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a b s t r a c t

Actin remodeling is a dynamic process associated with cell shape modification occurring during cell cycle and
proliferation. Oxidative stress plays a role in actin reorganization via various systems including p38MAPK.
Beside, the mitogenic response evoked by hydrogen peroxide (H2O2) in fibroblasts and smooth muscle cells
(SMC) involves the metalloproteinase (MMPs)/sphingomyelinase 2 (nSMase2) signaling pathway. The aim of
this work was to investigate whether this system plays a role in actin remodeling induced by H2O2.

Low H2O2 dose (5 mM) rapidly triggered a signaling cascade leading to nSMase2 activation, src and an-
nexin 2 (AnxA2) phosphorylation, and actin remodeling, in fibroblasts and SMC. These events were blocked
by pharmacological inhibitors of MMPs (Ro28-2653) and p38MAPK (SB203580), and were lacking in
MMP2�/� and in nSMase2-mutant (fro) fibroblasts. Likewise, H2O2 was unable to induce actin remodeling in
fro and MMP2�/�

fibroblasts or in cells pretreated with p38MAPK, or MMP inhibitors. Finally we show that
nSMase2 activation by H2O2, depends on MMP2 and p38MAPK, and is required for the src-dependent
phosphorylation of AnxA2, and actin remodeling.

Taken together, these findings indicate for the first time that AnxA2 phosphorylation and actin re-
modeling evoked by oxidative stress depend on the sphingolipid pathway, via MMP2 and p38MAPK.
& 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Reactive oxygen species (ROS) regulate a huge number of cel-
lular responses in mammalian cells, including migration, pro-
liferation, contraction, growth arrest or apoptosis [1,2]. ROS in-
clude hydrogen peroxide (H2O2), which is a potent signaling agent
[3], that exhibits proapoptotic and cytotoxic properties at high
concentration [4], whereas low doses stimulate cell migration and
proliferation of various cell types, such as fibroblasts or smooth
muscle cells (SMC) [5]. H2O2 triggers the activation of mitogenic
signaling pathways including the PDGFR-β receptor, PI–3K/Akt,
src, or ERK1/2 [6]. We recently reported that low H2O2 con-
centration stimulate the proliferation of SMC and fibroblasts, via
an activation of the sphingolipid (SL) pathway, represented by the
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neutral type 2 sphingomyelinase (nSMase2, the first step of the SL
pathway), and by sphingosine kinase-1 (SK1) which generates the
mitogenic and survival SL mediator sphingosine 1-phosphate
(S1P). The signaling mechanism evoked by H2O2 involves a sig-
naling cascade implicating src and the trans-activation of the
PDGFR-β receptor [5]. In contrast, high H2O2 concentration in-
hibits SK1 (but not nSMase2) [5] and induces cell death [7].

Cell proliferation and migration involve early signaling events
that affect cell movement, and require actin modification and
polymerization. These events are coordinated by actin-binding
proteins, and are regulated by signaling mechanisms implicating the
PDGF-β receptor, PI3K, Ca2þ small G proteins, src and MAPK [8,9].
Annexin-II (AnxA2), a 36 kDa Ca2þ-dependent phospholipid-bind-
ing protein, is a major regulator of actin remodeling, after under-
going phosphorylation by src on Tyr23 [10,11]. Membrane-bound
AnxA2 is present at the inner surface of the plasma membrane, and
acts as a platform regulating actin assembly and maintaining the
dynamic of plasma membrane-associated actin cytoskeleton [12].
The expression of AnxA2 is associated with cell migration and pro-
liferation, particularly in cancer, since poorly invasive tumor cells,
such as MCF-7, express low level of AnxA2, whereas AnxA2 is highly
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. F-actin modifications evoked by H2O2 inwtmFbl depend on ERK1/2. (A, B) Representative F-actin pictures assessed by confocal microscopy of wtmFbl unstimulated (A), or
stimulated by H2O2 (5 mM) for 15 min (B) and labeled with Alexa 488-phalloidin. (C) Intensity profiles of phalloidin staining for each cell were evaluated using ImageJ (expressed
as normalized intensity) (D) time-course of ERK1/2 phosphorylation induced by H2O2 in fibroblasts and SMC stimulated by H2O2 (5 mM). (E) Thymidine uptake was quantified in
SMC after treatment with H2O2 w/wo the ERK1/2 inhibitor PD98059 (10 mM). (F–H) Representative F-actin confocal microscopy pictures and intensity quantification of phalloidin
staining, evaluated as in 1A, w/wo PD98059 (10 mM). Data are mean7SEM from at least three independent experiments and are expressed relative to basal. n, Po0.05 vs. basal.
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expressed in very invasive cells. Moreover, increasing the expression
of AnxA2 in MCF-7 stimulates their proliferation [13].

Cytoskeleton remodeling is one of the earliest targets of oxidative
stress, via signaling implicating p38MAPK, as reported in endothelial
cells [14] and in astrocytes [15], or NADPH oxidase and the translo-
cation of phospho-PKC-δ, in SMC, as recently shown by Lv and coll
[16]. A role for sphingolipid mediators, ceramide and sphingosine-1-
phosphate (S1P) has been reported in actin remodeling [17], but the
mechanisms are not yet identified. Since nSMase2 is a known target
of reactive oxygen species (ROS) and since its activation involves
p38MAPK [18], we aimed at investigating the role of nSMase2 in actin
remodeling evoked by H2O2. We report that H2O2 activates nSMase2
in an MMP2 and p38MAPK-dependent manner, which results in the
phosphorylation of AnxA2 by src, and subsequently ERK1/2 phos-
phorylation, actin remodeling and cell proliferation.
Materials and methods

Chemicals

[3H]Thymidine (5 Ci/mmol) was from PerkinElmer (Wellesley,
US). Rabbit anti-AnxA2 and pTyr23 AnxA2 were from Santa Cruz
Biotechnologies (Santa Cruz, CA) and rabbit anti-(activated-)
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Fig. 2. AnxA2 phosphorylation evoked by H2O2 is involved in ERK1/2 activation and actin remodeling. (A) Western-blot experiments showing the phosphorylation of AnxA2
(on Tyr23) induced by H2O2 (5 mM) in SMC. (B, C) AnxA2 silencing by siRNA in wt mFbl, suppressed the phosphorylation of ERK1/2 (B), and thymidine uptake (C) evoked by
H2O2. (D, E) Confocal microscopy pictures of F-actin labeled with Alexa 488-phalloidin in wt mFbl siRNA silenced for AnxA2 (D), and intensity quantification of phalloidin
staining using ImageJ experiments were performed at least 3 times: npo0.05 vs. basal.
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phospho-ERK1/2, phospho-src, phospho-p38MAPKwere from cell
Signaling. Ro28-2653 was given by H.-W. Krell (Roche Diagnostics,
Penzberg, Germany). MMP2 substrate MCA-Pro-Leu-Ala-Nva-
Dpa-ala-Arg-NH2 was from VWR. Other reagents were obtained
from Sigma or Invitrogen (France).

Cell culture

Mouse fibroblasts were isolated from nSMase2-deficient
homozygous fro/fro mice [19] (fro/fro mFbl, smpd3fro/fro genotype)
and from wild-type mice of the same genetic 129/SV strain back-
ground. MMP2�/� and wt mefs were from RIKEN BioResource
Center (Ibaraki, Japan) [20]. Cells were grown in DMEM supple-
mented with 10% FCS, unless otherwise indicated. CRL 1999 human
aortic SMC were from ATCC (Mölsheim, France), and were grown in
RPMI-1640 supplemented with 10% fetal calf serum (FCS). Srckþ

and Srckd mefs (a generous gift from Dr. S.J. Parsons, University of
Virginia, Charlottesville, VA), derived from C3H10T1/2 transfected
with a wild-type form of c-Src (Srckþ) or with a mutated domi-
nant-negative form of pp60c-Src deficient in kinase activity (Srckd

cells, clone 430c-Src) [21]. The cells were grown in DMEM medium
supplemented with 10% FCS and G418 (0.4 mg/ml). 24 h before the
experiment, the mediumwas removed and replaced by serum-free
RPMI. SiRNA directed against AnxA2 (SmartPool L061993) was
from Dharmacon. The protocol used for transfecting fibroblasts
with siRNA using oligofectamin reagent was similar to that pre-
viously reported in [5]. DNA synthesis was evaluated by
[3H]thymidine incorporation as previously reported [22].

Atto-488 phalloidin labeling

Fibroblasts were seeded on glass coverslip. After stimulation by
H2O2, cells were washed twice with pre-warmed PBS, pH 7.4, and
fixed in 4% methanol free-formaldehyde solution in PBS for 10 min
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at room temperature. After washing twice with PBS, cells were
incubated 5 min in PBS containing 0.1% Triton X-100, and stained
with fluorescent atto-488 phalloidin (30 min at room tempera-
ture). Confocal analyses were done utilizing a Zeiss LSM 510 con-
focal microscope (Le Pecq, France) (fluorescein filter excitation
488 nm, emission 505 nm). The laser intensity was the same for all
the picture capture. Fluorescence quantification was done with
ImageJ software after subtraction of the background. Several cells
were quantified for one condition experiment and each experi-
mental condition was reproduced at least three times. Values from
all independent experiments were averaged for a single data point.
Results are presented as the normalization value of the mean



Fig. 4. Role of nSMase in AnxA2 phosphorylation and ERK1/2 activation induced by H2O2. (A) Time-course of nSMase activation by H2O2 (5 mM), in wt (black bars) and fro/fro
mFbl (white bars). (B, C) AnxA2 phosphorylation induced by H2O2 in wt (B) and in fro/fro mFbl (C). (D) Lack of ERK1/2 phosphorylation in fro/fro mFbl upon H2O2

stimulation. (E–K) Representative confocal microscopy pictures of F-actin of fro/fro (E–G) or wt mFbl (H, I) or stimulated or not (E, H) with H2O2 (F, I) or with C2 ceramide
(5 mM, G, J) for 15 min (K) intensity quantification of phalloidin staining (expressed as normalized intensity) was evaluated using ImageJ and is indicated in the corresponding
picture. Data are mean7SEM from at least three independent experiments and are expressed relative to basal. *, Po0.05 vs. basal.

C. Cinq-Frais et al. / Redox Biology 4 (2015) 169–179 173
value7S.E.M. of fluorescence emitted by cells treated with
drugs7H2O2, vs. controls.

nSMase determination

Cells were homogenized by sonication in 0.1% Triton X-100,
10 mM MgCl2, 5 mM dithiothreitol, 0.1 mM Na3VO4, 10 mM gly-
cerophosphate, 750 mM ATP, 1 mM PMSF, 2 mM EDTA, 10 mM
leupeptin, and 10 mM pepstatin. The reaction mixture contained
100 ml of substrate [choline-methyl-14C]sphingomyelin (120,000
dpm/assay) in 0.1% Triton X-100, 20 mM HEPES buffer, pH 7.4,
containing 1 mM MgCl2, and 100 ml of cell homogenate. After 2 h
incubation at 37 °C, the liberated [methyl-14C]choline was parti-
tioned under the previously used conditions [22] and quantified
by liquid scintillation counting.

Metalloproteinase activity

Zymography experiments were done on a 10% acrylamide gel
containing 0.1% gelatin (1 mg/ml). Cell culture supernatants (35 ml)
were run at 20 mA, then incubated for 15 min in triton 2.5%, triton
X100, and overnight in the reaction buffer (Tris–HCl 50 mM, NaCl
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200 mM, CaCl2 5 mM, Brij-35 0.02% (m/v), pH 7.6). The gels were
stained with Coomassie Blue R-250 for 30 min and the protease
activity was identified as clear bands against a dark blue back-
ground after decoloration (acetic acid/methanol/water; 1/4/5).

MMP2 activity was determined on concentrated SMC media or
cell pellet with the fluorogenic substrate MCA-Pro-Leu-Ala-
Nva-Dpa-ala-Arg-NH2 (Calbiochem-WWR) as described [20]. The
experiment was done in the presence and absence of EDTA (5 mM)
and two controls were performed (without cell and without sub-
strate). After 3 h incubation (37 °C), 1 ml Tris–HCl buffer, pH 7, was
added, and the fluorescence was read (excitation and emission
wavelengths, 325–395).
Western blots

Western blots were done as previously reported [22], and
quantified using ImageJ. Protein concentration was determined
using the Bradford reagent (Biorad).

Statistical analysis

Data are presented as mean7standard deviation. Statistical
comparison of the data was performed using t-test to compare two
groups, the one-way ANOVA (with Bonferroni correction) to
compare more than 2 groups when only one factor was modified
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during the experiment and the two-way ANOVA test when two
factors were changed (stimulation with or without H2O2 in the
presence or absence of inhibitor) in the study (Prism 6 Software
GraphPad Software, Inc., USA). Significance was set at Po0.05.
Results

Actin reorganization evoked by H2O2, requires ERK1/2 activation and
AnxA2 phosphorylation

Wild type mouse fibroblasts (wt mFbl) incubated for 15 min,
with H2O2 (5 mM) exhibited actin bundles corresponding to a re-
organization of the actin network, when compared to actin fibers
in quiescent cells (Fig. 1A–C). It is to note that the actin network
remodeling is a temporary phenomenon which returned to the
basal state after 2 h of treatment with low but not with high
concentration of H2O2 (not shown). H2O2 stimulated ERK1/2
phosphorylation (Fig. 1D) that was required for actin remodeling
and, as expected, for cell proliferation, since the MEK inhibitor
PD98059, blocked thymidine uptake (Fig. 1E) and actin remodeling
induced by H2O2 (Fig. 1F–H).

Tyrosine phosphorylation (Tyr23) of AnxA2 is associated with
cell proliferation and ERK1/2 activation [23]. H2O2 treatment sti-
mulated the phosphorylation of AnxA2 on Tyr23 in SMC and in wt
mFbl (Fig. 2A, B). AnxA2 was required for ERK1/2 activation and
cell proliferation induced by H2O2, as supported by the inhibitory
effect of AnxA2 siRNA on ERK1/2 phosphorylation (Fig. 2B) and
thymidine uptake (Fig. 2C). Since Tyr23-phosphorylated AnxA2 is
involved in the dynamic restructuring of the actin cytoskeleton
[10,11], we investigated the effect of AnxA2 silencing on actin re-
modeling. In fibroblasts siRNA-silenced for AnxA2, the cells ex-
hibited a ‘splinter-like’ bundle aspect which was not modified
upon H2O2 stimulation (Fig. 2D, E).

As H2O2 triggers the phosphorylation and activation of src in
fibroblasts [5] and SMC (Fig. 3A) we checked whether src is in-
volved in AnxA2 phosphorylation. The src inhibitor PP2 inhibited
AnxA2 phosphorylation induced by H2O2 (Fig. 3B). Likewise, H2O2

was unable to trigger AnxA2 phosphorylation in Srckd fibroblasts
(Fig. 3C), indicating that src is necessary for AnxA2 phosphoryla-
tion by H2O2. In agreement with these findings, ERK1/2 phos-
phorylation (Fig. 3D) and actin remodeling induced by H2O2, were
inhibited by PP2 (Fig. 3E, F).
AnxA2 phosphorylation depends on nSMase2 activation

We recently reported that src activation by H2O2 in SMC and
fibroblasts, depends on the activation of nSMase2 [5], which
suggests that nSMase2 may be involved in the phosphorylation of
AnxA2 by src. Fibroblasts isolated from fragilitas ossium (fro) mice
[19], are mutant for nSMase2, which cannot be activated by H2O2

as reported [5] and (Fig. 4A). No AnxA2 phosphorylation was ob-
served in these cells upon H2O2 stimulation by comparison to wt
mFbl (Fig. 4B, C).

We previously demonstrated that fro/fro mFbl do not pro-
liferate upon H2O2 stimulation [5]. As expected, neither ERK1/2
phosphorylation (Fig. 4D), nor actin remodeling were observed in
nSMase2-mutant (fro) cells (Fig. 4E–K). The actin network in fro/
fro mFbl was different from that observed in wt mFbl (short fibers
in fro/fro mFbl vs. long fiber running across the cells in control
cells; Fig. 4E, H), no effect of H2O2 on the network observed in fro/
fro mFbl (Fig. 4F, I). However, when fro/fro mFbl were treated with
5 mM exogenous C2 ceramide, the organization of stress actin fi-
bers was comparable to that observed in wt mFbl treated with
H2O2 or (Fig. 4G, J). Altogether, these data suggest that nSMase2
and ceramide contribute to actin remodeling evoked by H2O2.

MMP2 and p38MAPK are required for nSMase2 activation by H2O2

We previously reported that the activation of nSMase2 by
stress-inducing agents such as TNF-α or oxidized LDL, requires
MMP2 [20,22]. Since MMP2 is activated by H2O2 (Fig. 5), we
checked whether it is implicated in actin remodeling via nSMase2
activation.

H2O2 was unable to trigger nSMase2 activation in MMP2� /�

fibroblasts (Fig. 5), while Ro-28 2653, an MMP inhibitor of large
specificity, inhibited nSMase2 activation, in agreement with our
previous reports [22] and (Fig. 5). In contrast, MMP2 was activated
by H2O2 in fro/fro fibroblasts (Fig. 5), indicating that nSMase2
activation is downstream MMP2.

Among the mechanisms possibly involved in the activation of
nSMase2 by MMP2, we investigated the role of p38MAPK, which is
early activated in response to agents such as TNF-α [18] or en-
dothelin-1 [24]. Results presented in Fig. 6 indicate that p38MAPK
activation by H2O2, needs MMP2, since no phosphorylation of
p38MAPK was observed in MMP2� /�

fibroblasts (A), whereas in
nSMase2 mutant fro/fro mFbl, p38MAPK was phosphorylated (B).
In addition, the p38MAPK pharmacological inhibitor SB203580,
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blocked the activation of nSMase in wt fibroblasts (Fig. 6C),
thereby indicating that p38MAPK activation by H2O2 did not im-
plicate the sphingolipid pathway, but was necessary to the acti-
vation of nSMase.

MMP2 and p38MAPK are required for src, AnxA2 phosphorylation and
actin remodeling.

We tested the effect of MMP2 and p38MAPK inhibitors on src
activation, that is necessary for AnxA2 phosphorylation (Fig. 7).
H2O2 did not stimulate the phosphorylation of src in MMP2� /�

fibroblasts and in fro/fro mFbl (Fig. 7A, B) and in cells treated with
the p38MAPK inhibitor (SB203580) (C). Likewise, AnxA2 phos-
phorylation was absent in cells treated with SB203580 in
MMP2�/�

fibroblasts upon stimulation by H2O2 (Fig. 7E, F), as well
as actin remodeling, ERK1/2 phosphorylation and cell proliferation
(Fig. 8).

Altogether these results emphasize the role of nSMase2 in
AnxA2 phosphorylation (via src) and actin remodeling evoked
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by H2O2, via a signaling mechanisms implicating MMP2 and
p38MAPK.
Discussion

Several mechanisms have been proposed to explain the effect
of ROS on actin cytoskeleton including ATP depletion, oxidative
modification or activation of Ca2þ dependent proteins and protein
kinase pathways [25]. In this article we show that nSMase2 is
involved in the phosphorylation by src of AnxA2 and actin re-
modeling evoked by H2O2, via a signaling mechanism implicating
an upstream activation of MMP2 and p38MAPK. Note that the
remodeling of actin is reversible in the presence of low H2O2
concentration, while it leads to a full break of the actin network
when higher toxic H2O2 dose is used ([5] and unpublished
observations).

AnxA2 belongs to a large family of highly conserved proteins
characterized by their ability to bind and order membrane phos-
pholipids, particularly membranes enriched in cholesterol. It can
be phosphorylated by growth factors receptors [26] PKCs [27], and
src [11]. Moreover AnxA2 is involved in membrane trafficking and
cell polarity [28]. The phosphorylation of AnxA2 by src on Tyr23,
mediates several cellular events such as cell scattering and
branching morphogenesis [10], Rho-mediated actin rearrange-
ment and cell adhesion and cancer cell proliferation [10,23]. Our
data indicate that the phosphorylation of AnxA2 depends on
src that is activated subsequently to nSMase2 activation. We
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previously reported the role of nSMase2 in src activation by H2O2,

the trans-activation of the PDGFβ receptor and subsequently of
sphingosine kinase-1 (SK1) [5,29]. Other reports indicate that src
may upregulate nSMase2 activity and ceramide generation, via
p38 MAPK in HAE cells exposed to oxidative stress [30]. AnxA2
phosphorylation is linked to actin bundling in fibroblasts and is
necessary to transduce ERK1/2 activation and the mitogenic sig-
naling of H2O2, since fibroblasts siRNA-silenced for AnxA2, did not
phosphorylate ERK1/2 upon H2O2 treatment, nor proliferate, and
exhibited a disorganized actin network.

Our data confirm that nSMase2 activation by H2O2 requires an
activation of MMP2 as previously reported for various stress-in-
ducing agents [20,22,29]. The role of MMP2 in cell proliferation
and migration could involve the proteolytic degradation of base-
ment membranes and extracellular matrix components [32]. Pre-
vious studies reported that MMP2 can be activated and secreted by
actin remodeling or upon treatment by cytoskeletal disrupting
agents [33,34]. Here we show that MMP2 is necessary for the ac-
tivation of nSMase2 and actin remodeling evoked by H2O2 via
p38MAPK, which is activated upstream nSMase2, in agreement
with previous reports [35,36]. Of note, the role of p38MAPK in
actin remodeling, has been reported in astrocytes [15] and en-
dothelial cells [14].

Ceramide and S1P are known to rearrange cytoskeleton [17,31],
mainly through the regulation of Rho GTPases [37], or ezrin
phosphorylation, as reported for cisplatin on actin cytoskeleton,
which involves acidic SMase activation and ceramide generation
[38]. Interestingly close interactions exist between ezrin and
AnxA2, as AnxA2 could regulate the level of ezrin expression [39],
and the association of these two proteins could constitute an in-
terface between endosome, plasma membrane and cytoskeleton
[40]. AnxA2 contributes to the actin regulatory machinery that
regulates the endosomal trafficking and activation of Src [41] to
induce ERK1/2 activation [42].

Cellular regulation of actin polymerization and organization is a
highly complex process that involves a number of actin-binding
proteins, including severing, sequestering, cross-linking, and
membrane-anchoring proteins, all of which being under the reg-
ulation of various signal transduction pathways. The mechanisms
linking actin organization/disorganization and the mitogenic sig-
naling cascade are not well clarified. Yue's group proposed that the
inhibition of stress fiber actin formation may contribute to cell
proliferation [43], while Triesman and coll. proposed that actin
remodeling is involved in cell proliferation via the activation of the
serum response transcription factor [44]. In addition, actin reg-
ulation could participate to MT1-MMP or MMP2 secretion and
activation [33,34]. Our data show that MMP2 inhibition blocks
actin remodeling, suggesting a possible positive feedback loop
between these two events. Moreover, it is possible that src tar-
geted to raft domains could turn off an actin-assembly activity
mediated by AnxA2, which may contribute to modify actin dy-
namics, characteristic of proliferating cells [12]. This is in agree-
ment with reports showing that growth factors promote the re-
organization of actin filaments [45], which can be inhibited by
antioxidants and p38MAPK or ERK1/2 inhibitors [21].

In summary, our data support the conclusion that nSMase2
activation by H2O2 regulates actin remodeling and proliferation in
SMC and fibroblasts, by triggering src activation and the sub-
sequent phosphorylation of AnxA2, leading to ERK1/2 phosphor-
ylation. This pathway involves an early signaling mechanism im-
plicating MMP2 and p38MAPK, which are required for nSMase2
activation. The implication of phosphorylated AnxA2 as a signal
transducer in cell proliferation and actin remodeling remains to be
determined.
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