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Autophagy regulates the metabolism, survival, and function of numerous cell types, including those
comprising the cardiovascular system. In the vasculature, changes in autophagy have been documented
in atherosclerotic and restenotic lesions and in hypertensive vessels. The biology of vascular smooth
muscle cells appears particularly sensitive to changes in the autophagic program. Recent evidence in-
dicates that stimuli or stressors evoked during the course of vascular disease can regulate autophagic
activity, resulting in modulation of VSMC phenotype and viability. In particular, certain growth factors
and cytokines, oxygen tension, and pharmacological drugs have been shown to trigger autophagy in
smooth muscle cells. Importantly, each of these stimuli has a redox component, typically associated with
changes in the abundance of reactive oxygen, nitrogen, or lipid species. Collective findings support the
hypothesis that autophagy plays a critical role in vascular remodeling by regulating smooth muscle cell
phenotype transitions and by influencing the cellular response to stress. In this graphical review, we
summarize current knowledge on the role of autophagy in the biology of the smooth muscle cell in
(patho)physiology.
& 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

Vascular smooth muscle cells (VSMCs) comprise the medial
layer of blood vessels. By their contraction or relaxation, VSMCs
control vessel tone and blood flow, thereby playing a fundamental
role in blood pressure regulation and in nutrient and oxygen
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delivery [1]. VSMCs also demonstrate significant plasticity and are
capable of assuming synthetic, osteochondrogenic, and macro-
phage-like phenotypes, with such roles called upon during de-
velopment [2], angiogenesis [3], or disease [4]. In diseases such as
atherosclerosis, VSMCs can assume a foam cell phenotype, re-
dolent of the sub-intimal macrophage-derived foam cell. Lesional
VSMCs also commonly show increased proliferative, migratory,
and/or extracellular matrix-synthesizing capacities, indicative of
their conversion to the synthetic phenotype. This form of VSMC is
commonly associated with vascular injury and leads to a (re)ste-
nosis of the vessel lumen. In hypertensive vessels, VSMCs
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

www.sciencedirect.com/science/journal/22132317
www.elsevier.com/locate/redox
http://dx.doi.org/10.1016/j.redox.2014.12.007
http://dx.doi.org/10.1016/j.redox.2014.12.007
http://dx.doi.org/10.1016/j.redox.2014.12.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.redox.2014.12.007&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.redox.2014.12.007&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.redox.2014.12.007&domain=pdf
mailto:bradford.hill@louisville.edu
http://dx.doi.org/10.1016/j.redox.2014.12.007


Synthetic VSMC

Monocyte

Fibroblast

Endothelial cell

Contractile VSMC

Healthy

Foam cells

HypertensiveRestenotic

AtheroscleroticA B

C D

Fig. 1. Illustration of VSMCs in healthy and diseased arteries: (A) the mature, healthy mammalian artery is composed of three principal layers: the intima, which comprises
endothelial cells; the media, which is occupied primarily by differentiated VSMCs; and the adventitia, which is composed of fibroblasts and connective tissue. (B) The sub-
intimal and medial layers of the artery are heavily involved in the development of vascular diseases. In atherosclerosis, LDL and its oxidized forms accumulate in the sub-
intimal space, which recruits monocytes and provokes the proliferation and migration of VSMCs. Monocytes differentiate into macrophages which attempt to remove the
excess lipids, resulting in the formation of foam cells. The VSMCs also possess an ability to take up lipid and similarly develop into foam-like cells. In addition, synthetic
VSMCs migrate to the subintimal space, proliferate, and secrete extracellular matrix, which are thought to help stabilize the atherosclerotic lesion by forming a protective cap
around the plaque. Failure to clear excess lipid, debris, and lipid-laden cells, coupled with increased vascular inflammation, could lead to plaque rupture and thrombosis.
(C) Severe obstruction of blood flow may occur due to VSMC hyperproliferation after angioplasty or in other vascular injuries where significant tracts of endothelium are
removed. The etiology and progression of stenosis is due in part to the phenotypic transition of VSMCs to a synthetic phenotype, which renders VSMCs excessively
proliferative and migratory. (D) In hypertension, VSMCs commonly undergo hypertrophy, secrete extracellular matrix, and increase contractile tone. EI¼elastic intima.
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commonly hypertrophy and increase their contractile tone (Fig. 1).
The unique phenotypic flexibility of VSMCs requires central

integration of transcriptional, metabolic, and ultrastructural pro-
grams. Autophagy is a principal coordinator of cell homeostasis
that could integrate these programs and is finely tuned to respond
to stimuli to regulate cell function. Importantly, autophagy is af-
fected in numerous vascular disease states, including restenosis,
atherosclerosis, and hypertension [4]. The molecular activation of
autophagy is primed via phosphorylation of ULK1 (Atg1), which
then coordinates interactions of other critical proteins in the au-
tophagy cascade [5], leading to encapsulation of cellular
constituents in a double-membrane vesicle called the autopha-
gosome. The autophagosome then fuses with the lysosome, lead-
ing to degradation of the compartmentalized contents and release
of essential building blocks such as amino acids for reutilization
(Fig. 2). This form of autophagy is commonly activated as a survival
mechanism to degrade damaged cellular components and to
maintain sufficient nutrient and biosynthetic stores under condi-
tions of bioenergetic distress [6]. Autophagy is also important in
regulating the life-cycle of numerous cellular organelles, such as
mitochondria, endoplasmic reticulum, and peroxisomes, and it has
other specialized roles in the cell that utilize different strategies to



Fig. 2. Regulation of autophagy. The activation of autophagy commences with the activation of Atg1 (ULK1) by upstream signaling molecules, e.g., adenosine 5′ mono-
phosphate kinase (AMPK), which causes its dissociation from raptor. Activated Atg1 signals through other downstream mediators such as PI3KIII leading to the recruitment
of scaffolding molecules important for the nucleation of the phagophore. The maturation of the phagophore to a double membrane bound vesicle (the autophagosome)
depends on two ubiquitin-like conjugation systems. In the first system, Atg7 and Atg10 catalyze the conjugation of Atg12 to Atg5 to form an Atg12–Atg5 complex, which is
stabilized by Atg16L. The second conjugation reaction involves 2 steps: first, Atg4 activates Atg8 (LC3); the activated LC3, or LC3-I, is then conjugated to phosphatidy-
lethanolamine (PE) to form LC3-PE or LC3-II, a reaction catalyzed by Atg7 and Atg3. LC3-II is recruited to both the outer and inner faces of the growing autophagosome and it
is required for autophagosome maturation. The final step of autophagy involves the fusion of the autophagosome with the lysosome leading to degradation of intra-
autophagosomal contents by lysosomal enzymes.
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target cargo for degradation (for review, see [7]). In this graphical
review, we discuss primarily the major form of autophagy, i.e.,
macroautophagy, and its role in the biology of the VSMC.
Importance of autophagy in VSMC phenotype

The fact that VSMCs can display at least three different phe-
notypic identities suggests an ability to respond effectively to
numerous extracellular and intracellular stimuli. Indeed, nu-
merous growth factors appear to be important regulators of
VSMC phenotype, in part by modulating autophagic activity [4].
Of pathological importance, platelet-derived growth factor
(PDGF)-BB – which is secreted by numerous cell types following
vascular injury and is known to promote rapid contractile-to-
synthetic phenotype transition of VSMCs – was recently shown to
activate autophagy. Autophagy initiated by PDGF-BB helps to
remove contractile proteins as well as proteins damaged by lipid
electrophiles [8,9]; thus, this form of autophagy appears to has-
ten transition to the synthetic VSMC phenotype and increase cell
survival under conditions associated with increased oxidative
stress (Fig. 3). The mechanism by which PDGF-BB activates au-
tophagy remains to be identified.

Autophagy is activated in VSMCs by multiple other conditions
and signaling agents including starvation (particularly lack of
amino acids), metabolic stress, hypoxia, reactive species, drugs,
growth factors, and cytokines (Fig. 4; reviewed in [4]). The form
(s) of autophagy elicited by these species are not equal and have
different consequences. For example, PDGF-BB elicits a cytopro-
tective form of autophagy, while other growth factors, cytokines,
and secreted factors, such as osteopontin [10], Sonic hedgehog
(Shh) [11], tumor necrosis factor-α [12], and angiotensin II [13],
activate forms of VSMC autophagy that could, under some condi-
tions, promote cell death. Moreover, drugs such as telmisartan and
atorvastatin induce forms of autophagy associated with decreased
lipid droplet accumulation and diminished calcification, respec-
tively; these forms of autophagy appear to play a causal role in the
VSMC phenotypic changes, as inhibition of autophagy prevented
phenotypic changes [14,15]. Rapamycin-based drugs commonly
found in drug-eluting stents (e.g., everolimus and sirolimus) acti-
vate autophagy; yet unlike PDGF, which increases cell proliferation
and potentiates the synthetic phenotype, these drugs promote a
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Fig. 3. Regulation of autophagy and phenotype switching by PDGF-BB. A characteristic feature of smooth muscle cells in the media of the healthy artery is the expression of
contractile proteins such as α-smooth muscle actin, calponin, and smooth muscle cell myosin heavy chain-II (MHC-II). However, diseased vessels commonly present a de-
differentiated smooth muscle cell phenotype having lower contractile protein abundance and higher levels of proteins such as collagen I, osteopontin, and vimentin,
indicative of the synthetic phenotype. A robust inducer of this phenotype is PDGF-BB, which is elevated after vascular injury or during disease. In cultured cells, PDGF-BB
regulates the expression of numerous genes that underlie the synthetic phenotype program. Additionally, PDGF-BB activates autophagy, which hastens degradation of the
contractile apparatus to hasten the emergence of the synthetic phenotype. Inhibition of autophagy in vitro using 3-methlyadenine (3-MA) or spautin-1 stabilizes the
contractile machinery, thereby preserving the contractile phenotype, and it prevents excessive migration, proliferation and extracellular matrix production commonly
evoked by exposure to PDGF-BB. How the autophagic program converges and collaborates with the metabolic and transcriptional machinery to control VSMC phenotype
requires additional elucidation.
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contractile phenotype. Similarly, verapamil and emodin induce
autophagy and prevent cell proliferation [16,35].

Although several studies illustrate that autophagy occurs in
VSMCs of restenotic, atherosclerotic, and hypertensive vessels [4],
few studies to date have tested the direct role of VSMC autophagy
in vascular health and disease. The use of Cre-lox technology and
smooth muscle-targeted transgenic models could help to address
the role of autophagy directly in VSMCs. Such studies have been
performed in other cell types pertinent to vascular pathology such
as macrophages and endothelial cells [17,18]. Two fundamental
questions remain to be addressed: (1) How does VSMC autophagy
affect vascular health, disease etiology, and the progression of
pathologies such as restenosis and atherosclerosis and (2) How do
different autophagy-inducing stimuli coordinate apparently dis-
parate forms of autophagy that elicit specific VSMC phenotypes?
Role of redox state and reactive species in VSMC autophagy

Importantly, many autophagic stimuli have a redox component,
which suggests that changes in the reduced and oxidized forms of
pyridine nucleotides, the relative abundance of antioxidants and
oxidants, and the generation of electrophiles may be initiating
factors in the autophagic program. For example, growth factors
and cytokines such as PDGF-BB and TNF-α involve initial bursts of
free radicals or sustained elevations in oxidative stress [19–21].
Hence, the mechanisms underlying activation of autophagy by
these and other autophagic stimuli likely involve the redox state of
the cell. This is supported by the fact that reactive lipids, advanced
glycation end products, and free radical species regulate autop-
hagy activity in VSMCs (recently reviewed in [4]). Oxidized LDL is a
potent inducer of autophagy that contains reactive aldehydic and
ketone species, which educe a cytoprotected phenotype or cell



Fig. 4. Inducers and inhibitors of autophagy in VSMCs. Autophagy in VSMCs can be activated by metabolic stressors, inflammatory signals, mitogens, cytokines, specific
pathways regulating cellular homeostasis (e.g., ER stress), and reactive species resulting from oxidative stress. The following stimuli have been shown to regulate autophagy
in VSMCs: ROS from multiple sources including the mitochondrial electron transport chain, NADPH oxidases, peroxisomes and the cytochrome P450 system; reactive lipid
species such as free aldehydes (e.g., 4-hydroxynonenal; HNE) and 7-ketocholesterol; bioactive core aldehydes such as 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phos-
phocholine (POVPC); both oxLDL and non-oxidized cholesterol; advanced glycation end products (AGEs); inflammatory cytokines, growth factors and other proteins such as:
tumor necrosis factor-α (TNF-α), osteopontin (OPN), PDGF-BB, sonic hedgehog (shh), insulin and insulin-like growth factor-1 (IGF-1), angiotensin II, apelin; Myh11; c-Ski;
metabolic stressors such as hypoxia and nutrient deprivation or excess; pharmacological agents and drugs such as telmisartan, atorvastatin, everolimus, sirolimus, rapa-
mycin; and inorganic phosphate (Pi). These agents may either increase or decrease autophagic flux, leading to several potential outcomes, including, but not limited to,
protein and organelle turnover, changes in cell viability and responses to stress, and changes in VSMC phenotype.
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death [22–26], depending on the concentration. Moreover, mi-
tochondrial-derived superoxide has been shown to be an im-
portant instigator of inorganic phosphate (Pi)-induced autophagy,
which prevents calcification. Interestingly, reactive lipids such as
1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine
(POVPC) and 4-hydroxynonenal (HNE) both induce autophagy, yet
POVPC promotes the synthetic phenotype [27,28] while HNE does
not appear to do so ([4,8,22]; and unpublished observations).
Controlled modulation of autophagy for treatment of vascular
disease

The wealth of evidence showing that autophagy controls VSMC
function and responses to stress supports the idea that modulating
its activity in vivo may be a viable therapeutic option for pre-
venting or mitigating vascular disease; however, this approach has
several difficult challenges to overcome. The different “forms” of
autophagy elicited by various stimuli and its two-edged nature –

which promotes either survival or death, or differentially
modulate VSMC phenotypic identity – suggest that bluntly reg-
ulating its activity with inhibitors that overtly diminish or activate
autophagy could have deleterious effects. Rather, a controlled sti-
mulation or inhibition of autophagy may be effective in mod-
ulating some facets of vascular disease. It is unlikely that inhibitors
of autophagy such as 3-methyladenine (3-MA) would be effective
because of the likely off-target effects of inhibiting the PI3K/Akt
pathway. Numerous studies suggest that modest stimulation of
autophagy could be beneficial, as rapamycin-eluting stents both
increase autophagy and prevent VSMC hyperproliferation in vivo;
however, the rapamycin-based drugs used in stents appear to
prevent proliferation via inhibiting mTORC1 activity and regulat-
ing expression of the cell cycle machinery [29]. Hence, it is unclear
what the role of autophagy may be in the therapeutic effects of
these agents.

Drugs that currently appear to be more specific for regulating
autophagy, such as spautin-1, are promising candidates for therapy
(Fig. 5). In cell culture studies, spautin-1 was shown to inhibit
autophagy in an Akt-independent manner and to prevent com-
pletely the VSMC hyperproliferation caused by PDGF [8].



Fig. 5. Pharmacological regulation of autophagy to treat vascular diseases. Phar-
macological activators and inhibitors of autophagy could be used to mitigate vas-
cular disease. It is likely that controlled activation of autophagy could have bene-
ficial actions in atherosclerosis, whereas its modest inhibition could diminish
restenosis and perhaps hypertension. Promising small molecules include spautin-1
(to inhibit autophagy) and certain clinically available drugs, the latter of which may
impart some of their effects through stimulating autophagic flux.
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Nevertheless, to our knowledge, this drug has not been tested
in vivo. However, other inhibitors of autophagy have been shown
to have beneficial effects in vascular disease. For example, chlor-
oquine was shown to prevent hypertension in a monocrotaline
mouse model [30].

It is likely that activation of autophagy may be a viable ap-
proach for diseases such as atherosclerosis. Pharmacological
agents that simulate caloric restriction or activate sirtuins, both
of which increase autophagy [31], could promote modest in-
creases in autophagy and mitigate disease progression. Indeed,
caloric restriction and sirtuin 1 have been shown to have bene-
ficial effects in the context of atherosclerosis by diminishing
oxidative stress or protecting against DNA damage [32–34].
Moreover, clinically approved drugs such as verapamil and ator-
vastatin, which are known to induce autophagy in VSMCs, may
represent promising candidates to modulate autophagy and
VSMC phenotype in specific vascular disease states. As reviewed
elsewhere [35,36], numerous other drugs have been shown to
modulate autophagy in the cardiovascular system, but whether
these drugs regulate autophagy in VSMCs in vivo remains un-
answered. A more thorough understanding of how different sti-
muli coordinate phenotypic changes via autophagy would un-
doubtedly help in developing targeted therapies. An ‘ideal’ au-
tophagic regulator would likely be capable of discriminating ba-
sal from pathological autophagy or modulate only those meta-
bolic pathways that are deregulated in disease. Future studies
will hopefully shed light on the role of autophagy in maintaining
VSMC health and identify the mechanisms by which autophagy is
affected in cardiovascular diseases, the knowledge of which could
be used to derive new and more efficacious therapies.
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