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ABSTRACT  In practical calculations, it is often essential
to introduce artificial boundaries to limit the area of compu-
tation. Here we develop a systematic method for obtaining a
hierarchy of local boundary conditions at these artificial
boundaries. These boundary conditions not only guarantee
stable difference approximations, but also minimize the (un-
physical) artificial reflections that occur at the boundaries.

When calculating solutions to partial differential equations it
is often essential to introduce artificial boundaries to limit the
area of computation. Important areas of application that use
artificial boundaries are local weather prediction (see refs. 1
and 2), geophysical calculations involving acoustic and elastic
waves (see refs. 3 and 4), and a variety of other problems in fluid
dynamics. One always needs some boundary conditions at these
boundaries to guarantee a unique and well-posed solution to
the differential equation. In turn, this is a necessary condition
for stable difference approximation. Of course these artificial
boundaries are only a computational necessity and have no
physical significance. Thus, it is highly desirable to design
boundary conditions for these artificial boundaries that mini-
mize the amplitudes of reflected waves.

Our objective is to design a hierarchy of boundary conditions
at these artificial boundaries with the following properties:

(i) These boundary conditions together with the associated
differential equation guarantee a well-posed mixed initial
boundary value problem.

(i) The amplitudes of the reflection coefficients of these
boundary conditions are as small as possible.

(iii) These boundary conditions are local.

The importance of the conditions in (i) and (i) has been
discussed above. The condition in (i) is essential for a reason-
able control of the operation count for the numerical approxi-
mation.

By using the recently developed theory of reflection of
singularities (see refs. 5-7), one can develop perfectly absorbing
boundary conditions (with reflection coefficients identically
zero) for general variable coefficient systems of hyperbolic
differential equations. Unfortunately, these boundary condi-
tions are necessarily nonlocal in both space and time and thus
are not useful for practical calculations. Nevertheless, it is
possible to approximate these perfectly absorbing nonlocal
boundary conditions by hierarchies of local boundary conditions
so that (i), (ii), and (iii) above are satisfied. Numerical experi-
ments support these conclusions. We have developed (see ref.
8) a complete analysis of the above ideas together with a report
on test calculations for the wave equation and linearized shallow
water equations. Here we shall only report on the methods and
the nature of the resulting boundary conditions for some special
cases.

The wave equation in a half-space

We design absorbing boundary conditions on the wall x = 0 for
solutions w of the wave equation
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in the quarter space t,x > 0. Plane wave solutions traveling to
the left are given by

w = ei(VZ—wx+ {t+wy)’ {2 — 2> 0, (>0

Here { has the interpretation of frequency and w/{ = sin ,
where 8 is the angle of incidence of the wave upon the boundary
x = 0. If (w,{) is held fixed, the first order boundary condition
that produces a zero reflection coefficient is given by

<‘—;i;—i §'2—w2) w]y=0=0.

By superposition, more general wave packets traveling to the
left are represented by

w(x’y’t) = f f\/ga_a,g>0 ei(\/fz—wzx-f' $t4 wy)w(o’ g"w)dg' dw

where 1 denotes the Fourier transform in (¢,). It is easily seen
that the boundary condition that produces zero reflection
coefficient for these wave packets is given by
(- VE D) o=
or ¥ otz oy2) I
where v'92/9t2 — 92/0y2 is defined by
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X ®(0,{,w)d{ dw.

For this special case, the boundary condition in [1] is the the-
oretical nonlocal boundary condition alluded to above.

To develop a hierarchy of local highly absorbing approxi-
mations we first observe that under Fourier transform

(1]

. o) o)
i > and iw %

We then write iv/{2 — o2 in the form i{V'T — (w2/(2), and
with x = w/{ we then approximate v'1 + x using

(Ist) V1+x=14+0(x|)

(2]

(2nd) VT¢?=1+éx+th)

8rd) VIidx=1l+—o

Grd) Vitz=1+o0m

After clearing the denominator by multiplying by appropriate

powers of i{ and using the correspondence in [2], we obtain the

following hierarchy of highly absorbing boundary conditions
for the wave equation on the wall x = 0:

+0(]x]3). (3]

{1st approx. ) wy — wy|y=0=0

(2nd approx. ) wy — wy + 1

2wyy|,=0 =0

3
wxyy + _wtyy|x=0 = 0. [4]

1
(8rd approx. ) Wy — wy — = 2
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It is verified in ref. 8 that each of these boundary conditions
satisfies the three conditions discussed in the introduction. For
a wave with a 45° angle of incidence the (1st), (2nd), and (3rd)
approximations reflect waves with amplitudes, respectively,
17%, 3%, and 0.5% of the amplitude of the incident wave. We
remark here that another obvious approximation for V'1 + x
is given by the Taylor expansion,

Vitz=1 +éx-—%x2+0(|x|3).

If we follow the same procedure, we obtain the absorbing
boundary condition

Wyter — Weere + % Wyyee + %wyyyy |x=0 =0. [5]
However, by applying the normal mode analysis developed in
ref. 9, we have observed that the boundary condition in [5] is
strongly ill-posed for the wave equation and therefore is useless
for practical calculations.

~ As previously mentioned, more sophisticated versions of the
above arguments using the theory of pseudo-differential op-
erators (see ref. 6) apply to yield highly absorbing boundary
conditions for general variable coefficient hyperbolic systems.
To illustrate these facts, we list these boundary conditions in two
important special cases.

The wave equation in polar coordinates

We design highly absorbing boundary conditions on the circle
r = a for solutions of the wave equation inside the region, r <
a. The operator we study has the form
02 102 10 22
L=— —_— ——_ -
ot 22 ror ot?
and the approximations analogous to those in [4] above are
calculated to be given by
0 1

o
1st ) —+ == _ =
(1st approx. ) > +—w|= =0

o3 2% 1 28

9nd approx. o _1 9
(2nd approx) =205 + 315~ 4% ar06°
102 1 22
* 2a0 t 2g50g Ve =0

We remark that with r — «, outgoing waves have the form

1= D1a0) + o/

so that the first approximation could be deduced directly from
the outgoing condition. We do not know of a derivation of the
2nd approximation from similar ad hoc physical reasoning,

The linearized shallow water equations

Here we illustrate our theory for the linearized shallow water
equations in the quarter space x,t = 0. This 3 X 3 matrix system
has the form

0 f o0
-f 00

oo0o])*
together with the physical restrictions, 0 < a2 + b2 < c2, ¢ >

0. For simplicity we assume all of the above matrices are con-
stants. To aid in defining our boundary conditions, we set w =
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U 1u where U is the unitary matrix given by
1,
V2 V2
U= 0 1 O
1 1

_ 0 —

V2 T V2

The boundary conditions depend upon whether we have lin-
earized about an inflowing state with a < 0 or about an out-
flowing state witha > 0.

The inflow case: Analogous to [4] we have for

w)
w2
w= ,
wg
(1st-approx. ) wile=0 =0
w2|x=0 =0
dw; , V2 ows
Dy Yo a+o) 22| =
ot 71 @)% |imo
(2nd approx. ) | OW2 vVab @a-v2a+ c))Q_“Q
ot 2 ¢ oy
_a+cduwg (a+c)fwI -0
V2 dy Vg =0T

Numerical experiments indicate that in this situation the 2nd
approximation is roughly 4 times as effective as the 1st ap-
proximation. Similar absorbing boundary conditions also can
be developed in the outflow case (see ref. 8).
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