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Abstract Since the introduction of chemotherapy for

cancer treatment in the early 20th century considerable

efforts have been made to maximize drug efficiency and at

the same time minimize side effects. As there is a great

interpatient variability in response to chemotherapy, the

development of predictive biomarkers is an ambitious aim

for the rapidly growing research area of personalized

molecular medicine. The individual prediction of response

will improve treatment and thus increase survival and life

quality of patients. In the past, cell cultures were used as

in vitro models to predict in vivo response to chemother-

apy. Several in vitro chemosensitivity assays served as

tools to measure miscellaneous endpoints such as DNA

damage, apoptosis and cytotoxicity or growth inhibition.

Twenty years ago, the development of high-throughput

technologies, e.g. cDNA microarrays enabled a more

detailed analysis of drug responses. Thousands of genes

were screened and expression levels were correlated to

drug responses. In addition, mutation analysis became

more and more important for the prediction of therapeutic

success. Today, as research enters the area of -omics

technologies, identification of signaling pathways is a tool

to understand molecular mechanism underlying drug

resistance. Combining new tissue models, e.g. 3D organoid

cultures with modern technologies for biomarker discovery

will offer new opportunities to identify new drug targets

and in parallel predict individual responses to anticancer

therapy. In this review, we present different currently used

chemosensitivity assays including 2D and 3D cell culture

models and several –omics approaches for the discovery of

predictive biomarkers. Furthermore, we discuss the

potential of these assays and biomarkers to predict the

clinical outcome of individual patients and future

perspectives.
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Introduction

In the past decades, research in the field of molecular

profiling of cancer was strongly affected by the rapid

development of technologies. The complex disease-related

alterations in the molecular networks, that are associated

with response to chemotherapy, result in significant clin-

ical heterogeneity among individual tumors and patients.

A detailed and comprehensive understanding of drug

response mechanisms is essential to ultimately guide a

molecular based personalized anticancer therapy. Today,

the complex networks of cellular mechanisms in cancer

cells are just incipiently understood. Progress in all fields

of cancer research, ranging from the optimization of

cellular models and chemosensitivity assays over proteo-

mics to genomics is revealing more and more facets of

determinants of individual chemosensitivity. Besides

studies in patients and xenograft models of tumors,
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in vitro cell cultures are the most commonly used systems

for the analysis of cellular responses to drug treatment. A

whole spectrum of cellular models ranging from second-

ary cell lines and primary mixed cultures over

multicellular spheroids to organoid cultures are being

used in cancer research. These models are being con-

stantly optimized to mimic the origin tumor and tumor

microenvironment as close as possible. Cell culture

models are the basis for the molecular analysis of indi-

vidual drug response. Relatively common approach to

measure cellular chemosensitivity is the use of various

in vitro chemosensitivity assays, which basically only

detect the sum of all specific cellular drug effects. This

measurement of drug effects on cell viability is deeply

integrated in basic research, as well as in the clinical

setting for the general determination of chemoresistance

of a patients‘ tumor. To investigate the molecular details

of individual drug responses, genomic and proteomic

methods were integrated in cancer research. These tech-

nologies enable comprehensive investigation of the multi-

factorial mechanisms underlying individual drug response

by the simultaneous analysis of thousands of genes or

proteins. This huge amount of generated data can be

merged to a complex picture of molecular networks and

will significantly contribute to the understanding of the

diversity in individual drug response. The technical

advances in all areas are enhancing the amount of infor-

mation output rapidly and ultimately the interconnection

of all fields of research should be able to combine

molecular attributes to individual, molecular signatures of

chemosensitivity. The molecular characterization of

patients will shift the concept of anticancer therapy from

standardized treatment of patients to specialized treatment

concepts for molecular-defined subgroups of patients

(Fig. 1). In the future, this individualization of anticancer

therapy will increase survival and life quality of patients,

by being able to provide maximal effective therapies and

sparing them from uneffective therapies and side effects.

Cellular models

The prediction of response to chemotherapy at the molec-

ular level is currently mostly based on data derived from

in vitro experiments (Fig. 2). Besides studies in patient

populations and xenograft models of tumors, cell cultures

are the most commonly used in vitro systems for the ana-

lysis of cellular responses to drug treatment. Various types

of cell culture models exist. These models differ in their

ability to reflect the in vivo situation, which is of great

importance for further translation of results to the clinical

setting.

As a result of the gain in knowledge of cancer-specific

signaling networks and metabolic pathways, it became

obvious, that cell behavior is strongly influenced by the

microenvironment of the cell [1, 2]. These findings had

great impact on the development of in vitro cell culture

models and their use in drug discovery and translational

research. 2D cell cultures are the oldest and widely used

models in cancer research, comprising mainly clonal-sec-

ondary and infrequently primary cell lines. Clonal-

secondary cell lines are inexpensive in acquisition and easy

to handle. Due to their ability to grow infinitely, they are

well applicable in high-throughput screenings, suitable for

genetic modification and good sources for preparations of

cell components (e.g. mitochondrial-, membrane-, nuclear

fractions). However, the preparation of cell lines from a

tumor, results in loss of the 3D in vivo structure and in

diversity of cell populations, thus these models only partly

represent the origin tumor. Alongside the progress in lab-

oratory technologies, the design of more and more

extensive in vitro models became possible. Based on first

attempts to rebuild 3D tumor structures, using secondary

cell lines and natural as well as artificial extracellular

matrices (ECM’s), the techniques for the preparation of

such models rapidly advanced. Currently, the mixed cul-

ture of different cell types, the use of feeder layer cell lines

and the induction of angiogenesis in these 3D cell culture

Fig. 1 Schematic illustration of

the concept of the realization of

personalized medicine by

molecular analysis
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systems are main improvements in this area of research.

Nonetheless, these models represent artificial microenvi-

ronments and many features of an original tumor cannot

yet be displayed. Complex models such as in vitro 3D-

organoid cell cultures or xenografts currently best display

the characteristics of an in vivo tumor. The cultivation of

vital tumor tissue slices, for example, enables drug testing

in a natural tumor environment and has the capability to

reveal tissue composition dependent cellular responses to

anticancer therapy. Xenografts also have the ability to

mimic the in vivo microenvironment of a tumor in a

physiological context, regarding nutrient supply, angio-

genesis etc. However, using this model, differences in

metabolism, body size and genetic background between the

host species and humans have to be considered.

In summary, organoid cell cultures and xenografts rep-

resent valuable ‘‘bridge models’’ between in vitro cell lines

and the clinical in vivo setting. The choice of a cell culture

model for research should depend on the application in the

study design and cost-benefit ratio.

Primary and secondary cell lines

Over 60 years ago, the first human clonal cancer cell line

was established from a patient’s tumors. Today, human

tumor-derived clonal cell lines are able to grow in vitro, are

easy to handle and thus they find wide application. Thou-

sands of cell lines from diverse tumor entities can be

purchased from different suppliers (e.g) [3, 4]. These cell

lines are characterized and usually delivered including

basic data, such as genetic profile (STR), morphology,

doubling time, cytogenetics and references, by which

additional data can be received using literature search.

Being such robust and easy to handle models, secondary

cell lines are a preferred starting point for the analysis of

cellular mechanisms, e.g. resistance to anticancer therapy

and signaling pathways. These models are also routinely

used in versatile applications, e.g. testing of efficacy of

compounds, examination of metastasis mechanisms, prep-

aration of cellular compartments, extraction of proteins and

DNA. Furthermore, secondary cell lines are well suited for

artificial manipulation of cell characteristics, such as

expression of mRNAs and proteins, mutations (knock-in)

and modulation of chemosensitivity.

For example, approaches to understand acquired drug

resistance are cancer cell lines with established drug

resistance. Continuous exposure of these drug-sensitive

cell lines to anticancer therapeutics in vitro, selects for the

relatively rare drug-resistant clones, which are then further

raised to a chemoresistant sub clone cell line. Comparative

analysis of properties of the parental drug-sensitive cell

lines and the selected drug-resistant cell lines has the

potential to identify specific molecular mechanisms of drug

resistance [5]. Hence, transformed cell lines and their

parental counterparts are also commercially available and

represent artificial, but defined models for the investigation

of determinants of chemosensitivity.

Nowadays, secondary cell lines are integrated in huge

compound screening programs for drug discovery and

research programs to understand the underlying mechanism

of individual response to chemotherapy. Secondary cell

lines fulfill all requirements for implementation in high-

throughput screenings, enabling the rapid screening of

large panels of compounds. The National Cancer Institute

60 (NCI60) platform was the first high-throughput cancer

cell line screening program and therefore triggered the

development of adequate techniques. The experimental

methods had to be adapted to the requirements of eco-

nomic, high-throughput screenings, e.g. high-content data

mining, automation of handling liquids, miniaturization of

cell culturing and drug testing procedures. A major finding

of the program was that compounds with similar patterns of

cell line chemosensitivity tend to have common mecha-

nism of action, which led to the development of new

algorithms for data analysis and adaption of study designs.

The NCI60 anticancer drug discovery program was

Fig. 2 Exemplary illustration

of different cellular models used

in translational research
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reviewed in detail by Shoemaker [6], who highlighted its

history and methodology. Learning from the NCI60 expe-

riences, the Cancer Chemotherapy Center of the Japanese

Foundation for Cancer Research (JFCR) established the

JFCR-39 platform. This panel of 39 human tumor-derived

cell lines included a subset of the NCI60 cell lines and

additional gastric cancer cell lines [7]. A new algorithm for

data analysis enabled the comparison of newly screened

compounds with previously screened compounds to dis-

criminate between new or previously described modes of

action. Using the COMPARE algorithm and advanced data

mining techniques, several new anticancer agents [8–11]

were identified.

In drug discovery or predictive biomarker studies for the

introduced ‘targeted anticancer therapeutics’, small panels

of cancer cell lines cannot display the clinical activities of

these compounds, which are often limited to small sub-

groups of molecular-defined patients. Taking this into

account, high-throughput screenings are now being adapted

to much larger panels of cell lines. To capture the genetic

heterogeneity among diverse cancers, Mc Dermott and

colleagues [12] developed an automated platform for the

screening of the chemosensitivity of 500 solid cancer cell

lines to kinase inhibitors. In this study, they observed the

expected response rates with only small subgroups of cell

lines showing responses to particular compounds. There-

fore, a comprehensive cancer cell line platform was

established, currently including 1,200 cancer cell lines.

Due to the fact that only around 80 % of those secondary

cancer cell lines are adaptable to high-throughput screen-

ing, mostly caused by technical limitations such as

insufficient doubling times or atypical culture require-

ments, this panel is referred to as the Center for molecular

Therapeutics 1000 (CmT1000) [13]. This cell line panel is

currently being used to investigate the genetic determinants

for chemosensitivity. First results from this large data sets

showed that tumor-derived cell lines recapitulate clinical

findings concerning responses to targeted inhibitors [14].

Another, very recent approach in generating primary

cell lines for in vitro experiments has been introduced by

Lui et al. [15]. This approach initially comprised a method

to indefinitely extend the life span of primary human

keratinocytes using both fibroblast feeder cells and a Rho-

associated kinase (ROCK) inhibitor, and is also efficiently

applicable to establish cell cultures from human and rodent

tumors. This innovative technique provides significant

opportunities for cellular diagnostics and molecular thera-

peutics (drug profiling), expands the value of biobanking

and has the potential to greatly improve personalized

medicine.

A general disadvantage of secondary cell lines is that

they only represent one cell from a diverse tumor micro-

environment which resembles the capabilities necessary for

adapting to in vitro culture. It is still unclear in which

manner adaption to in vitro culturing and multiple pas-

saging influences cell characteristic/behavior. The

establishment and cultivation of primary mixed single cell

cultures always have been quite complicated [16]. Primary

mixed cell cultures isolated from patient’s tumors represent

a wide spectrum of cell types abundant in vivo. This

diverse mixture mainly consists of different epithelial- and

mesenchymal cancer cells, tumor associated stroma and

immune cells [17, 18]. Therefore, these primary cell cul-

tures more closely reflect the in vivo situation than

secondary, clonal cell lines. However, several difficulties

are still to overcome, while establishing primary mixed

cultures. The basis for the preparation of primary, mixed

cell cultures is vital tumor tissue and experience in cell

culture handling. Besides the quality of tumor tissue, the

method for preparation of single cells from a tumor, the

surface preparation of cell culture dishes and finally the

composition of the culture media are also essential

parameters for a successful establishment of primary mixed

cultures. The artificial shifts in and losses of cell popula-

tions, due to unnatural in vitro culturing and passaging,

limits the maximal diversity of cell types to low passage

primary, mixed cultures. Most studies using primary cells

prepare cell cultures shortly after tumor resection and

disseminate cells directly for experiments. Studies regard-

ing the in vitro chemosensitivity of primary cells were

conducted in different tumor entities e.g. small cell lung

cancer [19], colorectal cancer [20, 21], gastric cancer [22],

Leukemia [23, 24], ovarian cancer [25–27] and head and

neck cancer [28, 29]. One limiting factor is that, the

diversity of cell types will decrease during in vitro culti-

vation, due to the dissimilar ability of different cell types to

proliferate in vitro and survive passaging. Another issue

limiting the predictive value of these cell cultures is the

loss of the 3D architecture of the origin tumor. Although

the in vitro analysis of cultured cell lines is associated with

artifacts related to effects attributed to a non-physiological

environment and long-term passage in culture, it was

shown that cancer cell lines retain most of the genomic

features of the primary tumor [30, 31]. This has not yet

been shown for proteomic features of cancer cell lines. The

awareness of the importance of the tumor microenviron-

ment and the three-dimensional aspects of solid tumors, in

the response to anticancer therapy has initiated efforts to

display these features in vitro more accurately [32–34].

There are also several other important factors to take in

regard to mimic the in vivo microenvironment of a tumor

in vitro. For example, a whole field within cancer research

is dedicated to the investigation of hypoxia, which is

defined as inadequate oxygen supply to cells and tissues, in

solid tumors and implications on anticancer treatment [35–

40]. The oxygen concentration of 21 %, used in most
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in vitro culture systems is not physiological in regard to the

limited oxygen supply of cells within a solid tumor.

Multicellular spheroids

Since it has been shown that the cellular signaling network,

e.g. regulation of apoptosis is influenced by 3D cell orga-

nization and multicellular complexity, new cell culture

models for a more realistic investigation of tumor cell

behavior ex vivo are urgently needed [41]. To establish

such models, it is necessary to maintain or reconstitute an

environment which closely resembles the tumor in vivo.

One of the first approaches of rebuilding the 3D microen-

vironment during in vitro cultivation and drug testing was

the development of a culture model called ‘‘Spheroids’’. In

1970, the first spheroid model was devised by Sutherland

[42]. Meanwhile, spheroids have been grown from a vari-

ety of normal and tumor cell lines and used in different

assays, to study anticancer therapy efficiency as well as 3D

cellular interactions [43, 44]. Single cell cultures were used

to establish an organoid-like 3D model using different

techniques [45, 46]. These different culture techniques

include various artificial as well as natural ECM‘s [47, 48]

and mechanical methods to generate defined, roundly

shaped cell clusters. Matrices, such as agarose, collagen,

gelatin or matrigel allow the establishment of culture sys-

tems with well-defined geometry, wherein the 3D structure

affects interactions between cells. This usage of 3D

matrices has been reported to show fruitful results in

recapitulating tissue functions in 3D [49, 50]. Besides

various cancer cell lines, cell types like Madin–Darby

canine kidney cells and fibroblasts, have also been moni-

tored in 3D contexts and have provided valuable insight

into the basic molecular mechanisms of polarity, adhesion,

cell migration and response to anticancer therapy [51–53].

Numerous studies have documented differences in cancer

drug sensitivity between cells cultured in monolayers and

those grown in 3D cultures [54–56]. Previous studies have

shown that certain drugs are more effective in 3D cell

culture systems [57–60], although other drugs showed

greater activity in the 2D cell culture systems [61, 62].

These days, fewer than 100 human tumor cell lines have

been reported to grow in spheroid cultures [63]. Platforms

based on tumor spheroids have been developed and are

being used for analysis of individual chemosensitivity and

secondary screening of potential new anticancer com-

pounds [64, 65]. The application of spheroids in drug

screenings has been reviewed by Friedrich and colleagues

[66]. However, it remains to be demonstrated comprehen-

sively that chemosensitivity data derived from 3D cell

cultures captures clinically relevant responses more pre-

cisely than standard 2D cultures. Furthermore, these

systems cannot completely mimic the complex tissue

architecture and the high degree of variability seen in

individual tumors.

Organoid cultures

It has been shown that signaling and metabolic pathways in

cell lines have distinctly different expression patterns

compared to tumor tissues. Pathways in cell lines tended to

be upregulated compared to tumor tissue with exceptions in

genes involved cell adhesion, ECM-receptor interaction

and focal adhesion [34, 67]. As discussed before, spheroids

are a good approximation to the in vivo tumor, but still lack

the natural tumor environment, including the state of

receptors and corresponding extracellular signaling

between diverse cell types naturally being present in the

tumor. Therefore, the development of in vitro organoid cell

culture models was an essential step for translational

research. First experiments were performed in 1967 by

Matoska and Stricker, using tumor cubes of approximately

1 mm3 [68] for in vitro culturing. Later, an in vitro histo-

culture system, using a native-state collagen-sponge gel to

support the three-dimensional growth of tumor tissue sec-

tions was developed, called the Histoculture Drug-

Response Assay (HDRA) [69]. Features of the histoculture

system include the maintenance of three-dimensional tissue

architecture and the use of histological autoradiography or

colorimetric assays as endpoints for determination of

chemosensitivity [70, 71]. Ohie et al. [72] published a

protocol on the Method of the HDRA. The reliability and

utility of the HDRA were examined in several clinical

studies for different tumor entities, e.g. oral squamous cell

carcinoma [73], head and neck cancer [74], gastric cancer

[75], colorectal cancer [76] and ovarian cancer [77]. Up to

now, it has not been shown that the HDRA is also able to

predict efficiency of targeted drugs such as small molecules

and antibodies.

The past years have seen unprecedented developments

in the use of human tissue surrogates in vitro. Clevers et al.

[78] developed a technique in which adult stem cells,

originating from fresh tumor tissues, are embedded in a

three-dimensional matrix and allowed to self-organize into

epithelia of the respective organ of origin. The resulting

organoids represent the physiology of native epithelia

much better than traditional cell lines. Mini-guts, for

example, reproduce the epithelial architecture of small

intestine and colon [79, 80]. If combined with genetic

information and pharmacological profiles, such an orga-

noids could aid in identifying markers that predict a

patient’s drug response similar to the Cancer Cell Line

Encyclopedia [81].

Parallel to the development of tissue microtomes

enabling the preparation of thin slices of fresh tissue,

precision cut cancer tissue slices from tumor tissue have

Prediction of individual response 733
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become more popular as ex vivo systems. It has been

shown, that cell viability of tissue slices was maintained in

in vitro culture for at least 4 days [82]. After treatment with

different compounds (chemotherapeutics, small molecules,

antibodies), slices can be fixed by immediate freezing or by

formalin. Frozen slices can be used for several assays, e.g.,

functional drug effects on viability (ATP), apoptosis

(activation of caspase 3/7), proliferation (BrdU) and signal

pathway analysis (activation of phosphoproteins). Forma-

lin-fixed slices can be utilized for immunohistochemical

analysis of target expression, drug effects and cell–cell

interactions. Furthermore, laser capture micro dissection

can be applied, allowing the separation of different cellular

compartments, for molecular analysis of pure cell popula-

tions. Viara and colleagues reported on a preclinical model

of organotypic culture for pharmacodynamic profiling of

human tumors [83]. This model demonstrates the ability to

detect pharmacological interventions ex vivo in a prese-

vered original cancer microenvironment. Due to the broad

spectrum of molecular techniques that can be implemented,

organoid cell culture models offer a unique opportunity to

understand the complex basis of cellular responses to

anticancer therapeutics of all groups, e.g. classical che-

motherapeutics, small molecules and therapeutic antibodies

[84]. Despite the advantages of the models, difficulties in

obtaining specimen and limited viability of these tissues in

culture over time represent major obstacles. The successful

cultivation of tissue slices is also dependent on tumor

entity, highly adapted culture conditions in terms of media

supplements and other culture techniques. In the future, the

use of miniaturized cell-based models that are specifically

engineered to closely reflect in vivo behavior can reduce

costs and add efficiencies to drug development, but most

importantly increase the accuracy of molecular prediction

of response to anticancer therapy.

Xenografts

Currently existing in vitro cancer cell culture models, such

as primary cell lines and organoid cultures are a solid basis

for molecular drug testing, but they do not reflect the

natural tumor environment in all facets. The final appli-

cation of anticancer drugs takes place in the in vivo

situation, in the patients. Since it is unethical to use patients

for preclinical research, xenograft cancer cell culture

models were developed to facilitate drug testing in vivo

and thus improve basic and translational research and

prediction of individual response to chemotherapy. Cancer

cell characteristics, such as chemosensitivity to anticancer

chemotherapy, are strongly affected by several para-

meters in a physiological, in vivo, situation. In contrast

to in vitro cell culture models, xenograft models offer

micro environmental conditions, e.g. tumor architecture,

angiogenesis, metastasis close to the real patient. The

injection of vital human cancer cells or even transplanta-

tion of human tumor fragments is therefore still essential to

study cancer in an in vivo situation [85, 86]. Among the

existing in vivo cell culture models, the mouse model is

widely used. It bears the relative advantages of good

availability, low space requirements, low cost, ease of

handling and fast reproduction rate. Mouse xenograft

models are extensively being used to study individual

response to anticancer therapy and drug development [87,

88]. Several studies on DNA and protein level were con-

ducted in mice xenografts to understand and predict

response to anticancer therapy. For example, gene

expression signatures and plasma protein biomarker have

been reported to predict efficiency of therapy ex vivo

[89–91].

But there are also multifaceted parameters affecting

outcome when conducting xenograft experiments, e.g. site

of implantation, growth properties and size of tumor at the

time treatment is administered, agent formulation, sched-

uling, dose and the selected endpoint for assessing activity.

A basic review on the mouse model in drug testing was

published by Mattern L. and colleagues in 1988 [92]. The

application of xenografts in drug testing has been reviewed

elsewhere in detail [93, 94]. Despite the relatively com-

prehensive ability of mice models to mimic the clinical

situation in patients, there are differences between mice

and humans which might have an impact on the predictive

value of this model [95]. Mice and humans obviously differ

largely in body size and lifespan. Although mice have a

similar incidence of cancer at the end of the life cycle, they

primarily develop cancers in mesenchymal tissues, e.g.

lymphomas and sarcomas. Most cancers in humans are of

epithelial-origin and lead to carcinomas. Furthermore, the

basal metabolic rate of mice is much higher, which results

in increased generation of reactive oxygen species, other

mutagens and also distinct metabolism of anticancer drugs

in mice from humans.

Xenografts may also fail to recapitulate immunological

aspects of tumor-stroma interactions that are present in

human patients. Cell signaling interactions between cancer

cells and host stromal cells may not occur properly due to

interspecies incompatibilities, e.g. interactions of ligands of

one species with receptors of the other [96, 99]. Those

incompatibilities may impact various characteristics of

tumors, e.g. drug response and metastatic behavior. [97,

100]. A short overview of the challenges of selecting the

‘right’ in vivo oncology pharmacology model and

improving the translation of these models to a clinical

setting was summarized by Firestone B, 2010 [98, 101].

Nonetheless, xenograft model are useful preclinical

models. The better these models are characterized on

genome and proteome level and by implementing the

734 F. T. Unger et al.
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learning experience while using these models, the more

basic information on the individual response to anticancer

therapy will be gained.

Chemosensitivity assays

First experiments to determine the individual chemosen-

sitivity of tumor cells from cancer patients were made in

the mid-1950’s [102]. At that time, techniques for

chemosensitivity testing were developed on the basis of

well-known parameters such as colony forming ability,

growth inhibition or cell viability. In theory the overall

effects of cytotoxicity are the sum of all specific cellular

effects underlying multi-factorial mechanisms. Therefore,

in vitro chemosensitivity testing can potentially predict

response to anticancer therapy either by determination of

the death of all cancer cells or at least by complete growth

inhibition. Currently, chemosensitivity tests find wide

application in basic and translational research (Fig. 3).

The measurement of drug effects on cell viability is

integrated in basic research, for the detailed analysis of

efficiency and mode of action of drug candidates, as well

as in the clinical setting for the general determination of

chemoresistance of a patient’s tumor. Firstly, the mea-

surement of cancer cell chemosensitivity to miscellaneous

compounds with potential anticancer activity is the basis

of most drug discovery programs. Previous publications

described various phases of the development of an in vitro

anticancer drug screen, aimed at the identification of

compounds showing selective growth inhibition or cyto-

toxicity towards particular cell or tumor types [102, 103].

These screening programs require very robust, automated

chemosensitivity assays for the measurement of drug

effects on cancer cell viability or growth. Therefore, many

studies were performed comparing chemosensitivity

assays in regard to their sensitivity, reproducibility,

applicability to cancer cell lines of various origins and

potential for adaption to high-throughput [24, 104–106].

Secondly, in vitro chemosensitivity tests are, to some

extent, applied in the clinical setting to determine che-

moresistance in a patients‘ tumor. This may help to guide

individualized anticancer therapy, especially in second-

line treatment where the guidelines for therapy are not

always clearly defined [107].

In vitro chemosensitivity tests are not approved for

predicting or guiding therapeutic treatment of patients in

first-line therapy or routine use.

Implementation of cell viability assays in preclinical

drug testing

Besides a whole spectrum of assays, measuring events

indicating cell viability, the most often used cell viability

tests today in chemosensitivity testing are the MTT assay

[108], the FMC assay [109], the ATP-TCA [26, 110] and

SRB assay [102]. The four different assays measure cyto-

toxicity as a decrease of fundamental metabolic activity

(MTT assay, FMC assay) or by the reduction of essential

biomolecules (ATP assay) and cell mass (SRB assay). The

MTT tetrazolium salt colorimetric assay is based on the

metabolic reduction of 3-(4, 5-dimethylthiazol-2-yl)-2,

5-diphenyltetrazolium bromide (MTT). The yellow tetra-

zolium salt MTT is converted by mitochondrial

dehydrogenases of metabolically active cells to an insolu-

ble purple formazan product. The optical density can be

detected by precise spectrophotometric measurement using

a plate reader [111]. The fluorometric microculture cyto-

toxicity assay (FMCA) measures fluorescence generated

from cellular hydrolysis of fluorescein diacetate (FDA) to

fluorescein by cytosolic esterase activity. The measured

enzyme activity in combination with indirect detection of

cell membrane damage is determined as parameters for cell

viability [112]. In the ATP-tumor chemosensitivity assay

(ATP assay) the intracellular ATP content is quantified by

measuring luminescence produced by a reaction of ATP

with luciferase and D-luciferin [113]. The assay allows for

a rapid, sensitive measurement of cellular ATP content.

ATP levels are linearly related to the number of viable cells

and increased with time in cell line cultures correlating

Fig. 3 Exemplary illustration

of different chemosensitivity

assays used in translational

research
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with growth kinetics [114]. The sulforhodamine B (SRB

assay) measures whole protein content for the detection of

viable cells. SRB is a pink aminoxanthene dye with two

sulfonic groups that bind to basic amino-acid residues

under mild acidic conditions. The binding of SRB is stoi-

chiometric, the amount of dye extracted from stained cells

is directly proportional to cell mass [27]. Using this assay

to determine cell growth or viability, one assumes that dead

cells either lyze, are removed during the procedure or

otherwise do not contribute to the colorimetric end point.

After fixation and staining procedures, tested cells can be

stored indefinitely, which also contributes to high-

throughput applicability. [115, 116]. The quantitative

results of these different chemosensitivity tests are similar,

although sensitivity varies. The lowest sensitivity was

found for the MTT assay. Here, a great number of cells

(25,000 cells/well) are needed to get reliable results. The

MTT assay is therefore not applicable when the tumor

biopsy is small. For the SRB assay [117] and the FMC

assay [27] around 2,000 cells/well are sufficient. The ATP

assay is reported to be able to detect down to ten cells/well.

In the past chemosensitivity assays have been technically

optimized continuously. Several new data analysis methods

were established, but the best comparison with the clinical

outcome has yet been achieved by the ‘‘sensitivity index’’

(SI) rather than the determination of the IC50 values or the

AUC index [118]. Currently, chemosensitivity is a basic

parameter for anticancer drug efficiency and in combina-

tion with several other read outs of drug effects integrated

in several drug discovery and preclinical drug testing

platforms.

For the initial large-scale drug screening program, called

the in vitro anticancer drug discovery project of the

National Cancer Institute (NCI), the sulforhodamine B

(SRB) assay has been chosen, because of its high level of

sensitivity, adaptability to high-throughput screening and

endpoint stability [115, 116]. This project tested 10,000 or

more samples per year in a manner that requires robust

technology for the analysis of several million individual

measuring points [119]. The SRB assay has mostly been

used for the measurement of cytotoxicity and cell growth in

high-throughput screening and basic research. Thus,

in vitro chemosensitivity data from this assay has rarely

been correlated to clinical outcome. By contrast, the

chemosensitivity data from cancer cells measured with the

MTT, FMC and ATP assays have been correlated with the

efficiency of anticancer therapy in a clinical setting.

Thereby, the ATP assay was preferably applied. Even

though not all cancer types can be examined because of the

above described limitations, correlations of the in vitro data

with clinical outcome were obtained for ovarian carcino-

mas [118], breast carcinomas [119], leukemia [120],

melanomas [107], colorectal carcinomas [121], lung

carcinomas [122] and gastric cancer [123]. Most results

exist for ovarian and breast carcinomas.

Besides monotherapies, two or more anticancer drugs

are often used in the in vivo clinical setting, sometimes

applied simultaneously in other cases sequentially, with

intermissions of one or more weeks. This situation can

hardly be mimicked by in vitro assays. Without the

knowledge of the pharmacokinetics of the single thera-

peutics applied in combination, the ratio of the substances

in the cells is unknown. Strong concentration-dependent

combination effects between different anticancer drugs

were observed [124, 125]. Synergistic, as well as antago-

nistic effects were found depending on the sequence of

drug treatment for the combination of paclitaxel and cis-

platinum [125, 126] and for combinations of platinum

compounds with paclitaxel and colchicines [127]. Besides

these limitations another point of concern is the drug

treatment time in vitro. During a short one-day incubation

time growth inhibition or colony forming ability cannot be

measured. An incubation time which allows the cells to

duplicate, at least 2 days to several weeks, is necessary for

the measurement of colony forming ability or growth

inhibition. Therefore the duplication time of the cancer

cells limits these methods. Furthermore, isolated primary

cancer cell cultures are difficult to cultivate in vitro. The

rate for successful cultivation and passaging of primary cell

cultures is low. Stromal cells, such as fibroblasts which

cannot be totally separated during isolation generally grow

faster than the cancer cells, which may lead to false results.

Serum free medium is reported to selectively reduce the

growth of fibroblasts [128]. Soft agar used in clonogenic

assays is also reported to hinder fibroblasts from forming

colonies [129]. However, it is not known how these

adapted cell culture conditions influence the growth and

characteristics of cancer cells. Especially in cancer types

where stromal cells influence cancer cell growth, e.g.

squamous cell carcinomas the in vitro data may not reflect

the in vivo situation.

The low response following physician choice especially

in the second or third line therapy, with little if any benefit

for the patients, demands in vitro chemosensitivity testing

which leads to higher response rates as published previ-

ously [128]. In addition, for the determination of drug

resistances these assays have shown convincing results [27,

130], which recommend the in vitro drug resistance mea-

surement routinely at least in the second-line therapy. In

the first-line therapy where the oncologist can choose

between several chemotherapies with equivalently effica-

cious response rates, a chemosensitivity assay directed

treatment could also be of advantage [128]. Several studies

reported weak to good correlations of in vitro to in vivo

data. Nonetheless, further studies were recommended for

clinical validation by most authors. The American Society
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of Clinical Oncology (ASCO) furthermore recommended

comparing patients, whose individual therapy resulted from

chemosensitivity testing with patients, whose therapy was

chosen empirically [131]. They did not recommend in vitro

chemosensitivity testing for chemotherapy guidance out-

side of clinical trials. Others contradicted the ASCO

especially because of the low number of studies considered

in their review article leading to insufficient conclusions

[132, 133].

In summary, chemosensititvity testing is deeply inte-

grated in basic drug testing and preclinical research.

Various methods are used to determine the sum of various

specific and unspecific drug effects on cells as decrease in

viability or cell death. The application of individualized

anticancer therapy based on in vitro chemosensitivity

testing in the clinical setting has been conducted using

several different laboratory methods [96, 134]. Correlations

of in vitro results with clinical outcome have indicated

predictive accuracies of 57–83 % for drug sensitivity and

[90 % for drug resistance [135–139]. Although studies

have demonstrated the predictive value of different

chemosensitivity assays, the insufficient number of pro-

spective randomized studies validating efficiency and

benefit has yet limited the routine application in the clinical

setting.

DNA damage and repair

Other multi-factorial endpoints such as DNA damage [140]

and DNA repair [141] were examined as parameters for

determining cancer cell chemosensitivity, as well. A broad

spectrum of anticancer drugs induces DNA damage which,

in turn, leads to cell death. Quantitative DNA damages

could therefore correlate with the clinical outcome of

patients treated with DNA damaging chemotherapeutics.

The comet assay, a method for the measurement of DNA

damage [140, 142] is used in chemosensitivity testing

because it is a quick, sensitive method that does not require

cell division. Also, only very few cells are needed, so that

cell numbers obtained by needle biopsies are in general

sufficient. Unger et al. [143] measured DNA damage

induced by cis- and carboplatin, doxorubicin and gemcit-

abin in primary cells of ovarian carcinomas. In parallel,

they measured the cell chemosensitivity and correlated

both parameters. Like others, they found a strong correla-

tion for the platinum compounds [144] but not for

doxorubicin and gemcitabin. Multiple targets of these cy-

tostatics may explain these results. For platinum

compounds the main cause of cytotoxicity is thought to be

the induced DNA damage [145]. In the future the comet

assay could become important in testing for platinum

resistances in patients especially in the second-line and

third-line therapies.

DNA damage is coupled with DNA repair, which has

been reported to be heterogeneous among individuals

[146]. For example, the determination of an individual

degree of induced DNA damage and repair capacity using

the comet assay [147] is therefore thought to be a prog-

nostic factor for chemosensitivity. Furthermore, DNA

damage response pathways have been shown in experi-

mental models to be associated with resistance or

sensitivity to DNA damaging agents. Teodoridis et al.

[148] examined potential associations of methylation pat-

terns of DNA damage response genes with response to

anticancer therapy. Over the last decade, there has been a

tremendous increase in the understanding of the mecha-

nisms of DNA damage detection, signaling, and repair, and

these findings have suggested therapeutic opportunities for

anticancer drugs that modulate these pathways [149, 150].

For example, there is a large body of experimental evi-

dence showing that DNA damage checkpoint kinase

inhibitors can enhance the efficiency of both conventional

chemotherapy and radiotherapy, and several agents have

entered clinical trials [151]. In the presence of DNA

lesions, cell cycle checkpoints and repair mechanisms are

being activated and a prominent route of cell elimination is

apoptosis [152]. Specific DNA lesions induced by DNA

damaging anticancer drugs that trigger apoptosis have been

identified. These include O6-methylguanine, base N-alky-

lations, bulky DNA adducts, DNA cross-links and DNA

double-strand breaks (DSBs). DNA damage induced cell

death by apoptosis has been reviewed by Roos et al. [153].

Apoptosis

In 1972, Kerr, Wyllie and Horvitz described the phenom-

enon of programed cell death and initially called this

process of natural cell death apoptosis. Since then, apop-

tosis has developed into an area of intense scientific interest

which encompasses the study of mechanisms involved in

mediating the cell biology of programed cell death. Two

major cell-intrinsic pathways for inducing apoptosis have

been identified. One begins with ligation of cell death

receptors, and the other involves mitochondrial release for

cytochrome c. Both pathways result in characteristic mor-

phological changes in nearly all cell types such as

membrane blebbing cell shrinkage, nuclear fragmentation,

chromatin condensation and chromosomal DNA fragmen-

tation. Many of the changes reflect the selective proteolytic

cleavage of various intracellular polypeptides (e.g., lamins,

caspases). Based on these alterations many different

in vitro methods have been devised to detect apoptosis.

Examples are the TUNEL (TdT-mediated dUTP Nick-End

Labeling) analysis [154], the DNA laddering analysis for

the detection of fragmentation of DNA in populations of

cells or in individual cells [155], the Annexin-V analysis
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that measures alterations in plasma membranes [156, 157],

and the activation of caspases (family of cysteine prote-

ases) [158]. In addition, apoptosis related proteins such as

p53, Fas, Bcl-2 and Bax are commonly analyzed to

understand details of the complex picture of the apoptotic

pathways.

Previous studies have demonstrated that a wide range

of anticancer agents, including chemotherapeutic agents,

hormones, and various biologicals, induce apoptosis in

malignant cells in vitro. Since apoptosis is a regulated

process, biochemical alterations that make cells more or

less susceptible to apoptosis might affect their sensitivity.

It has been proposed that tumor chemosensitivity to

anticancer drugs may partly be attributable to the degree

of activation of a genetic program for cell death. One of

the current models suggests that many different antican-

cer drugs such as doxorubicin, etoposide, and cisplatin

trigger apoptosis by inducing the synthesis of FasL,

which ligates Fas and activates caspase-8. However,

other studies have revealed many exceptions to this

model and propose that the majority of anticancer drugs

initiate apoptosis by the cytochrome c/Apaf-1/caspase-9

pathway resulting in mitochondrial membrane permeabi-

lization (MMP). Since mitochondrial permeabilization is

a relatively early event in the apoptosis, detecting this

event might be more useful in revealing the presence of

apoptotic cells than other assays, such as those that

measure caspase-3 activation or DNA fragmentation.

In vivo studies of induction of apoptosis in experimental

models and patients undergoing therapy have yet been

limited to histological examination, thus providing a

static picture of apoptosis, rather than an observation of

ongoing cell death. However, in vivo detection of

apoptosis is also hampered by the rapid clearance of

apoptotic cells by phagocytes [159]. Preclinical studies

on tumor cells analyzing the contribution of caspases to

anticancer therapy resistance have to our knowledge not

yet been published. However, inhibition or loss of cas-

pase expression has been proposed to confer resistance to

different anticancer drugs [160, 161]. The potential

impact of caspases and their activators on resistance is

also supported by ‘knock-out’ mouse models with distinct

variations of the Apaf1, caspase-3 or caspase-9 gene,

which are resistant to various apoptotic stimuli in dif-

ferent tissues [162–164].

Finally, alterations in the p53 gene and implications in

the induction of apoptosis represent one of the most studied

genetic events in cancer cells and are suggested to be

linked to chemosensitivity. Nevertheless contradicting

results were reported. For example, significant correlations

of overexpression of p53 and prognosis were published

[165] for squamous cell carcinomas, but no correlations

were found in another study [166].

Detailed analysis of the induction of apoptosis is now-

adays mainly integrated in comprehensive drug testing

platforms for preclinical testing of anticancer drug candi-

dates. Therein, the in vitro analysis of the mode of action

and efficiency of a drug candidate is the main focus.

Genomics

Cancers arise from a multistage process in which tumor

cells progressively acquire a sequential accumulation of

genetic alterations. The genomic changes occurring in the

transformation of normal cells to cancer cells influence

several genetic mechanisms. These events destabilize the

normal cellular homeostasis e.g. gains, losses or translo-

cations of large regions of chromosomes, single-nucleotide

substitutions, copy number changes and methylation

events. Among these alterations, intragenic mutations play

an important role in activating oncogenes or inactivating

tumor suppressor genes. This results in misregulation of

cellular signaling, e.g. proliferation and apoptosis and thus

generates a survival advantage for the cancer cell [167,

168]. Certain mutations may be associated with specific

types of cancers or may be common to several types of

cancers. Currently, most of our knowledge of these alter-

ations stems from studies of single genes in specific

cancers. A variety of high-throughput techniques has now

been developed for profiling and analysis of cellular net-

works, providing means to survey the cancer genome and

transcriptome. By the complete sequencing of the human

genome and progress in bioinformatical research, the

understanding of cancer-related genomic alterations and

expression patterns has grown. Nonetheless, understanding

of the complex basic patterns and functions of molecular

alterations on the genomic level are a great challenge.

Therefore, the main focus of oncogenomic profiling lies on

the analysis of DNA repair, mutation status, gene expres-

sion, gene copy number and genome stability (Fig. 4).

Based on the current knowledge of the oncogenomic

alterations existing in cancer genotypes, key mutations of

cancer development [169], new subclasses of cancer types

have been identified [170, 171] and even models for the

prediction of clinical outcome have been calculated [172,

173].

The prediction of response to therapy is a relatively new

field of oncogenomics. The strong heterogeneity of indi-

vidual tumors in terms of clinically observed drug response

is an important reason for the need for individualized,

molecular guided therapy, but also for the difficulties in

realizing this goal. There is accumulating evidence that

drug-specific response pathways are influenced by the

individual genotype and gene expression, which led to

efforts to identify gene signatures and gene mutations
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predictive for chemosensitivity. This will ultimately lead to

the development of strategies for patient-tailored antican-

cer therapy which are based on the individual molecular

profile of a tumor [172].

Mutation analysis

During the past decades, there have been great advances in

experimental methods for genome characterization built on

‘first-generation’ capillary-based DNA sequencing, also

known as Sanger sequencing [173]. These sequencing

methods can be crudely divided into a general and a tar-

geted approach. The products of both approaches are

amplified templates, either by multiplication in plasmids or

as PCR amplicons. Sequence determination is then per-

formed by high-resolution electrophoretic separation in a

capillary-based polymer gel. Bioinformatical software

converts these signals into DNA sequences and calculates

error probabilities for each base-call. Approaches, like the

second-generation parallel sequencing techniques

increased the throughput and decreased the cost of nucle-

otide resolution. Second-generation sequencing

technologies are based on the simultaneous detection of

nucleotides in arrayed amplified DNA products originating

from single DNA molecules [174]. Advanced technologies

like next-generation sequencing approaches are currently at

the front of research with great potentials to give new

insights in tumor heterogeneity and individual drug

responses. High-throughput sequencing technologies

including those created by Illumina (Illumina, Inc.), 454

(Roche Diagnostics Corp.) and SOLiD (Life Technolo-

gies), enable whole genome sequencing at an

unprecedented scale and dramatically reduced costs over

the gel capillary technology used in the human genome

project.

Advanced next-generation sequencing systems are

capable of sequencing a human genome at 309 coverage in

less than 1 week. These next-generation sequencing (NGS)

systems use parallel sequencing to generate hundreds of

millions of short (36- to 150-bp) DNA reads that can be

aligned to the human genome. Although a number of dif-

ferent NGS strategies have been developed, the paired-end

strategy from Illumina Inc. has become the tool of choice

for most cancer genome studies published to date. While

most cancer genome studies so far have focused on single

patients, this pattern is changing as a result of ongoing

international collaborations and decreases in the cost of

sequencing. The hope is that NGS data will shorten the

road to personalized medicine, in which treatments and

therapies are tailored to target the unique features of

individual tumors and tumor subpopulations [175] based

on mutations that define sensitivity and drug resistance

(http://www.cancerrxgene.org/).

The extensive genotyping of individual tumors dis-

played thousands of mutations in an individual cancer

genome [176]. The extent of genetic variation in the gen-

omes of the human population is far greater than had been

estimated [177]. While the impact of the vast majority of

these mutations currently remains unknown, basic and

translational research has pointed out, that a much smaller

group of mutations is not only necessary for the develop-

ment of cancer but is also required for the maintenance of

the tumorś survival [178]. The presence of such ‘driver’

mutations sustains tumors and can simultaneously repre-

sent a cancer-specific target for therapy [179–182]. For

example, the mutations of the tumor suppressor genes

TP53 and EGFR are among of the most studied mutations

in cancer research with implications in tumor development,

progression and response to chemotherapy [183]. Several

mutations in genes, encoding for proteins involved in cell

signaling pathways, have a strong impact on the field of

targeted therapy. This area of cancer research is reviewed

elsewhere in detail [180, 184–190].

Individual alterations and differences in metabolism, in-

and efflux of xenobiotics and cellular signaling pathways

caused by mutations are some of the reasons for the

diversity in individual response to conventional chemo-

therapy [191]. The most common form of mutation in the

Fig. 4 Exemplary illustration

of different genomic approaches

used in translational research
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human genome is the single-nucleotide polymorphism

(SNP). Functional genomic polymorphisms in drug target

genes [193], metabolising enzymes [194] and DNA-repair

enzymes [195] may have important implications for drug

efficiency. Therefore, these sequence alterations are

determinants of variations in metabolism of drugs and

associated side effects, because they have an important

influence on the expression levels and activities of the

corresponding proteins [196]. A recent study found that

anticancer drug susceptibility-associated SNPs were asso-

ciated with the transcriptional expression level of genes as

potential master regulators [197]. A significant body of

evidence supports the concept of predicting drug efficiency

and side toxicity by SNP genotyping. For example, tran-

scriptional contributions of genetic polymorphisms to

cytotoxicity of cisplatin using human cell lines were listed

[198]. Furthermore, in 2010 a genome-wide identification

of chemo-sensitive SNP markers in colorectal cancer was

conducted by Kim and colleagues [199]. Besides the

characterization of the NCI60 panel regarding the mutation

status of 24 genes, causally implicated in oncogenesis and

drug response [200], the panel was also screened for

chemosensitivity associated SNPs. This resulted in several

studies dealing with the establishment of pharmacogenetic

markers [201, 202].The impact of polymorphisms in genes

involved in anticancer drug efficiency, response to che-

motherapy and potential side effects has been reviewed

elsewhere [203, 204]. Whereas the current knowledge

about SNPs provides us with invaluable tools to find and

understand significant associations between SNPs and drug

response, we do not fully understand the genetic com-

plexity of the attributes, underlying individual variability in

drug response. Interpretations of associated studies are

complicated by the number of genes, variants in each gene

and the frequency of a variant within a population. The

location of a variant SNP in the coding region, the regu-

latory region, or the non-coding region of the genome also

affects proteinexpression and function, in a way that is not

yet fully understood. Further advances in molecular biol-

ogy and bioinformatics will make it possible to

comprehensively understand the complex influence of

SNPs on gene expression, protein expression and finally

protein function. This will add its part to the understanding

of the complex network of determinants underlying indi-

vidual response to anticancer therapy.

Furthermore, FISH analysis is routinely performed to

assess general cytogenetics and in particular disease-rela-

ted chromosomal disorders, e.g. chronic myelogenous

leukemia, acute lymphoblastic leukemia and Down syn-

drome. For prediction of response to anticancer therapy,

the FISH technique has been primarily used to determine

the copy number of the HER-2 gene to select for HER-2

targeted therapies such as trastuzumab and lapatinib in

breast cancer. Therefore, the determination of HER-2 gene

amplification by FISH technique is widely used in clinical

trials evaluating HER-2 targeted therapies [180–183]. In

the analysis of response to targeted anticancer therapy,

FISH is mainly used to investigate relationships between

the copy number of a gene, encoding a target protein and

individual response to therapy [184, 185].

DNA microarray profiling

A DNA microarray is a multiplex technology used to

simultaneously measure expression levels of thousands of

genes. RT-PCR applications are generally the techniques of

choice, based on the enhanced sensitivity with the ability to

detect RNA over a seven-log range. This technology has

been miniaturized on small silicon chips or glass slides

with the feasibility to accommodate over 30,000 oligonu-

cleotides or cDNAs and has thus adapted to high-

throughput performance. The huge amount of data pro-

duced by those experiments is being analyzed by pattern

recognition software, using clustering algorithms for the

identification of groups of genes whose expression varies in

the same way between groups. Bioinformatic data mining

has the potential to reveal unknown patterns of relation-

ships between genes, in context to response mechanisms to

anticancer therapy.

The identification of gene sets with a functional role in

chemosensitivity may provide assistance in the choice of

patient-tailored therapeutic regimens and for therapeutic

intervention in drug-resistant disease.

Since more than 100,000 compounds were screened for

anticancer activity patterns against the NCI60 cell line

panel and the resulting data has revealed information on the

mechanisms of action and resistance of those compounds

[205–207], several genomic studies have been conducted

using the well characterized NCI60 cell line panel as a

basis. The p53 tumor suppressor pathway [208], membrane

transporters and channels [209], reductase enzyme

expression [210], EGFR expression and amplification

[211], P450 enzyme expression [212] and MRP expression

[213] are some examples for the investigations of rela-

tionships between distinct gene expression patterns and

response to anticancer therapy based on the NCI60 panel.

Among others, Weinstein and colleagues have analyzed

gene expression patterns of the NCI60 panel on the basis of

activity patterns of compounds [207, 214]. To improve the

reliability of gene signatures predictive for chemosensi-

tivity, robust methods for combining microarray expression

data with NCI60 chemosensitivity data were developed.

Algorithms for predicting chemosensitivity were optimized

based on different bioinformatic filter- and cluster

approaches [215, 216]. The bioinformatic approach called

the co-expression extrapolation (COXEN) algorithm has
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been shown to be useful in the NCI60 panel to predict

chemosensitivity, even in cell lines of histological types

not included in panel. That led to the question, whether this

approach could be used to predict drug sensitivity in dif-

ferent patient’s primary tumors. A modification of the

COXEN algorithm has been demonstrated to be potentially

applicable to bypass the intermediate animal model and

achieve predictability of response to anticancer therapy in

the clinic situation [217].

Results from the NCI60 panel were also observed in

other cell line panels, e.g. the classification of drugs based

on their modes of action [218]. Based on these results,

Nakatsu et al. complemented the JFCR-39 cell line panel

and developed an integrated database of chemosensitivity

correlated with gene expression for this new cell line

panel, called JFCR-45. This revealed candidate genes

which may be related to chemosensitivity. To proof this,

the ability of these candidate genes to alter chemosensi-

tivity after being individually over-expressed was

examined [219]. Another panel consisting of 30 cell lines

was also used in a study, which focused on chemoresis-

tance to in vivo concentrations achieved by anticancer

drugs. Gene expression patterns provided 76 new candi-

date genes with associations to multidrug-resistance. This

may allow prediction of response to anticancer therapy in

a clinical situation [220]. Sekine et al. published in 2007

[221], highlighting genes which potentially regulate

chemosensitivity of tumor cell lines to anticancer therapy.

Furthermore, comprehensive studies correlating gene

expression patterns and chemosensitivity were conducted

using human tumor xenografts [88, 89, 222]. A genome-

wide study, analyzed gene expression profiles of 85 cancer

xenografts in mice that had been established from nine

different human organs. The applied cDNA microarray

consisted of 23,040 genes, used to study those xenografts.

The study resulted in the identification of 1,578 genes

whose expression levels correlated significantly with

chemosensitivity [223]. All these studies suggest that the

combination of unbiased genome-wide chemosensitivity

analysis using array-based approaches may identify can-

didate genes or gene sets with the capacity to predict

cancer cell chemosensitivity. It is important, that these

candidate genes or gene sets identified in these functional

approaches still require extensive validation in vivo before

they can be considered as putative biomarkers and find

application in the clinical setting. Therefore, several

studies were conducted in patient cohorts to identify pre-

dictive biomarker for anticancer therapy directly in the

clinical setting. Clinical trials were carried out for differ-

ent tumor entities, e.g. colorectal cancer [224, 225],

oesophageal cancer [226], epithelial ovarian cancer [227],

pancreatic cancer [228] and breast cancer [229, 230].

These studies reported on gene signatures that may enable

prediction of the response to anticancer therapy. Even

though these studies were carried out directly in patient

cohorts, the resulting predictive signatures have to be

validated in independent studies, with a more significant

number of patients. The instability of gene expression

signatures derived merely from associative studies has

been documented [231–233] and contributes to failed

attempts to identify gene expression patterns predictive of

response to anticancer therapy. Consequently, DNA

microarray analyses of small clinical trial cohorts may not

yield gene signatures with power sufficient to predict

chemosensitivity [234]. Furthermore, tissue sampling and

quality have a major impact on profiling results, due to the

fact that transcriptional profiles are the sum of mRNA

expression contributed by all tissue components [170].

Individual tumor mRNA expression heterogeneity and the

varying tumor content in clinical samples, may give a

significantly impaired transcriptional profile among sam-

ples [235]. The interpretation of microarray results is also

difficult in that complex bioanalytic and bioinformatical

analysis techniques are used, which are not yet fully

standardized. Nonetheless, the analysis of gene expression

patterns greatly contributes to the understanding of the

complex cellular mechanisms underlying individual

response to anticancer therapy.

Currently, commercialized microarray-based multigene

assays are already available. For example, the MammaPrint

assay (Agendia BV, Amsterdam, The Netherlands) com-

prising 70 genes, which is currently designed as a pure

prognostic assay for women under the age of 61 with either

ER-positive or ER-negative, lymph node negative breast

cancer [236]. This assay has not yet been shown to be able

to predict sensitivity to anticancer treatment. The oncotype

DXTM is a 21-gene, prognostic and predictive assay that

determines the 10-year risk for disease recurrence in

patients with ER-positive, lymph node negative tumors. In

contrast, this assay has been reported to predict benefit

from tamoxifen treatment in patients with a low or inter-

mediate risk score and benefit from chemotherapy in those

with a high-risk score [237]. A combination of several

pharmacogenomic gene sets, designed primarily as a pre-

dictive test for guiding selection of therapy is called the

NuvoSelectTM assay. One of the used gene sets consisting

of 30 genes predicts response to preoperative combination

treatment with paclitaxel, 5-fluorouracil, doxorubicin, and

cyclophosphamide (TFAC). Another gene set predicts

clinical outcome after 5 years of endocrine therapy [238].

In summary, the collection of huge databases of gene

expression studies will hopefully reveal a comprehensive

picture of the genomics of cancer and contribute its part to

individualized anticancer therapy.
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Proteomics

Functionally, cancer is a genomic as well as a proteomic

disease. While the basic information for the production of

proteins is encoded by the genome, only subsets of the

possible protein products abundant in the cell are displayed

in the genetic code. Finally, the structure of protein pro-

ducts and their functional status often depend on post-

translational modifications, such as phosphorylation, gly-

cosylation and proteolytic cleavage that are not reflected in

their genomic sequences. Furthermore, gene expression

often does not correlate with the protein expression or the

functionality of the encoded protein [239, 240]. Since,

cellular signal transduction is mostly a post-translationally

driven process, it seems obvious to directly investigate the

protein-driven signaling cascades by the use of proteomics

[241]. Proteomics is a recent member of the ‘omics’ family

and describes the study of the wide complement of cellular

proteins, their subcellular localization, turnover and inter-

action with other proteins. In contrast to the genome, the

proteome is at a constant flux due to diverse environmental

influences. Therefore, the proteome is significantly more

challenging to map, compared to the genome [242].

Alterations within the proteome also have a potentially

higher functional impact than modifications in the genome,

because they are more likely to contribute to a drug-

resistant phenotype [243].The analysis of proteins and

protein networks in cancer using proteomic technologies is

known as oncoproteomics (Fig. 5). Given that the prote-

ome of a cell is responsible for key-biologic processes and

therefore also makes up the bulk of pharmaceutical targets,

oncoproteomics has the potential to revolutionize clinical

practice. This includes cancer diagnosis, development and

individualized selection of therapies that target exclusively

the cancer-specific protein networks, and real-time

assessment of therapeutic efficiency and toxicity. Proteins

are traditionally measured using low-throughput techniques

such as western blotting, in situ hybridization and immu-

nohistochemical staining [244]. Two-dimensional (2D) gel

electrophoresis is a widely used technique in proteomic

research, due to its high resolving power that permits

simultaneous visualization of primary and post-transla-

tionally modified gene products in a single gel [245, 246].

This technology has been used to separate proteins on the

basis of their size and charge. In combination with mass

spectrometry for protein identification this is a widely used

approach for the discovery of several biomarker candi-

dates. Matrix-assisted laser desorption and ionization with

time-of-flight detection mass spectrometry (MALDI-TOF),

surface-enhanced laser desorption and ionization with

time-of-flight spectrometry (SELDI-TOF) and antibody-

based protein microarrays are modern methods for a rapid

and more sensitive high-throughput detection and identifi-

cation of both known and unknown proteins [247]. In

contrast to mass spectrometry-based biomarker discovery,

antibody-based profiling requires prior knowledge of the

proteins that are going to be investigated. Therefore, the

identification of previously unknown protein biomarker

candidates is restricted to MS-based discovery approaches.

Antibody-based approaches, such as protein microarrays

became more and more important with the introduction of

targeted anticancer therapy. These technologies are

potentially able to map the activation status of cellular

signaling pathways comprehensively, which will have a

strong impact on individualized treatment concepts and

monitoring of response to therapy. Nearly all proteomic

techniques that are usually used for molecular analysis in

several biomedical fields are also applied in the study of

response to therapy in human cancers [248–250]. Onco-

proteomics will play an important role in gaining new

insights into cancer development and progression as well

as in the discovery and validation of new protein targets for

diagnostics and prediction of response to anticancer ther-

apy [251–253]. Furthermore it will be a great challenge to

acclimatize proteomic technologies for regular use in

clinical laboratories.

2D electrophoresis

Two-dimensional gel electrophoresis (2DE) is one of the

oldest approaches and one of the most powerful protein

separation methods available today. The first-dimensional

separation of samples is achieved by isoelectric focusing

(IEF), which separates proteins on the basis of their charge.

Two types of IEF techniques are currently used: the

immobilized pH gradient (IPG) technique; and the non-

equilibrium pH gradient gel electrophoresis (NEPHGE).

The second-dimensional separation is performed using

sodium dodecyl sulfate-polyacrylamide gel electrophoresis

[254]. The 2DE provides the capability to qualitatively and

quantitatively resolve complex protein mixtures to unique

spots [255, 256]. The measured protein patterns can be

analyzed using sophisticated, bioinformatical software to

reveal those proteins that are differentially expressed

between samples.

2D-DIGE is an important proteomic tool, especially for

translational research involved in biomarker discovery.

When absolute biological variation between samples is the

main objective, as it is in biomarker discovery, 2D-DIGE is

still one of the methods of choice [257]. Several studies

were published, identifying novel prognostic or predictive

biomarkers, e.g. biomarkers of drug-resistance [258–261].

First experiments, to study resistance to anticancer therapy

using 2DE techniques were performed back in 1986, when

742 F. T. Unger et al.

123



Shen et al. [262] investigated the mechanisms of multidrug

resistance in human cancer cells. Since then, experimental

techniques have continuously been improved and modified

for various study designs [263, 264]. For example, Tanaka

et al. adapted the 2DE technique for a comparative pro-

teomic analysis of basic proteins. In this study, cancer cell

lines were analyzed with regard to their chemosensitivity,

using a radical-free and highly reducing method of two-

dimensional polyacrylamide gel electrophoresis [265]. This

technique is reported to have a superior ability in the

separation of basic proteins and the quantification of post-

translational modifications, compared to traditional 2DE

[266]. Different prefractionation methods, prior to 2DE

analysis, as well as various combinations of analysis

technique have also been developed to gain detailed

knowledge of cellular mechanisms involved in response to

anticancer therapy. Based upon these developments,

detailed studies of different cellular components and pro-

tein signaling networks have also been conducted, e.g. the

subcellular proteome [267, 268], the phosphoproteome

[269], mitochondrial proteome [270] .Using comparative

proteomic approaches, long lists of differentially expressed

proteins, potentially involved in chemoresistance mecha-

nisms were published, and reviewed by Zhang et al. [271].

Besides studies based on secondary cell lines, these tech-

niques also found application in the clinical setting [272,

273]. In many studies, biomarker candidates were validated

by alternative, more specific techniques such as RT-PCR

and Northern blot at the mRNA level or Western blot and

immunohistochemistry at the protein level. The identified

proteins belonged to a variety of different classes of pro-

teins. However, the limitations of this method include

limited reproducibility and inability to detect low abundant

proteins [274]. These low levels may result in undetectable

proteins which significantly limit the application of this

method to clinical samples. The combination of 2DE based

with liquid chromatographic (LC) protein separation tech-

niques [e.g. 296] and complete gel-free LC–MS approaches

are more and more recognized.

Chromatographic techniques

An alternative, non-gel-based, protein separation approach

to 2DE is Liquid Chromatography (LC) [275]. Basically,

the components are separated using two phases, a station-

ary phase and a mobile phase. The procedure is mainly

described by the elution of the different components at

different rates, due to a varying affinity to interact with the

used matrix, which results in a physicochemical separation.

This technology is basically used for protein or peptide

separations, prior to MS analysis and has been improved to

handle proteomic analyses of complex samples [276].

Various chromatography techniques have been developed

as methods for protein separation, e.g. reversed-phase

[277], cation exchange [278], anion exchange [279],

biphasic ion-exchange [280] or size-exclusion [281]. Sin-

gle- and multidimensional LC can directly be interfaced

with the mass spectrometry (MS), enabling automated

analysis of large amounts of data for subsequent protein

identification [282]. Another 2D chromatographic strategy

termed multidimensional protein identification technology

(MudPIT) has been extensively applied to proteomic ana-

lysis. Mud-PIT is in principle a technique in which two

liquid chromatographic steps are interfaced back-to-back in

a fused silica capillary to permit two-dimensional high-

performance liquid chromatography, combined with mass

spectrometry for protein identification [283, 284]. How-

ever, the application of tryptic digestion of proteins in these

technologies introduces some limitations. Unfortunately,

the tryptic digestion of protein samples results in a loss of

basic information about the intact proteins, e.g. post-

translational modifications. Furthermore, low abundance

proteins from a complex mixture may not be detectable in

the presence of various peptides originating from other

proteins. Therefore, the separation of intact proteins by

liquid chromatography may offer advantages over tryptic

approaches and the use of gel-based methods. In general,

these technologies show advantages over gel-based tech-

niques with regard to speed, sensitivity, scope of analysis

Fig. 5 Exemplary illustration

of different proteomic

approaches used in translational

research
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and dynamic range [285]. In the field of oncoproteomics

these methods have been integrated in the mass spec-

trometry-based discovery and characterization of novel

biomarker candidates for guiding individualized anticancer

therapy (e.g.) [286, 287].

Mass spectrometry (MALDI TOF MS, SELDI

TOF MS)

Mass spectrometry is a method of choice for analytical

characterization of potential drug molecules and protein

identification. This technology is widely used to detect and

identify the chemical composition of samples, after ioni-

zation, on the basis of their mass-to-charge ratio (m/z). As

described earlier, mass spectrometry is often combined

with different protein separation techniques to discovery of

protein biomarker. Many variants of mass spectrometry-

based approaches have been developed for gel-free pro-

teomic analysis. These methodologies apply different pre-

fractionation techniques, such as selective surface binding

(SELDI), magnetic bead pre-fractionation or liquid chro-

matography (LC-MALDI). The basic principle of the

surface-enhanced laser desorption/ionization- time of flight

(SELDI-TOF) and the matrix-assisted laser desorption/

ionization (MALDI) techniques is the fact that the sample

is pulsed with laser energy causing proteins or protein

fragments to ionize, and fly through a vacuum tube to the

detector plate. Their time of flight is affected by the mass

of the particle and its charge (m/z ratio). The detector plate

records the intensity of the signal at a given m/z value, and

a spectrum is generated. The different peaks in the spec-

trum correspond to different m/z protein species. SELDI-

TOF is a proteomic technology used for the quantitative

analysis of protein mixtures after selectively capturing

proteins on pretreated surfaces. In contrast to the MALDI

technology, the SELDI technology uses selective surfaces

for binding a subset of proteins based on absorption, par-

tition, electrostatic interaction or affinity chromatography

on a solid-phase protein chip surface. Therefore, stainless

steel or aluminum-based chips are coated with chemicals

(e.g., anionic, cationic, hydrophobic, hydrophilic, or

immobilized metal affinity) or biological substances (e.g.,

antibodies, antigen binding fragments such as scFv, or

receptor) to capture protein samples based on their intrinsic

properties. These pre-fractionation steps enable the detec-

tion of low abundant proteins. Until now, SELDI has

mainly been used to characterize patients at risk of the

development of cancer based on the direct analysis of body

fluids like serum, plasma, and urine [288–290]. Nonethe-

less, there are approaches to use SELDI-TOF as a clinical

proteomics tool for the identification of protein biomarker

candidates, being predictive for response to anticancer

therapy [90, 291–293].

In general, MALDI techniques immobilize protein

samples in an energy absorbing matrix. The entire reper-

toire of proteins in the sample interacts with the matrix

from which a selected subset of proteins is bound to, a

function of the composition of the selected matrix. The

matrix chemicals absorb energy, which is subsequently

passed to the sample proteins. Protein structural informa-

tion, such as peptide molecular weight, amino-acid

sequence composition, type and location of post-transla-

tional modification, could be obtained by MS analysis.

Two MS technologies are common and widely used, the

matrix-assisted laser desorption ionization time of- flight

mass spectrometry (MALDI–TOF–MS) and the electro-

spray ionization mass spectrometry (ESI–MS). MALDI–

TOF–MS generates ions from solid-phase samples and

measures their mass in a flight tube, whereas ESI–MS

generates ions from liquid samples and measures their

mass using either quadrupole or time of flight detector.

MALDI–MS is the most commonly used technique for

peptide mass fingerprinting [294, 295]. MALDI–MS is a

fast, robust, easy to perform, sensitive (low fmol range),

and accurate (low ppm range) technology, which can be

adapted to high-throughput [296]. LC-MALDI approaches

have also been used to identify protein biomarker for the

prediction of response to anticancer therapy. These studies

were performed using cell lines, as well as patient’s tumor

and serum samples [297–301]. Mass spectrometry tech-

nologies in combination with protein separation techniques

have the ability to investigate complex patterns of protein

expression and modification. Despite the complexity of the

human proteom, the constantly improved proteomic tech-

nologies will ultimately enable the measurement of

individual molecular profiles of patients on the protein

level, with the potential to guide personalized medicine.

Immunohistochemistry

Similar to the western blot technology, immunohisto-

chemistry is a well-known method which has developed

over the years with respect to reproducibility and sensi-

tivity. In 1941 already, Coons et al. [302] published a paper

describing an immunofluorescence technique for detecting

cellular antigens in tissue sections, which marked the

beginning of immunohistochemistry (IHC). The funda-

mental concept behind IHC is the detection of antigens

within tissue sections using specific antibodies. Once

antigen–antibody binding occurs, a colored histochemical

reaction becomes visible by light microscopy or in the case

of fluorochromes using ultraviolet light. Immunohisto-

chemistry (IHC) has long been used as an adjunctive

diagnostic tool in a variety of cancers. It has provided

clinicians with correlative insight into potential prognosis

and differential diagnosis. The initially simple method of
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IHC has become more complex over the years. Currently,

extremely sensitive methods are available to detect one or

multiple antigens simultaneously or even to examine hun-

dreds of tissues in the same section for the presence of a

particular Antigen (microarray technology).

Automation using automated slide stainer increased

throughput and reproducibility. Automated staining

according to very stringent and standardized conditions has

become more and more important since the introduction of

targeted anticancer therapy, wherein target expression is

one of the essential preconditions. For example, HER2

testing has become an important part of the clinical eval-

uation of all breast cancer patients throughout different

countries, and accurate HER2 results are necessary for

identifying patients who benefit from HER2-targeted

therapy. IHC analysis is deeply integrated in breast cancer

treatment by being able to determine the HER-2 status, the

testing of progesterone receptor, estrogen receptor and the

proliferation marker Ki-67 [303, 304]. Hence IHC is rou-

tinely used to predict response to both HER-2 and

hormonal targeted therapies, but is not yet suitable for the

prediction of either efficiency or toxicity of anticancer

drugs.

Furthermore, IHC is often being used to validate find-

ings from alternative proteomic studies. For example the

validation of prognostic and predictive protein biomarker

candidates derived from cell line experiments is commonly

performed in clinical tumor samples [305–307]. The vali-

dation of proteomic-based discovery using clinical

specimen is reviewed by Hewitt et al. [308]. Although,

antibody signals can be directly assigned to cellular

localizations and thus laser microdissection is not required,

IHC results are nonetheless influenced by pre-analytic tis-

sue processing and antigen retrieval. Inconsistent quality of

IHC reagents and antibodies is also discussed to influence

robustness of IHC results [309]. Despite automation and

knowledge, IHC, still lacks uniformity of technique,

appropriate controls, and standardization of antibodies and

grading techniques, making it difficult to compare results

across institutions, laboratories and experiments. The sta-

tistical analysis of IHC-based multiple markers may be

complicated by the nonlinear nature of IHC staining, the

impact of different slide scoring thresholds for different

immunostains and different subcellular localization of

markers. Limitations of IHC have been addressed by other

techniques, including isotopic labeling and in situ hybrid-

ization, which allow for more quantitative analysis of

variations in protein expression.

Protein microarrays

Protein microarrays, one emerging class of proteomic

technologies, have broad applications for discovery and

quantitative analysis of protein expression patterns [310,

311]. This technology is uniquely suited to generate an

overview map of known cellular signaling proteins and

their activation status, reflecting the state of information

flow through cellular networks in individual specimens. In

the simplest sense, protein microarrays are immobilized

protein spots [312, 313]. Thus, proteins can be arrayed on

solid surfaces, capillary systems or immobilized on beads

[314, 315]. The spots may be homogeneous or heteroge-

neous and may consist of a bait molecule, such as an

antibody, a cell or phage lysate, a nucleic acid, drug or a

recombinant protein or peptide [316]. In the array, detec-

tion is achieved by probing with a tagged antibody, ligand

or serum/cell lysate. The most advanced format of this

technique is the antibody-microarray, in which the targeted

proteins are detected by specific antibodies, which were

coated on solid surfaces [317]. The reverse-phase protein

microarrays (RPPA) for example, immobilize one sample

per array spot, enabling an array to comprise hundreds of

different cellular lysates or patient samples. The detection

of proteins is conducted using phosphospecific and total

protein antibodies to determine the activation status of key

signaling molecules. This technology has been widely

been used to analyze distinct cellular signaling pathways

or to screen cell line panels as well as collections of

clinical specimens for disease-related protein expression

patterns. For example, Jones et al. [318] comprehensively

analyzed the protein interaction network for the ErbB

receptor family, which may have implications in epidermal

growth factor receptor targeted anticancer therapy. Chan

et al. [319], first showed the application of multiplexed

reverse-phase protein microarrays to the study of signaling

kinetics and pathway delineation in a leukemic T lym-

phocytes cell line after activation of certain receptors. An

example of for the use of RPPA to screen protein

expression patterns in cell line panels is a study of Nish-

izuka et al. [320], screening the NCI60 cell line panel

using a reverse-phase protein lysate microarray. A finding

from this study was that the patterns of protein expression

compared with those obtained for the same genes at the

mRNA level showed a striking regularity. Cell-structure-

related proteins almost invariably showed a high correla-

tion between mRNA and protein levels across the NCI60

cell lines, whereas non-cell-structure-related proteins

showed poor correlations. They also proposed that, this

technology can be expected to contribute significantly to

the identification of molecular markers and targets for

individualized anticancer therapy. On this basis, Ma et al.

[321] determined whether proteomic signatures of

untreated cancer cells were sufficient for the prediction of

drug response using the NCI60 panel. In this study, a

machine learning model system was developed to classify

cell line chemosensitivity exclusively based on RPPA
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proteomic profiling. The accuracy of chemosensitivity

prediction of all the evaluated 118 anticancer agents was

significantly higher (P \ 0.02) than that of random pre-

diction. This study provided a basis for the prediction of

drug response based on protein markers in the untreated

tumor. Cell line panels find broad application in the pro-

teomic analysis of individual chemosensitivity and drug

discovery [322–325]. Protein microarray platforms that

can provide a quantitative, multiplexed read-out for cel-

lular signaling and that can utilize microscopic quantities

of tissue specimens for upfront analysis are needed for the

implementation of this technology in the clinical situation

[326] Therefore, the RPPA format has been improved to

be able to measure the abundance of many specific pro-

teins in complex solutions and has been adapted to use of

very small amounts of protein, [327]. Thus, this technol-

ogy is well suited for signal transduction profiling of

clinical samples, e.g. biopsy specimens [316, 328, 329].

The identification of critical nodes or interactions within

these networks is essential to drug development and the

design of individualized anticancer therapy [330], espe-

cially with targeted drugs [331, 332]. Using breast cancer

as an example, Wulfkuhle et al. [241] stated that, phos-

phoprotein-driven cellular signaling events represent most

of the new molecular targets for anticancer therapy.

Therefore, the application of reverse-phase protein

microarray technology for the study of ongoing signaling

activity within breast tumor specimens holds great poten-

tial for elucidating and profiling signaling activity in real-

time for patient-tailored therapy. Moreover, their data

demonstrate the requirement of laser capture microdis-

section (LCM) for analysis and reveal the metastasis-

specific changes that occur within a new microenviron-

ment. Microdissection should be a necessary component of

molecular analysis since dramatic changes within specific

protein phosphorylation levels were noted between a

majority of the undissected and microdissected samples.

Laser capture microdissection technology permits a

selection of a homogenous tumor population from a field

of normal-appearing cells and vice versa, to improve the

accuracy of comparative proteomics studies. Furthermore,

Haab et al. [327] noted that, the sensitivity of individual

antibody–antigen interactions for any given detection

system are highly dependent on the relative abundance of

the antigen–antibody species and the binding affinities

between the probe antibodies and the immobilized anti-

gens. Liotta et al. [333] reported on the analytical

challenges faced by protein arrays and proposed a practical

guide for optimizing construction and study design.

Additionally, a difficulty is associated with preserving

proteins in their biologically active conformation before

analysis. This will further limit the application of this

technology as a routine proteomic strategy, unless clinical

samples are routinely taken by the use of highly specified

procedures. The broad application of protein arrays in

personalized medicine is also impaired by the costs of

producing antibodies and the limited availability of anti-

bodies with high specificity and high affinity for the target.

Nevertheless, protein microarrays in combination with

technologies such as LCM and high standardization will

greatly contribute to the improved description of the multi-

factorial network, underlying individual response to anti-

cancer therapy and will allow the design of personalized

medicine.

Discussion

For most of the history of medicine, doctors relied on their

senses—mainly vision, hearing, and touch—to diagnose

illness and monitor a patient’s condition. Since then, bio-

medical research has made huge progress in diagnosis and

treatment strategies. The traditional trial-and-error practice

of medicine is progressively eroding in favor of more pre-

cise marker-assisted diagnosis and safer and more effective

molecularly guided treatment of disease. The aim of per-

sonalized medicine is to tailor disease detection, diagnosis

and therapy to each individuaĺs profile, using molecular

profiles to predict disease development, progression, clini-

cal outcome and response to anticancer therapy. Recent

advances in high-throughput technologies have raised new

opportunities in the fields of personalized- and predictive

medicine. Thus, enabling researchers to screen the whole

genome, proteome, transcriptome, and metabolome for

biomarkers, in tumor tissues and body fluids [334]. In

addition, new cellular models such as 3D organoid cultures

or spheroid systems opened new opportunities in drug dis-

covery and translational research. These models reflect the

in vivo situation much better than common 2D models

which are however, well suitable for high-throughput

screenings. The introduction of modern technologies such

as mass spectrometry and protein and DNA arrays, com-

bined with the understanding of the human genome, has

enabled simultaneous examination of thousands of proteins

and genes in single experiments. These technologies are

capable of performing parallel analysis, in contrast to serial

analysis conducted with older methods. Due to the variety

of data points, they provide opportunities to identify dis-

tinguishing patterns for cancer diagnosis and classification

as well as for prediction of response to anticancer therapies.

Furthermore, these technologies provide the means by

which new tumor markers could be discovered. At the

current stage, the molecular prediction of response to anti-

cancer therapy is more exploratory, aiming at advancing

scientific knowledge within clinical investigations rather

than routine in clinical practice.
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Although numerous biomarkers have been discovered,

only a handful of them, such as HER2 amplification,

BCR-ABL translocation, KRAS, BRAF and EGFR

mutations have been validated for the use in the clinical

reality [335].

Molecular research in human tumors is currently pre-

dominantly performed retrospectively, using residual tissue

specimens obtained from surgical resection procedures.

Those tissues are used for generating hypotheses regarding

the clinical relevance of the observed markers in the

studied patient populations, target validation, and assay

optimization. Often these tissue samples are obtained by

core needle biopsies, e.g. fine needle aspiration, resulting in

small sample amounts, which are often insufficient for

comprehensive molecular analysis with currently available

technologies. Therefore, the miniaturization of new

emerging technologies is urgently needed.

Furthermore, several studies have shown that tissue

samples change their molecular profiles and start degrading

immediately after resection from the patient’s blood sup-

ply. Several exogenous factors such as ischemia time,

drugs administered during surgery and processing proto-

cols have been identified, which affect the molecular and

genetic profiles of human tissue samples before, during and

after the surgical resection [336]. We propose that tissue

samples that reflect molecular reality are a requirement to

enable efficient cancer drug profiling and biomarker dis-

covery [337]. Besides technology-based challenges,

regulatory issues are also limiting factors in the develop-

ment of personalized medicine and predictive biomarkers.

The clinical validation of putative functional regulators of

drug response will run the risk of failure similar to other

biomarker development efforts unless strict reporting

guidelines are adhered to. Finally, the NCI-EORTC rec-

ommends that predictive biomarker studies require even

stricter considerations, requiring validation in large ran-

domized trials with sufficient power to detect drug-specific

differences in tumor response [192]. Using, combining and

further improving state of the art technologies and estab-

lishing stringent guidelines, the individualization of

anticancer therapy especially in second-line treatment, will

become accomplishable.

Acknowledgments We thank BlackPool Design for the preparation

of original figures.

Conflict of interest The authors declare that there is no conflict of

interest.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.

References

1. Silberstein GB (2001) Tumor-stromal interactions role of the

stroma in mammary development. Breast Cancer Res 3:218–223

2. Schmeichel KL, Bissell MJ (2003) Modeling tissue-specific

signaling and organ function in three dimensions. J Cell Sci

116:2377–2388

3. ATCC The Global Bioresource Center http://www.lgcstandards-

atcc.org/ATCCCulturesandProducts/tabid/979/Defaultaspx.

Accessed 23 July 2011

4. DSMZ German Collection of Microorganisms and Cell Cultures

http://www.dsmz.de/human_and_animal_cell_lines/main.php?

menu_id=2. Accessed 23 July 2011

5. Smith V, Dai F, Spitz M, Peters GJ, Fiebig HH, Hussain A,

Burger AM (2009) Telomerase activity and telomere length in

human tumor cells with acquired resistance to anticancer agents.

J Chemother 21(5):542–549

6. Shoemaker RH (2006) The NCI60 human tumor cell line anti-

cancer drug screen. Nature Rev Cancer 6:813–823

7. Dan S, Tunoda T, Kitahara O, Yanagawa R, Zembutsu H, Ka-

tagiri T, Yamazaki K, Nakamura Y, Yamori T (2002) An

integrated database of chemosensitivity to 55 anticancer drugs

and gene expression profiles of 39 human cancer cell lines.

Cancer Res 62:1139–1147

8. Naasani I, Seimiya H, Yamori T, Tsuruo T (1999) FJ5002: a

potent telomerase inhibitor identified by exploiting the disease-

oriented screening program with COMPARE analysis. Cancer

Res 59:4004–4011

9. Nakatsu N, Yoshida Y, Yamazaki K, Nakamura T, Dan S, Fukui

Y, Yamori T (2005) Chemosensitivity profile of cancer cell lines

and identification of genes determining chemosensitivity by an

integrated bioinformatical approach using cDNA arrays. Mol

Cancer Ther 4(3):399–412

10. Yaguchi S, Fukui Y, Koshimizu I, Yoshimi H, Matsuno T,

Gouda H, Hirono S, Yamazaki K, Yamori T (2006) Antitumor

activity of ZSTK474 a new phosphatidylinositol 3-kinase

inhibitor. J Natl Cancer Inst 98:545–556

11. Yamori T, Matsunaga A, Sato S, Yamazaki K, Komi A, Ishizu

K, Mita I, Edatsugi H, Matsuba Y, Takezawa K, Nakanishi O,

Kohno H, Nakajima Y, Komatsu H, Andoh T, Suruo T (1999)

Potent antitumor activity of MS-247 a novel DNA minor groove

binder evaluated by an in vitro and in vivo human cancer cell

line panel. Cancer Res 59:4042–4049

12. McDermott U, Sharma SV, Dowell L, Greninger P, Montagut C,

Lamb J, Archibald H, Raudales R, Tam A, Lee DS, Rothenberg

M, Supko JG, Sordella R, Ulkus LE, Maheswaran S, Njauw CN,

Tsao H, Drew L, Hanke JH, Ma X, Erlander MG, Gray NS,

Haber DA, Settleman J (2007) Identification of genotype-cor-

related sensitivity to selective kinase inhibitors by using high-

throughput tumor cell line profiling. PNAS 104:19936–19941

13. Sharma SV, Haber DA, Settleman J (2010) Cell line-based

platforms to evaluate the therapeutic efficacy of candidate

anticancer agents. Nature reviews cancer 10:241–253

14. Mc Dermott U, Sharma SV, Settleman J (2008) High-throughput

lung cancer cell line screening for genotype-correlated sensi-

tivity to an EGFR kinase inhibitor. Meth Enzymol 438:331–341

15. Liu X, Ory V, Chapman S, Yuan H, Albanese C, Kallakury B,

Timofeeva OA, Nealon C, Dakic A, Simic V, Haddad BR, Rhim

JS, Dritschilo A, Riegel A, McBride A, Schlegel R (2012)

ROCK inhibitor and feeder cells induce the conditional repro-

gramming of epithelial cells. Am J Pathol 180:599–607. doi:10.

1016/j.ajpath.2011.10.036

16. Semjen BV, Becker KF, Sinski A, Blennow S, Vietor I, Zat-

loukal K, Beug H, Wagner E, Huber LA (2002) Novel colon

Prediction of individual response 747

123

http://www.lgcstandards-atcc.org/ATCCCulturesandProducts/tabid/979/Defaultaspx
http://www.lgcstandards-atcc.org/ATCCCulturesandProducts/tabid/979/Defaultaspx
http://www.dsmz.de/human_and_animal_cell_lines/main.php?menu_id=2
http://www.dsmz.de/human_and_animal_cell_lines/main.php?menu_id=2
http://dx.doi.org/10.1016/j.ajpath.2011.10.036
http://dx.doi.org/10.1016/j.ajpath.2011.10.036


cancer cell lines leading to better understanding of the diversity

of respective primary cancers. Oncogene 21:4646–4662

17. Allinen M, Beroukhim R, CaiL, Brennan C, Lahti-Domenici J,

Huang H, Porter D, Hu M, Chin L, Richardson A, Schnitt S,

Sellers WR, Polyak K (2004) Molecular characterization of the

tumor microenvironment in breast cancer. Cancer Cell 6:17–32

18. Chung LWK, Baseman A, Assikis V, Zhau HE (2005) Molec-

ular insights into prostate cancer progression: the missing link of

tumor microenviroment. J Urol 173(1):10–20

19. Campling BG, Pym J, Baker HM, Cole SPC, Lam YM (1991)

Chemosensitivity testing of small cell lung cancer using the

MTT assay. Br J Cancer 63:75–83

20. Mechetner E, Brünner N, Parker RJ (2011) In vitro drug

responses in primary and metastatic colorectal cancers. Scand J

Gastroenterol 46:70–78

21. Yamaue H, Tanimura H, Nakamori M, Noguchi K, Iwahashi M,

Tani M, Hotta T, Murakami K, Ishimoto K (1996) Clinical

evaluation of chemosensitivity testing for patients with colo-

rectal cancer using MTT assay. Dis Colon Rectum 39:416–422

22. Yamaue H, Tanimura H, Noguchi K, Hotta T, Tani M, Tsunoda

T, Iwahashi M, Tamai M, Iwakura S (1992) Chemosensitivity

testing of fresh human gastric cancer with highly purified tumor

cells using the MTT assay. Br J Cancer 66:794–799

23. Kaspers GJL, Pieters R, Van Zantwijk CH, De Laat PAJM, De

Waal FC, Van Wering ER, Veerman AJP (1991) In vitro drug

sensitivity of normal peripheral blood lymphocytes and child-

hood leukaemic cells from bone marrow and peripheral blood.

Br J Cancer 64:469–474

24. Larsson R, Kristensen J, Sandberg C, Nygren P (1992) Labo-

ratory determination of chemotherapeutic drug resistence in

tumor cells from patients with leukemia using a fluorometric

microculture cytotoxicity assay (FMCA). Int J Cancer

50:177–185

25. Kurbacher CM, Cree IA (2003) Outcome of ATP-based tumor

chemosensitivity assay directedchemotherapy in heavily pre-

treated recurrent ovarian carcinoma. BMC Cancer 3:19

26. Andreotti PE, Cree IA, Kurbacher CM, Hartmann DM, Linder

D, Harel G, Gleiberman I, Caruso PA, Ricks SH, Untch M,

Sartori C, Bruckner HW (1995) Chemosensitivity testing of

human tumors using a microplate adenosine triphosphate lumi-

nescence assay: clinical correlation for cisplatin resistance of

ovarian carcinoma. Cancer Res 55:5276–5282

27. Konecny G, Crohns C, Pegram M, Felber M, Lude S, Kurbacher

C, Cree IA, Hepp H, Untch M (2000) Correlation of drug

response with ATP Tumorchemosensitivity Assay in primary

FIGO Stage III ovarian cancer. Gynecol Oncol 77:258–263

28. Dollner R, Granzow C, Neudert M, Dietz A (2006) Ex vivo

chemosensitivity of head and neck carcinoma to cytostatic drug

combinations. Anticancer Res 26:1651–1656

29. Dollner R, Granzow C, Helmke BM, Ruess A, Schad A, Dietz A

(2004) The impact of stromal cell contamination on chemo-

sensitivity testing of head and neck carcinoma. Anticancer Res

24:325–332

30. Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T,

Clark L, Bayani N, Coppe JP, Tong F, Speed T, Spellman PT,

DeVries S, Lapuk A, Wang NJ, Kuo WL, Stilwell JL, Pinkel D,

Albertson DG, Waldman FM, McCormick F, Dickson RB,

Johnson MD, Lippman M, Ethier S, Gazdar A, Gray JW (2006)

A collection of breast cancer cell lines for the study of func-

tionally distinct cancer subtypes. Cancer Cell 10(6):515–527

31. Sos ML, Michel K, Zander T, Weiss J, Frommolt P, Peifer M, Li

D, Ullrich R, Koker M, Fischer F, Shimamura T, Rauh D,

Mermel C, Fischer S, Stückrath I, Heynck S, Beroukhim R, Lin

W, Winckler W, Shah K, LaFramboise T, Moriarty WF, Hanna

M, Tolosi L, Rahnenführer J, Verhaak R, Chiang D, Getz G,

Hellmich M, Wolf J, Girard L, Peyton M, Weir BA, Chen T,

Greulich H, Barretina J, Shapiro GI, Garraway LA, Gazdar AF,

Minna JD, Meyerson M, Wong K, Thomas RK (2009) Pre-

dicting drug susceptibility of non–small cell lung cancers based

on genetic lesions. J Clin Invest 119(6):1727–1740

32. Jacks T, Weinberg RA (2002) Taking the study of cancer cell

survival to a new dimension. Cell 111:923–925

33. Griffith LG (2006) Swartz MA Capturing complex 3D tissue

physiology in vitro. Nature Rev Mol Cell Biol 7:211–224

34. Teicher BA, Matoska J, Stricker F (1967) Following human

tumours in primary organ culture. Neoplasma 14:507–519

35. Elliott NT, Yuan FA (2011) Review of three-dimensional

in vitro tissue models for drug discovery and transport studies.

J Pharm Sci 100:1

36. Martin Brown J (2002) Tumor microenvironment and the

response to anticancer therapy. Cancer Biol Ther 1(5):453–458

37. Lewis C, Murdoch C (2005) Macrophage responses to hypoxia,

implications for tumor progression and anti-cancer therapies.

Am J Pathol 167(3):627–635

38. Sutherland RM, Durand RE (1976) Radiation response of mul-

ticell spheroids—an in vitro tumour model. Curr Top Radiat Res

Q 11:87–139

39. Liu SC, Minton NP, Giaccia AJ, Brown JM (2002) Anticancer

efficacy of systemically delivered anaerobic bacteria as gene

therapy vectors targeting tumor hypoxia/necrosis. Gene Ther

9(4):291–296

40. Groebe K, Erz S, Mueller-Klieser W (1994) Glucose diffusion

coefficients determined from concentration profiles in EMT6

tumor spheroids incubated in radioactively labeled L-glucose.

Adv Exp Med Biol 361:619–625

41. Sutherland RM (1988) Cell and environment interactions in

tumour microregions: the multicell spheroid model. Science

240(4849):177–184

42. David L (2008) Hyaluronan hydrogel: an appropriate three-

dimensional model for evaluation of anticancer drug sensitivity.

Acta Biomater 4:256–263

43. Jungwoo L, Cuddihy MJ, Kotov NA (2008) Three-dimensional

cell culture matrices: state of the art. Tissue Eng Part B 14(1):61

44. Kunz-Schughart LA, Kreutz M, Knuechel R (1998) Multicel-

lular spheroids: a three-dimensional in vitro culture system to

study tumour biology. Int J Exp Pathol 79:1–23

45. Wang F, Weaver VM, Petersen OW, Larabell CA, Dedhar S,

Briand P, Lupu R, Bissell MJ (1998) Reciprocal interactions

between b1-integrin and epidermal growth factor receptor in

three-dimensional basement membrane breast cultures: a dif-

ferent perspective in epithelial biology. Proc Natl Acad Sci USA

95:14821–14826

46. Tibbitt MW, Anseth KS (2009) Hydrogels as extracellular matrix

mimics for 3D cell culture. Biotechnol Bioeng 103(4):655–663

47. Almany L, Seliktar D (2005) Biosynthetic hydrogel scaffolds

made from fibrinogen and polyethylene glycol for 3D cell cul-

tures. Biomaterial 15:2467–2477

48. Powers MJ, Domansky K, Kaazempur-Mofrad MR, Kalezi A,

Capitano A, Upadhyaya A, Kurzawski P, Wack KE, Beer Stolz

D, Kamm R, Griffith LG (2002) A microfabricated array bio-

reactor for perfused 3D liver culture. Biotechnol Bioeng

3:257–269

49. Nelson CN, Bissell MJ (2005) Modeling dynamic reciprocity:

Engineering three-dimensional culture models of breast archi-

tecture function and neoplastic transformation. Semin Cancer

Biol 15(5):342–352

50. O’Brien LE, Yu W, Tang K, Jou T, Zegers MMP, Mostov KE

(2006) Morphological and biochemical analysis of Rac1 in

three-dimensional epithelial cell cultures. Methods Enzymol

406:676–691

51. Serebriiskii I, Castello-Cros R, Lamb A, Golemis EA, Cukier-

man E (2008) Fibroblast-derived 3D matrix differentially

748 F. T. Unger et al.

123



regulates the growth and drug-responsiveness of human cancer

cells. Matrix Biol 27:573–585

52. Olive P, Durand RE (1994) Drug and radiation resistance in

spheroids: cell contact and kinetics. Cancer Metastasis Rev

13(2):121–138

53. Frankel A, Buckman R, Kerbel RS (1997) Abrogation of taxol-

induced G2-M arrest and apoptosis in human ovarian cancer

cells grown as multicellular tumor spheroids. Cancer Res

57:2388–2393

54. dit Faute MA (2002) Distinctive alterations of invasiveness drug

resistance and cell–cell organization in 3D-cultures of MCF-7 a

human breast cancer cell line and its multidrug-resistant variant.

Clin Exp Metastasis 19:161–168

55. Hazlehurst LA, Landowski TH, Dalton WS (2003) Role of the

tumor microenvironment in mediating de novo resistance to

drugs and physiological mediators of cell death. Oncogene

22:7396–7402

56. Frankel A, Man S, Elliott P, Adams J, Kerbel RS (2000) Lack of

multicellular drug resistance observed in human ovarian and

prostate carcinoma treated with the proteasome inhibitor PS-

341. Clin Cancer Res 6:3719–3728

57. Eshleman JS, Carlson BL, Mladek AC, Kastner BD, Shide KL,

Sarkaria JN (2002) Inhibition of the mammalian target of rap-

amycin sensitizes U87 xenografts to fractionated radiation

therapy. Cancer Res 62:7291–7297

58. Liu M, Howes A, Lesperance J, Stallcup WB, Hauser CA, Ka-

doya K, Oshima RG, Abraham RT (2005) Antitumor activity of

rapamycin in a transgenic mouse model of ErbB2-dependent

human breast cancer. Cancer Res 65:5325–5336

59. Barbone D, Yang TM, Morgan JR, Gaudino G, Broaddus VC

(2008) Mammalian target of rapamycin contributes to the

acquired apoptotic resistance of human mesothelioma multi-

cellular spheroids. J Biol Chem 283:13021–13030

60. Friedrich J, Ebner R, Kunz-Schughart LA (2007) Experimental

anti-tumor therapy in 3-D: spheroids—old hat or new challenge?

Int J Radiat Biol 83:849–871

61. Mueller-Klieser W (1987) Multicellular spheroids. A review on

cellular aggregates in cancer research. J Cancer Res Clin Oncol

113:101–122

62. Friedrich J (2007) A reliable tool to determine cell viability in

complex 3-d culture: the acid phosphatase assay. J Biomol

Screen 12:925–937

63. Herrmann R, Fayad W, Schwarz S, Berndtsson M, Linder S

(2008) Screening for compounds that induce apoptosis of cancer

cells grown as multicellular spheroids. J Biomol Screen

13(1–8):173

64. Kunz-Schughart LA, Freyer JP, Hofstaedter F, Ebner R (2004)

The use of 3-D cultures for high-throughput screening: the

multicellular spheroid model. J Biomol Screen 9:273

65. Friedrich J, Seidel C, Ebner R, Kunz-Schughart LA (2009)

Spheroid-based drug screen: considerations and practical

approach. Nat Protoc 4:309–324

66. Ertel A, Verghese A, Byers SW, Ochs M, Tozeren (2006) A

pathway-specific differences between tumor cell lines and nor-

mal and tumor tissue cells. Mol Cancer 5:55

67. Ross DT, Perou CM (2001) A comparison of gene expression

signatures from breast tumors and breast tissue derived cell

lines. Dis Markers 17(2):99–109

68. Vescio RA, Redfern CH, Nelson TJ, Ugonetz S, Stern PH,

Hoffman RM (1987) In vivo-like drug responses of human

tumors growing in three-dimensional gel-supported primary

culture. Proc NatI Acad Sci USA 84:5029–5033

69. Vescio RA, Connors KM, Kubota T, Hoffman RM (1991)

Correlation of histology and drug response of human tumors

grown in native-state three-dimensional histoculture and in nude

mice. Proc Natl Acad Sci USA 88:5163–5166

70. Furukawa T, Kubota T, Watanabe M, Kase S, Takahana T,

Yamaguchi H, Takeuchi T, Teramoto T, Ishibiki K, Kitajima M,

Hoffman RM (1992) Chemosensitivity testing of clinical gas-

trointestinal cancers using histoculture and the MiT end-point.

Anticancer Res 12:1377–1382

71. Ohie S, Udagawa Y, Aoki D, Nozawa S (2005) Histoculture

drug response assay to monitor chemoresponse. Methods Mol

Med 110:79–86

72. Ariyoshia Y, Shimaharaa M, Tanigawa N (2003) Study on

chemosensitivity of oral squamous cell carcinomas by histo-

culture drug response assay. Oral Oncol 39:701–707

73. Singh S, Li R, Xu L, Poluri R, Patel S, Shaha AR, Pfister D,

Sherman E, Goberdhan A, Hoffman RM, Shah J (2002) Pre-

diction of survival in patients with head and neck cancer using

the histoculture drug response assay. Head Neck 24(5):

437–442

74. Kubota T, Sasano N, Abe O, Nakao I, Kawamura E, Saito T,

Endo M, Kimura K, Demura H, Sasano H, Nagura H, Ogawa N,

Hoffman RM, Chemosensitivity Study Group for the Histocul-

ture Drug-Response Assay (1995) Potential of the histoculture

drug-response assay to contribute to cancer patient survival. Clin

Cancer Res 1:1537–1543

75. Furukawa T, Kubota T, Hoffman RM (1995) Clinical applica-

tions of the histoculture drug response assay. Clin Cancer Res

1:305–311

76. Nakada S, Aoki D, Ohie S, Horiuchi M, Suzuki N, Kanasugi M,

Susumu N, Udagawa Y, Nozawa S (2005) Chemosensitivity

testing of ovarian cancer using the histoculture drug response

assay: sensitivity to cisplatin and clinical response. Int J Gynecol

Cancer 15:445–452
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334. Ferté C, André F, Soria JC (2010) Molecular circuits of solid

tumors: prognostic and predictive tools for bedside use. Nat Rev

Clin Oncol 7(7):367–380

335. Kulasingam V, Diamandis EP (2008) Strategies for discovering

novel cancer biomarkers through utilization of emerging tech-

nologies. Nat Clin Pract Oncol 5(10):588–599

336. Spruessel A, Steimann G, Jung M, Lee SA, Carr T, Fentz AK,

Spangenberg J, Zornig C, Juhl H, David KA (2004) Tissue

ischemia time affects gene and protein expression patterns

within minutes following surgical tumor. BioTechniques

36:1030–1032

337. Fentz AK, Spörl M, Spangenberg J, List HJ, Zornig C, Dörner

A, Layer P, Juhl H, David KA (2007) Detection of colorectal

adenoma and cancer based on transthyretin and C3a-desArg

serum levels. Proteomics Clin Appl 1:536–544

Prediction of individual response 757

123


	Prediction of individual response to anticancer therapy: historical and future perspectives
	Abstract
	Introduction
	Cellular models
	Primary and secondary cell lines
	Multicellular spheroids
	Organoid cultures
	Xenografts

	Chemosensitivity assays
	Implementation of cell viability assays in preclinical drug testing
	DNA damage and repair
	Apoptosis

	Genomics
	Mutation analysis
	DNA microarray profiling

	Proteomics
	2D electrophoresis
	Chromatographic techniques
	Mass spectrometry (MALDI TOF MS, SELDI TOF MS)
	Immunohistochemistry
	Protein microarrays

	Discussion
	Acknowledgments
	References


