to interpret.
We previously described the relationship between
adalimumab concentration and DAS28 using a direct
inhibition Emax model but without pharmacokinetic mod-
elling [35].

The typical value of C50 was 3.6 mg l−1, meaning that the
adalimumab concentration necessary to decrease CRP
production (and therefore CRP concentration) by 50% is
3.6 mg l−1 for a ‘typical’ patient (Table 2). A similar interpre-
tation may be drawn from IC50; the adalimumab concen-
tration leading to a decrease of initial disease activity
(DAS280) by 50% is 11.0 mg l−1 for a ‘typical’ patient. The
large interindividual variability of both C50 (ωC50 = 88%) and
IC50 (ωIC50 = 71%) suggests that RA patients may have a
highly variable sensitivity to adalimumab.

The current dose regimen for adalimumab in RA
patients (40 mg every other week) results in a long delay
in reaching steady-state concentrations and maximal
effect (∼10–20 weeks). Simulations showed that using a
loading dose may decrease this delay; maximal effect
would be reached between the first and the second injec-
tion (Figure 6). The use of a loading dose of adalimumab
has already been investigated in Crohn’s disease, notably
in the CLASSIC-I trial (299 patients) [4] and in the cohort
(168 patients) of Karmiris et al. [13]. These studies showed
a better efficacy of adalimumab when a 160 mg loading
dose is used, which may be due to higher concentrations
at the beginning of the treatment [4, 13]. In addition, the
frequency of occurrence of adverse side effects was
similar with or without a loading dose [4]. However,
adverse side effects may be different in Crohn’s disease
patients and in RA patients. Therefore, a future study
showing the benefit of a 160 mg loading dose in RA

Table 2
Parameter estimates

Parameter (units) Estimate RSE (%)

V/F (l) 10.8 20
CL/F (l day−1) 0.32 5

SX_CL 0.32 34
WT_CL 0.81 28

ka (day−1) 0.28 4
kin (mg l−1 day−1) 22 15

kout (day−1) 0.875 (Fixed)
C50 (mg l−1) 3.6 26

DAS280 5.5 3
IC50 (mg l−1) 11.0 16

ωVd (%) 92 16
ωCL (%) 17 27

ωKin (%) 65 18
ωKout (%) – –

ωC50 (%) 88 27
ωImax (%) 11 32

ωIC50 (%) 71 17
σprop_PK (%) 24 9

σadd_CRP (mg l−1) 1.6 29
σprop_CRP (%) 52 10

σadd_DAS 68 8

The value of kout was fixed, and no interindividual variability was estimated for this
parameter. The RSE (%) was obtained as follows: RSE = (estimate/standard
error) × 100. Abbreviations are as follows: C50, adalimumab concentration leading
to a 50% decrease of kin; CL/F, apparent clearance; CRP, C-reactive protein;
DAS280, estimated baseline disease activity score in 28 joints; IC50, adalimumab
concentration leading to a decrease in DAS280 of 50%; ka, first-order absorption
rate constant; kin, zero-order CRP input; kout, first-order CRP output; PK,
pharmacokinetics; RSE, relative standard error; SX, sex; Vd/F, apparent volume of
distribution; WT, bodyweight; σadd, additive error standard deviation; σprop, pro-
portional error standard deviation; ω, interindividual standard deviation.
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patients will have to assess the safety and tolerance of
this loading dose.

Overall, this is the first study to provide a description of
adalimumab pharmacokinetics and a concentration–
effect relationship in RA patients. Notably, it provides the
first estimation of adalimumab absorption kinetics in RA
patients. Our model shows that a loading dose in RA
patients may allow more rapid attainment of benefit from
treatment in RA patients.
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