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Microbes present in the rumen of dairy cows are essential for degradation of cellulosic and nonstructural carbohydrates of plant
origin. The prepartum and postpartum diets of high-producing dairy cows are substantially different, but in what ways the ru-
men microbiome changes in response and how those changes may influence production traits are not well elucidated. Here, we
sequenced the 16S and 18S rRNA genes using the MiSeq platform to characterize the prepartum and postpartum rumen fluid
microbiomes in 115 high-producing dairy cows, including both primiparous and multiparous animals. Discriminant analysis
identified differences between the microbiomes of prepartum and postpartum samples and between primiparous and multipa-
rous cows. 18S rRNA sequencing revealed an overwhelming dominance of the protozoan class Litostomatea, with over 90% of
the eukaryotic microbial population belonging to that group. Additionally, fungi were relatively more prevalent and Litosto-
matea relatively less prevalent in prepartum samples than in postpartum ones. The core rumen microbiome (common to all
samples) consisted of 64 bacterial taxa, of which members of the genus Prevotella were the most prevalent. The Chao1 richness
index was greater for prepartum multiparous cows than for postpartum multiparous cows. Multivariable models identified bac-
terial taxa associated with increased or reduced milk production, and general linear models revealed that a metagenomically
based prediction of productivity is highly associated with production of actual milk and milk components. In conclusion, the
structure of the rumen fluid microbiome shifts between the prepartum and first-week postpartum periods, and its profile within
the context of this study could be used to accurately predict production traits.

Rumen microbiology studies in the last 4 to 5 decades have
contributed to the advancement of the field of anaerobic mi-

crobiology (1, 2) and have explained much regarding the nature of
ruminal fermentation, its effect on ruminant nutrition, and the
physiological importance of volatile fatty acid production by ru-
minal microorganisms to the nutrition of the host. Additionally,
ruminal microbiology provided vital concepts and quantitative
data that are essential for the construction of the mathematical
models that allow for precision nutrition of ruminants, which has
been adopted throughout the world in modern meat and milk
production systems (3). However, direct manipulation of fermen-
tation by biotechnological means has so far been restricted to a few
antimicrobial compounds and some microorganisms that can be
added to the feed.

High-throughput sequencing technologies have opened new
frontiers in microbial analysis by allowing cost-effective charac-
terization of complex microbial communities in biological sam-
ples, and they have significantly improved our knowledge of bo-
vine rumen microbial diversity. Over 27,000 carbohydrate-active
genes, 50 proteins with enzymatic activity against cellulosic sub-
strates, and 15 uncultured microbial genomes were revealed in a
study of rumen samples using high-throughput sequencing (4).
Diet can be a significant factor shaping the microbial diversity of
the rumen content of dairy cows (5) and beef cows (6). Variation
in the rumen microbiome of dairy cattle has also been linked to
levels of methane emission (7), and metagenomic profiling of the
rumen microbiome can actually be used to predict phenotypes
related to enteric methane gas production (8).

Jami and Mizrahi (9) suggested the presence of a core rumen
microbiome but also reported significant variability in bacterial
genera abundances among animals. Using 454 pyrosequencing of
ruminal metagenomic DNA, they and their colleagues described
the bacterial communities across five different age groups (from
1-day-old calves to 2-year-old cows) (10). The same group of re-
searchers recently showed the potential role of the bovine rumen
microbiome in modulating milk composition (11). They were
able to identify connections between milk fat yield and the Firmi-
cutes-to-Bacteroides ratio. Interesting correlations were also pres-
ent at the genus level. However, only 15 primiparous animals, one
diet, and one sample per animal were used in that study, suggest-
ing that additional work evaluating variation across diets and an-
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imals might improve the characterization of potential relation-
ships between the rumen microbiome and production traits.

The transition period (usually defined as the 3 weeks before
and the 3 weeks after calving) is undeniably the most challenging
period for a high-producing Holstein dairy cow. During these 6
weeks, the cow undergoes physiological stress as she prepares for
and then recovers from parturition, dramatically altering her me-
tabolism so as to supply the mammary gland with nutrients nec-
essary for milk synthesis, while often consuming insufficient dry
matter, which leads to a negative energy balance and immunosup-
pression. Adaptation of the rumen microbiota to dietary changes
during this period is of paramount importance and is best eluci-
dated with the use of metagenomic tools. Koren et al. (12) showed
dramatic changes in the gut microbiota of pregnant women and
suggested the existence of important host-microbe interactions
that impact host metabolism during pregnancy. Similar findings
await description in dairy cattle. In this study, we characterized the
rumen fluid microbiomes of prepartum and postpartum high-
producing Holstein cows and revealed their associations with pro-
ductivity.

MATERIALS AND METHODS
Animal handling, data, and sample collection. The experimental proce-
dures used in this study were reviewed and approved by the Institutional
Animal Care and Use Committee of Cornell University (protocol number
2013-0082). The study was conducted at a single commercial dairy farm
milking 2,800 Holstein cows near Ithaca, NY, USA. One week before the
expected calving date and 1 week after parturition, rumen fluid samples
were collected from the same group of primiparous (n � 48) and multip-
arous (n � 67) cows for prepartum and postpartum samples in the morn-
ing before feeding. In order to explore a large population of cows to
account for diversity across individuals, we opted to sample the rumen
using a noninvasive procedure with the aid of a scientifically evaluated and
commercially available oro-ruminal sampling device (Flora Rumen
Scoop; Profs-Product, Guelph, Canada) (13). The oro-ruminal sampling
device was autoclaved every day, and when more than a sample was col-
lected at the time, the device was thoroughly cleaned using current warm-
ing water between sample collection and the first fraction of fluid samples
was always discarded to ensure that the sample collected was representa-
tive of a specific cow without contaminants from previous animals. After
sample collection, an aliquot (50 ml) was stored in a sterile conical tube
and kept on ice until transported to the laboratory in Ithaca, NY, where
samples were preserved in a �80°C freezer.

Data regarding daily milk yield were recorded using the Alpro milk
point controller 780 (DeLaval, Kansas City, MO, USA), and later data
were retrieved from the DairyComp 305 (Tulare, CA, USA) database.
Daily milk production for each cow was averaged on a weekly basis, and
milk fat and protein percentages were recorded on a monthly basis. Quar-
tiles for average milk production and milk fat and protein percentages for
the first 150 days postpartum were determined for all cows and later used
as ordinal categorical data in the statistical models.

The same prepartum close-up (4 weeks before calving expected date)
and postpartum diets were fed for primiparous and multiparous cows.
Prepartum cows were fed a diet with a high fiber content (forage neutral
detergent fiber [NDF] � 38.2%; amylase-treated NDF [aNDF] � 43.3%)
and low energy density (1.39 Mcal/kg), whereas postpartum cows were fed
a diet with a low fiber content (forage NDF � 24.1%; aNDF � 30.1%) and
high energy density (1.69 Mcal/kg) derived from higher starch and fat
supplementation (see Table S1 in the supplemental material).

DNA extraction. Rumen fluid samples were thawed and homoge-
nized by vortexing for 3 min. A 1-ml aliquot of each rumen fluid sample
was centrifuged for 10 min at room temperature at 13,200 rpm (16,100
relative centrifugal force [RCF]) in an Eppendorf 5415R centrifuge. The
supernatant was discarded, and the remaining pellet was resuspended in

400 ml of nuclease-free water. Isolation of genomic DNA was performed
by using a QIAamp DNA minikit (Qiagen) according to the manufactur-
er’s instructions, except that 400 mg of lysozyme was added to the bacte-
rial suspension and incubated for 12 h at 56°C to maximize bacterial DNA
extraction. DNA concentration and purity were evaluated by optical den-
sity using a NanoDrop ND-1000 spectrophotometer (NanoDrop Tech-
nologies, Rockland, DE, USA) at wavelengths of 230, 260, and 280 nm.

DNA amplification and purification and quantification of 16S rRNA
and 18S rRNA genes. The 16S rRNA and 18S rRNA genes were amplified
by PCR from individual metagenomic DNA samples using barcoded
primers. For amplification of the V4 hypervariable region of the bacterial/
archaeal 16S rRNA gene, primers 515F and 806R were used according to a
previously described method (14) optimized for the Illumina MiSeq plat-
form. Likewise, for amplification of the V9 hypervariable region of the 18S
rRNA gene (15), primers 1391F and 1510R were used as described previ-
ously (14) with optimization for the Illumina MiSeq platform. The earth
microbiome project (http://www.earthmicrobiome.org/) (16) was used
to select 140 different 12-bp error-correcting Golay barcodes for the 16S
rRNA gene and another 140 different 12-bp error-correcting Golay bar-
codes for 18S rRNA gene, as described previously (14). The 5=-barcoded
amplicons were generated in triplicate using 12 to 300 ng DNA template
(isolated from rumen samples), 1� GoTaq Green master mix (Promega,
Madison, WI), 1 mM MgCl2, and 10 �M each primer. The PCR condi-
tions for the 16S rRNA gene consisted of an initial denaturing step of 94°C
for 3 min, followed by 35 cycles of 94°C for 45 s, 50°C for 1 min, and 72°C
for 90 s, and a final elongation step of 72°C for 10 min. The PCR condi-
tions for the 18S rRNA gene consisted of an initial denaturing step of 94°C
for 3 min, followed by 35 cycles of 94°C for 45 s, 57°C for 1 min, and 72°C
for 90 s, and a final elongation step of 72°C for 10 min. Replicate ampli-
cons were pooled and purified with a QIAquick PCR purification kit
(Qiagen, Valencia, CA, USA), and visualized by electrophoresis through
1.2% (wt/vol) agarose gels stained with 0.5 mg/ml ethidium bromide
before sequencing. Reactions with blank controls, in which no DNA was
added to the reaction mixture, were performed. In all cases these blank
controls failed to produce visible PCR products; these samples were not
analyzed further. Purified amplicon DNA was quantified using the
Quant-iT PicoGreen double-stranded DNA (dsDNA) assay kit (Life
Technologies Corporation, Carlsbad, CA, USA).

Sequence library analysis and statistical analysis. Amplicon aliquots
were standardized to the same concentration and then pooled into one of
three different runs (140 samples per run) according to individual bar-
code primers of the 16S rRNA gene. The same procedure was conducted
for the 18S rRNA amplicons. Final equimolar libraries were sequenced
using the MiSeq reagent kit V2 for 300 cycles on the MiSeq platform
(Illumina, Inc., San Diego, CA, USA). The 16S rRNA and 18S rRNA gene
sequences obtained from the MiSeq platform were processed through the
open-source software pipeline Quantitative Insights into Microbial Ecol-
ogy (QIIME) version 1.7.0-dev (17). Sequences were filtered for quality
using established guidelines (18). Sequences were binned into operational
taxonomic units (OTUs) based on 97% identity using UCLUST (19)
against the Greengenes reference database (20) May 2013 release. Low-
abundance clusters (present in fewer than 5% of samples) were filtered,
and chimeric sequences were removed using USEARCH (19). Represen-
tative sequences for each OTU were compared against the Greengenes
database (May 2013 release) for 16S rRNA and Silva for 18S rRNA for
taxonomy assignment, which was performed using the RDP classifier with
confidence of assignment of �95% (21).

The OTU results obtained from the analysis described above were
used to determine the core microbiome for the prepartum and postpar-
tum periods. The core microbiome was defined as all taxa found to be
ubiquitous across all samples. A multivariable model was built using JMP
Pro 11 (SAS Institute Inc., NC) to evaluate correlations between bacterial
taxa in the core microbiome at the prepartum and postpartum periods.
Using the obtained OTU information, we evaluated each sample’s rich-
ness using the Chao1 index, which is a nonparametric estimator of the
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minimum richness (number of OTUs) and is based on the number of rare
OTUs (singletons and doublets) within a sample. The least-square means
(� standard errors [SE]) of the Chao1 richness and Shannon diversity
indexes were then compared using a general linear model with JMP Pro 11
corrected by number of sequences with time relative to calving, parity, and
milk quartiles as independent variables.

The relative abundances of different bacterial taxa in each sample were
used as covariates in stepwise discriminant analysis models built in JMP
Pro 11. Discriminant analysis is a method that predicts a one-way classi-
fication based on known values of the responses. The technique is based
on how close a set of measurement variables are to the multivariate means
of the levels being predicted. The multivariate fitting platform used by
discriminant analysis gives estimates of the means and the covariance
matrix for the data, assuming that the covariances are the same for each
group, allowing the generation of ranked canonical values for variable of
interest. In our study, variables were removed in a stepwise manner until
only variables with a P value of �0.001 were retained in the final model.
“Time relative to calving” and “parity” were used as categorical variables.
In this way, differences in microbiome structure during the transition
periods of primiparous and multiparous cows were illustrated. A series of
heat maps were generate to graphically represent data in a specific range of
values contained in a matrix defined by color coding. A series of analyses
was performed to investigate how prepartum and postpartum microbial
diversity relates to production traits. A screening analysis using JMP Pro
11 was performed to determine which bacterial taxa were associated with
increased or decreased average milk production, with average milk fat and
protein percentages for the first 150 days in milk stratified by period rel-
ative to calving and by parity. Linear correlation matrixes (Pearson cor-
relation coefficient) were generated to illustrate the level of correlation of
the bacterial taxa selected by the screening model and the weekly milk
averages. Metagenomically based production predictions were estimated
using multivariable generalized linear mixed models with JMP Pro 11;
bacterial taxa that were found to be significantly associated with milk
production (P � 0.001) based on the variable screening model were of-
fered to the model as independent variables, and the variable of interest
was the repeated weekly measurements of milk production. Coefficients
for parameters estimated by adding variables to the models and P values
for false-discovery rates determined to correct for multiple testing are
presented in Table S3 in the supplemental material. To control for re-
peated measures, the variable “animal identification” was included in the
models as a random variable. Similar models were built for the monthly
average of milk fat percentage and milk protein percentage for the first 5
months following parturition.

Nucleotide sequence accession numbers. Sequences obtained in the
current study were submitted to the Sequence Read Archive at the Na-
tional Center for Biotechnology Information website with BioProject re-
cord number PRJNA258240.

RESULTS
Sequencing results, core microbiome description, and preva-
lence of genera. Quality-filtered reads for 16S rRNA sequences
were demultiplexed, yielding 24,863,354 sequences in total with a
median sequence length of 301 bases per read and an average
coverage of 108,102 sequences per sample. Similarly, quality-fil-
tered reads for 18S rRNA sequences were demultiplexed, yielding
22,592,149 sequences in total with a median sequence length of
129 bases per read and an average coverage of 98,226 sequences
per sample.

The rumen fluid core microbiome was composed of 64 bacte-
rial taxa. The core microbiome represented 89.6% and 91.2% of
all bacterial genera present in the rumen in the prepartum and
postpartum periods, respectively. The mean prevalence of each
bacterial taxon present in the core microbiome is illustrated in
Table S2 in the supplemental material, and the relative abun-

dances of core microbiome bacterial genera for all cows are illus-
trated in Fig. S1 (prepartum) and Fig. S2 (postpartum) in the
supplemental material. Taxa that could not be assigned to a genus
but were present in all samples are still displayed based on the
highest taxonomic level that could be assigned to them. Data anal-
ysis identified 2,132 different bacterial species; however, these rep-
resented only 46% of the sequences identified for all samples, and
therefore they were not included in further models to determine
the core microbiome and associations with production traits.
Twelve bacterial species that had an average prevalence of 1% and
were consistently the most prevalent among prepartum and post-
partum multiparous and primiparous cows are depicted in Fig. S3
in the supplemental material.

The core microbiome in the prepartum period was composed
predominantly of Prevotella (19.5% � 0.82%), Ruminococcaceae 2
(7.3% � 0.21%), Bacteroidales (7.2% � 0.21%), Lachnospiraceae
2 (5.4% � 0.16%), Ruminococcus (4.8% � 0.18%), Clostridia 2
(4.1%� 0.17%), Clostridiales 2 (3.5% � 0.12%), Christensenel-
laceae (3.3% � 0.16%), Bacteroidales 2 (3.2% � 0.08%), and Suc-
ciniclasticum (3.1% � 0.12%). In comparison, the core microbiome
in the postpartum period consisted predominantly of Prevotella
(21.3% � 1.20%), Ruminococcaceae 2 (8.0% � 0.34%), Rumino-
coccus (7.3% � 0.38%), Bacteroidales (5.7% � 0.24%), Lachno-
spiraceae 2 (5.7% � 0.16%), Clostridia 2 (3.8% � 0.15%), family
S24-7 (3.8% � 0.02%), Succiniclasticum (3.4% � 0.17%), Clos-
tridiales 2 (2.9% � 0.11%), and Bacteroidales 2 (2.7% � 0.24%).
The prevalence of each bacterial phylum for each sample evalu-
ated is depicted in Fig. 1. Twenty-eight phyla were identified in at
least 20 samples across the prepartum and postpartum samples,
and 13 phyla composed the core microbiome. The two major
phyla present in rumen samples were Firmicutes and Bacteroidetes.
The mean relative abundances of Firmicutes for the prepartum
primiparous, prepartum multiparous, postpartum primiparous,
and postpartum multiparous samples were 45.1%, 42.5%,
49.65%, and 42.8%, respectively. The mean relative abundances of
Bacteroidetes for the prepartum primiparous, prepartum multip-
arous, postpartum primiparous, and postpartum multiparous
samples were 36.9%, 38.4%, 33.6%, and 40.7%, respectively.
Other major phyla with relative abundances over 1% include Ver-
rucomicrobia, Euryarchaeota, Tenericutes, and Proteobacteria. The
mean relative abundances of eukaryotic organisms based on 18S
rRNA sequencing are presented in Fig. 2. The protozoan class
Litostomatea was the dominant eukaryotic taxon, with its mem-
bers accounting for more than 90% of the eukaryotes present in
the rumen samples. An unclassified metazoan OTU was the sec-
ond most prevalent eukaryotic taxon, followed by a series of fungi
(Saccharomyceta, unclassified fungi, Agaricomycotina, and Neo-
callimastigales) and a few other protozoa (unclassified Ciliophora,
unclassified Intramacronucleata, and unclassified Alveolata). The
prevalence of Litostomatea and unclassified Alveolata decreased
from the prepartum to the postpartum period, whereas unclassi-
fied Metazoa, Saccharomyceta, unclassified Fungi, Agaricomycotina,
Neocallimastigales, Mitosporic fungi, Pucciniomycotina, unclassi-
fied Basidiomycota, and unclassified Parabasalia increased in preva-
lence over the same transition. In general, the fungal types identified
showed variation similar to that of the unclassified Metazoa, having
an increased prevalence from the prepartum to the postpartum pe-
riod.

Discriminant analysis. Differences in rumen microbial diver-
sity between the prepartum and postpartum periods are mainly
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illustrated by canonical 1 (Fig. 3), whereas differences between
primiparous and multiparous cows are mainly illustrated by ca-
nonicals 2 and 3 (Fig. 3). The canonical scores for each bacterial
taxon used to discriminate rumen microbiomes according to pe-
riod relative to calving and primiparous cows from multiparous
cows are presented in Fig. 4.

Richness and diversity indexes and association of the Firmi-
cutes/Bacteroidetes ratio with production traits. Chao1 richness
index means for pre- and postpartum samples for multiparous
and primiparous cows stratified by milk production quartiles are
illustrated in Fig. 5a and b. The Chao1 index dropped significantly
between the prepartum and postpartum periods in multiparous

FIG 1 Aggregate microbiome composition at the phylum level for 16S rRNA sequences according to period relative to calving (prepartum and postpartum) and
parity (multiparous and primiparous) for each cow evaluated in the study. The y axis represents the relative abundance of OTUs for all samples evaluated within
the specific period relative to calving and parity.

FIG 2 Bar graphs illustrating the microbial taxon prevalence for 18S rRNA gene sequences. The mean microbial prevalence according to period relative to calving
(prepartum and postpartum) and parity (multiparous and primiparous) is represented by x axis values. Error bars represent standard errors.
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cows for both the lower milk production quartile (1) and the
higher milk production quartile (4).

Shannon1 diversity index means for pre- and postpartum sam-
ples for multiparous and primiparous cows stratified by milk pro-

duction quartiles are illustrated in Fig. 5c and d. The Shannon
index was higher for prepartum cows independent of milk quar-
tile or parity (Fig. 5c and d).

The Firmicutes/Bacteroidetes ratio for cows within milk quar-
tile 2 was significantly higher in primiparous postpartum cows
than in multiparous prepartum cows (Fig. 6). Likewise, the Firmi-
cutes/Bacteroidetes ratio for cows within milk quartile 4 was signif-
icantly higher for primiparous postpartum cows than for multip-
arous prepartum, multiparous postpartum, and primiparous
prepartum cows (Fig. 6). The Firmicutes/Bacteroidetes ratio was
not correlated with milk fat percentage (Pearson r � �0.03; P �
0.38) or milk protein percentage (Pearson r � �0.83; P � 0.40).

Metagenomically based production traits. Bacterial taxa as-
sociated with either increased or reduced average milk production
for the first 150 days postpartum were obtained from screening
analyses performed according to the period relative to calving and
parity. Those bacterial taxa were used in a multivariable model to
evaluate correlations between the prevalence of these bacterial
taxa and weekly average milk yield for the first 12 weeks postpar-
tum. Primiparous prepartum microbiome correlation patterns
varying from �0.60 (negative correlation with milk production)
to 0.50 (positive correlation with milk production) are illustrated
in Fig. 7a. The bacterial taxon Micrococcaceae was consistently the
most positively correlated with weekly milk production through-
out the first 12 weeks postpartum, whereas Ureibacillus was the
most negatively correlated throughout the same period (Fig. 7a).
A similar pattern was observed for the primiparous postpartum
microbiome, with the correlation varying from �0.60 to 0.60 and
with Deltaproteobacteria being the most negatively correlated with
weekly average milk production and Erysipelotrichaceae the most
positively correlated (Fig. 7b). Likewise, bacterial taxa in samples
from multiparous prepartum cows showed correlations with

FIG 3 Discriminant analysis of rumen microbiome samples. Different mean
relative abundances in samples were used as covariates and times relative to
calving and parity were used as categorical variables. Differences in the ruminal
microbial profiles of primiparous (prepartum, red dots; postpartum, green
dots) and multiparous (prepartum, blue dots; postpartum, orange dots) are
illustrated by canonical 1, 2, and 3.

FIG 4 Canonical scores 1, 2, and 3 for bacterial taxa that were found to be significant for the discriminant analysis displayed in Fig. 3.
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weekly milk production throughout the first 12 weeks postpartum
that ranged from �0.60 to 0.40, with Faecalibacterium and Virg-
ibacillus being the most negatively and most positively associated,
respectively (Fig. 8a). Lastly, the multiparous postpartum micro-
biome correlations also ranged from �0.60 to 0.40, with Prevotel-
laceae 2 being the most positively correlated with weekly milk
production throughout the first 12 weeks postpartum and R4-41B
the most negatively correlated (Fig. 8b).

Additionally, a multivariable regression model was built that

used bacterial taxa significantly associated with average milk pro-
duction in the first 150 days postpartum to predict weekly average
milk production compared to actual milk production. The micro-
biome-predicted milk production according to period relative to
calving and parity was significantly correlated with actual weekly
averages of milk production, as illustrated in Fig. 9a to d. Similar
models were built for milk fat percentage and milk protein per-
centage and added to our supplemental data (see Fig. S4 and S5 in
the supplemental material).

A final multivariable model was built to evaluate correlations
between the prepartum and postpartum core microbiomes for the
most prevalent bacteria, and this revealed strong correlations be-
tween the predominant core bacterial genera before and after par-
turition (see Fig. S6 in the supplemental material).

DISCUSSION

We showed here that differences exist between the prepartum and
postpartum rumen microbiomes in primiparous and multiparous
Holstein cows and that these differences can be used to predict
certain production traits. Rumen microbes have an essential role
in the deconstruction of plant lignocellulosic material (4) by en-
abling cows to harness the solar energy stored in plant fibers via
their conversion into milk and meat, both of which are important
sources of high-quality protein and energy for human consump-
tion. The transition from a prepartum high-fiber, low-energy diet
to a postpartum low-fiber, high-energy diet represents the most
common feeding scenario on dairy farms with high-producing
dairy cows, and understanding its effects on the rumen fluid mi-
crobiome and potential relationships with production is of great
interest.

The use of the MiSeq Illumina sequencing platform generated
a great number of sequences per read (108,102), exceeding the

FIG 5 Bar graphs illustrating the mean Chao1 (a and b) and Shannon (c and d) indexes for different periods relative to calving and milk quartiles for primiparous
cows and multiparous cows. Error bars represent standard errors. *, P � 0.01.

FIG 6 Bar graph illustrating the Firmicutes/Bacteroidetes ratios for periods
relative to calving, parity, and milk quartiles. Error bars represent standard
errors. *, P � 0.01.
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80,000 sequences per sample estimated to be required for full cov-
erage of all OTUs in rumen samples across different diets (9).
Indeed, 88.3% of all samples evaluated in the present study were
above the threshold of 80,000 sequences per read, representing
increased coverage and depth compared to those in previous stud-
ies that used 454 Roche pyrosequencing (16,000 to 36,000 se-
quences per sample) (9).

Prepartum and postpartum rumen samples were readily dis-
tinguished by discriminant analysis based on bacterial profiles
(Fig. 3). These results are comparable to recent findings describing
rapid alterations of the gut microbiome in humans (22) and cattle
(6) in a diet-dependent manner. Many well-known cellulolytic,
amylolytic, and acidophilic bacteria (Fibrobacter, Ruminobacter,

Selenomonas, Butyrivibrio, and Succinivibrio) were significant in
discriminating the prepartum from the postpartum microbiome.
Other significant bacteria distinguishing these two microbiomes
were uncultured/unidentified rumen bacterial clones YRC22 and
RFP12 and, previously unreported in rumen, bacteria such as Soli-
bacillus and Sporanaerobacter, all with completely unknown and
unexplored functions in rumen physiology. Bacteria from the
family Christensenellaceae have previously been reported in hu-
man feces; these are strictly anaerobic, nonmotile, non-spore-
forming, Gram-negative species, which produce acetic acid and a
small amount of butyric acid as fermentation end products (23).
Considering the high significance that Christensenellaceae had in
our discriminant analysis model, it is likely that these bacteria play

FIG 7 Heat maps illustrating correlations between bacterial taxa significantly associated with milk production and weekly average of milk production. The color
and intensity of each square represent the value of the correlation between bacteria generally significantly associated with milk production and weekly average of
milk production. (a) Correlations for the primiparous prepartum cow microbiomes. (b) Correlations for the primiparous postpartum cow microbiomes. The
letters before the bacterial names identify the lowest level of classification (k, kingdom; p, phylum; c, class; o, order; f, family; g, genus).

FIG 8 Heat maps illustrating correlations between bacterial taxa significantly associated with milk production and weekly average of milk production. The color
and intensity of each square represent the value of the correlation between bacteria generally significantly associated with milk production and weekly average of
milk production. (a) Correlations for the multiparous prepartum cow microbiomes. (b) Correlations for the multiparous postpartum cows microbiomes. The
letters before the bacterial names identify the lowest level of classification (k, kingdom; p, phylum; c, class; o, order; f, family; g, genus).
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an important role in rumen dynamics, and their further investi-
gation is warranted.

Discriminant analysis models also revealed that rumen sam-
ples derived from primiparous cows were readily distinguished
from multiparous cows based on their microbiomes (Fig. 3). A
clear age effect on the rumen microbiome was described by Jami et
al. (10), in which diversity and within-group similarity increased
with age. Similar results of increased microbial diversity and con-
vergence toward a mature bacterial composition with age were
also reported in a study of the gut microbiomes of human popu-
lations from different geographical locations across different age
groups (24). Heifers at 1 week before the expected calving date are
considered adult animals. However, they are fed a high-fiber, low-
energy diet that differs dramatically from the low-fiber, high-en-
ergy diet fed to multiparous cows during the previous lactation
period. The group of bacteria that largely distinguishes primipa-
rous from multiparous cows is the amylolytic/acidophilic bacteria
(Butyrivibrio, Succinivibrio, Selenomonas, and Ruminobacter).
Nonetheless, some unusual bacterial types also featured in this
discrimination, such as the candidate phylum SR1, which includes
bacteria found in marine and terrestrial high-temperature envi-

ronments (25), in mammalian digestive tracts (26), or in the hu-
man oral cavity (27). Until now, these bacteria were not known to
be present in the rumen of dairy cows.

The notion of diet influencing microbial diversity in cattle is a
long-standing one (1), supported more recently by the use of mo-
lecular techniques to investigate rumen dynamics and function
and the effects of diet (6, 28, 29). As discussed above, use of the
MiSeq Illumina platform can propel studies of rumen microbiol-
ogy even further. Although sequencing of the 18S rRNA gene is
limited for recognition of species, it allows us to identify rumen
fungal and protozoan species that have also been shown to play
important roles in rumen physiology (30, 31). We showed here
that over 90% of the sequences belonged to the protozoan class
Litostomatea, ciliated protists that until recently were divided into
two groups, the Haptoria and the Trichostomatia (32). The Tri-
chostomatia subclass contains one of most studied ruminal pro-
tozoan taxa, the Entodinium spp., which are able to engulf starch
and attach to amylolytic bacteria (33); these protozoans have
greater relative abundance in cows fed a high-energy diet than in
cows fed a low-energy diet (34). These results are in line with our
findings of increased relative abundance of Litostomatea in the

FIG 9 Linear regression illustration of microbiome-predicted milk production and actual milk production. The x axis represents the microbiome-predicted milk
production according to bacterial taxa that significantly affected milk production for weekly values, and the y axis represents the actual average of weekly milk
production. QMP, quartiles of milk production.
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postpartum period, corresponding to a low-fiber, high-energy
diet. Also in line with our findings was the consistently increased
abundance of fungal types in the prepartum period compared to
the postpartum period. Generally, fungi present in the rumen can
penetrate both the cuticle and the cell wall of lignified material,
thus playing an essential role in fiber degradation (35).

The concept of a “core” microbiome developed for the human
gut implies that there is a population of microbes that remains
stable independent of host genetics and diet; however, deviation
from this core population might indicate the occurrence of met-
abolic unbalance and disease (36–38). The same concept has been
recently applied to the bovine rumen (10). Jami and Mizrahi (9)
identified 32 genera across 16 cows fed an ad libitum diet for many
months. Li et al. (39) identified 45 genera that were common to 4
calves being fed milk replacer. However, a study by Petri et al. (6)
found that only the genus Prevotella was ubiquitous in 8 heifers fed
either a forage diet, a forage-concentrate diet, a concentrate diet,
or an acidosis-inducing diet. In our much larger sample popula-
tion and across two different diets, the core rumen microbiome in
the present study is defined by 64 bacterial taxa, suggesting that
the description of the core rumen microbiome is perhaps influ-
enced by sequencing methodology coverage and depth. Evidence
in support of this possibility comes from the work of Petri et al.
(6), who reported relative abundances of 32.3% and 43.2% for the
two major phyla Bacteroidetes and Firmicutes, respectively, per-
centages comparable to ours despite differences in animal cate-
gory, diets, and methodology between the two studies. Many of
the core rumen microbiome bacterial types identified in the
present study belong to these two phyla and could potentially
be present in other samples studied by Petri et al. (6). Use of the
MiSeq platform allows greater throughput per run and smaller
errors rates than those with 454 pyrosequencing, which ulti-
mately leads to greater depth and breadth of coverage and po-
tential identification of higher numbers of microbial genera
(40, 41). Petri et al. (6) reported an average of 3,260 to 6,832
sequences per sample depending upon diet/treatment, and
they mentioned that a plateau was not reached for any of the
dietary treatments, indicating that additional sequencing
would be necessary to fully describe rumen bacterial commu-
nities under those conditions. An important recent finding was
that cooccurrence analysis of microbial taxa from all three do-
mains of life suggested strong within- and between-domain
correlations between different groups of microorganisms
within the rumen. Communities analyzed with different prim-
ers always grouped by sample origin rather than by the primers
used. Primer choice had a greater impact on apparent archaeal
community structure than on bacterial community structure,
and biases for certain methanogen groups were detected (42).

Recently, Jami et al. (11) reported that milk yield and compo-
sition were highly correlated with the abundance of various bac-
terial members of the rumen microbiota. A strong correlation
between the Firmicutes-to-Bacteroidetes ratio and milk fat yield
was shown. Considering the essential role of rumen bacteria in the
breakdown of plant polysaccharides (43) and that volatile fatty
acids produced by this breakdown are a major source of energy
and have a direct effect on milk production (44, 45), it is plausible
that rumen microbiome profiles in the prepartum and early post-
partum periods help determine production traits. Indeed, our
screening analysis revealed that several bacterial taxa in prepartum
and postpartum samples were associated with increased or re-

duced average milk production, milk fat percentage, and milk
protein percentage for the first 150 days postpartum. We built
many models using bacterial taxa significantly associated with
production traits in an attempt to evaluate correlations between
the rumen microbiome and weekly milk production or monthly
milk fat and protein percentages. Bacteria significantly correlated
with milk production were used to generate microbiome predic-
tions for milk production, milk fat percentage, and milk protein
percentage. Although we were unable to replicate the strong cor-
relation between the Firmicutes-to-Bacteroidetes ratio and milk fat
percentage reported by Jami et al. (11), we did identify bacterial
groups (stratified by parity and period relative to calving) that are
highly correlated with production traits. In general, moderate to
high correlations (r2 � 0.42 to 0.82) of microbiome predictions
for production traits were identified by our models. Some of the
bacteria with the highest positive correlation with milk produc-
tion are well-known rumen bacteria such as Butyrivibrio and Pre-
votellaceae 2, and their role in rumen function is already well de-
scribed. Butyrivibrio spp. undertake biohydrogenation of fatty
acids (46), which generates conjugated linoleic acid as an interme-
diate (47). Prevotellaceae 2 is the most prevalent bacterial family in
the rumen of adult cattle, and some of the species within this
family, such as Prevotella bryantii, when used as probiotics de-
creased lactate production and increased milk fat percentages dur-
ing the weeks following inoculation (48). Conversely, other bac-
teria with high positive correlations with milk production, such as
Micrococcus, Enterobacteriaceae, Erysipelotrichaceae, Virgibacillus,
Anaeroplasmatales 2, Thermoplasmata, and Rhodobacteraceae, are
very poorly characterized or unreported in rumen. Among all pro-
duction traits, milk production had the highest correlations with
bacterial types and could be more accurately predicted by micro-
biome profiles within the context of the current study. Although it
remains unclear if differences in the microbiome during the pre-
partum and postpartum periods would translate to a specific mi-
crobiome associated with milk production later in lactation, the
predictions identified by our models within the constrains of this
study suggest that there is a potential relationship between the
rumen microbiome and production traits that might make the
rumen microbiome an important predictor of productivity in
dairy cows.

Conclusions. As expected, moving from a high-fiber, low-en-
ergy diet to a low-fiber, high-energy diet led to a shift of the rumen
microbiome. Differences between the prepartum and postpartum
rumen microbiomes included different relative abundance of
classic cellulolytic and amylolytic bacteria coupled with variations
in several other bacterial taxa that were previously uncultured,
unreported or with unknown function in the rumen. Moreover,
the prepartum microbiome was characterized by an increased
prevalence of fungi, which then shifted at the immediate postpar-
tum period to a pattern of increased prevalence of protozoa asso-
ciated with starch digestion. Milk production was predicted with
relatively high accuracy by the rumen microbiome; nonetheless, it
remains to be determined how microbiome profiles are associated
with or indeed shape production traits. Future research will need
to investigate the validity of the microbiome predictions of this
study across different environments in an integrative manner that
incorporates host genetics and metatranscriptomic information
on the rumen microbiome.
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