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Abstract

Total-variation (TV) minimization reconstructions can significantly reduce noise and streaks in 

thoracic four-dimensional cone-beam computed tomography (4D CBCT) images compared to the 

Feldkamp-Davis-Kress (FDK) algorithm currently used in practice. TV minimization 

reconstructions are, however, prone to over-smoothing anatomical details and are also 

computationally inefficient. The aim of this study is to demonstrate a proof of concept that these 

disadvantages can be overcome by incorporating the general knowledge of the thoracic anatomy 

via anatomy segmentation into the reconstruction. The proposed method, referred as the 

anatomical-adaptive image regularization (AAIR) method, utilizes the adaptive-steepest-descent 

projection-onto-convex-sets (ASD-POCS) framework, but introduces an additional anatomy 

segmentation step in every iteration. The anatomy segmentation information is implemented in the 

reconstruction using a heuristic approach to adaptively suppress over-smoothing at anatomical 

structures of interest. The performance of AAIR depends on parameters describing the weighting 

of the anatomy segmentation prior and segmentation threshold values. A sensitivity study revealed 

that the reconstruction outcome is not sensitive to these parameters as long as they are chosen 

within a suitable range. AAIR was validated using a digital phantom and a patient scan, and was 

compared to FDK, ASD-POCS, and the prior image constrained compressed sensing (PICCS) 

method. For the phantom case, AAIR reconstruction was quantitatively shown to be the most 

accurate as indicated by the mean absolute difference and the structural similarity index. For the 

patient case, AAIR resulted in the highest signal-to-noise ratio (i.e. the lowest level of noise and 

streaking) and the highest contrast-to-noise ratios for the tumor and the bony anatomy (i.e. the best 

visibility of anatomical details). Overall, AAIR was much less prone to over-smoothing 

anatomical details compared to ASD-POCS, and did not suffer from residual noise/streaking and 

motion blur migrated from the prior image as in PICCS. AAIR was also found to be more 

computationally efficient than both ASD-POCS and PICCS, with a reduction in computation time 

of over 50% compared to ASD-POCS. The use of anatomy segmentation was, for the first time, 
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demonstrated to significantly improve image quality and computational efficiency for thoracic 4D 

CBCT reconstruction. Further developments are required to facilitate AAIR for practical use.
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1. Introduction

In image-guided radiation therapy (IGRT), the linear accelerator (linac)-mounted cone-beam 

computed tomography (CBCT) imaging unit allows the tumor position to be verified 

immediately prior to treatment. However, conventional three-dimensional (3D) CBCT 

suffers from motion blur in the thoracic region due to respiratory motion. Four-dimensional 

(4D) CBCT is an emerging imaging technique used to resolve tumor motion. In 4D CBCT, 

projection images are sorted into phase-correlated subsets (or “phase bins”) corresponding to 

different respiratory phases, from which temporally resolved images are reconstructed 

(Sonke et al, 2005). The use of 4D CBCT improves both target coverage and normal tissue 

avoidance in thoracic IGRT (Harsolia et al, 2008).

The reconstruction of high quality 4D CBCT images is difficult because of the sparse 

angular sampling caused by projection allocation. It was found in a previous study that the 

development of better reconstruction algorithms represents the most effective strategy for 

improving image quality in thoracic 4D-CBCT for IGRT applications at the current stage 

(Shieh et al, 2014). In current practice, projection images in each phase bin are reconstructed 

into a 3D volume using the Feldkamp-Davis-Kress (FDK) algorithm (Feldkamp et al, 1984), 

which is essentially an approximate filtered backprojection. Despite its computational 

efficiency, FDK produces severe noise and streaking artifacts in 4D CBCT images due to 

projection under-sampling. The Mckinnon-Bates method (Mckinnon and Bates, 1981; Leng 

et al, 2008a; Zheng et al, 2011) reduces noise and streaking by exploiting the motion blurred 

yet high signal-to-noise ratio (SNR) 3D CBCT image. However, the overall improvement in 

image quality is limited, and residual motion artifacts remain an issue (Bergner et al, 2010).

Total-variation (TV) minimization reconstruction has been shown to be efficient for noise 

and streaking reduction for CT and CBCT images (Sidky and Pan, 2008; Choi et al, 2010; 

Ritschl et al, 2011). A commonly used framework for iterative TV minimization 

reconstruction is the adaptive-steepest-descent projection-onto-convex-sets (ASD-POCS) 

algorithm (Sidky and Pan, 2008), which consists of iterative alternations between a 

projection-onto-convex-sets (POCS) component to enforce the data fidelity constraint and a 

TV minimization component to reduce noise/streaking. Although TV minimization 

reconstruction results in much less noise and streaking artifacts compared to FDK and 

MKB, it is prone to over-smoothing fine anatomical structures as the TV minimization 

component tends to reduce intensity variations due to both noise/streaking and anatomical 

structures indistinguishably. In addition, TV minimization reconstruction often converges 

slowly, making it computationally inefficient and unfeasible for clinical use (Bergner et al, 

2010).
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By incorporating certain prior knowledge of the volume of interest into the reconstruction, a 

noise- and streak-reduced yet sharper solution image and a better computational efficiency 

can be achieved. In the prior image constrained compressed sensing (PICCS) algorithm 

(Chen et al, 2008), prior knowledge is incorporated by imposing similarity between the 

solution image and a high SNR prior image. This additional constraint accelerates the 

convergence towards a solution image that shares similar high SNR traits with the prior 

image. In 4D CBCT, the motion blurred 3D CBCT image and the MKB image are suitable 

prior image choices (Leng et al, 2008b), as both are reasonable estimates of the 

reconstructed volume, and are higher in SNR than the FDK image. However, as the solution 

is often biased towards the prior image due to the stiff similarity constraint, the 

reconstruction may suffer from migration of residual motion artifacts and noise/streaking 

from the prior image (Bergner et al, 2010).

Another type of prior knowledge strategy involves the minimization of spatially adaptive 

TV. By applying a spatial weighting based on the gradient information of the image to the 

TV calculation, TV minimization can be suppressed adaptively at certain regions/pixels to 

preserve edges and structures. The gradient information exploited, such as the magnitude of 

the image gradient (Strong et al, 1997) or the difference curvature (Chen et al, 2010), can be 

viewed as the prior knowledge for edge detection. These strategies are widely applied in 

image restoration (Chantas et al, 2010; Dong et al, 2013; Yuan et al, 2013), and have also 

been demonstrated for low-dose CT reconstructions (Tian et al, 2011; Liu et al, 2012). 

However, gradient based edge detection is not robust to conspicuous artifacts and spatially 

inhomogeneous noise, both of which are commonly seen in 4D CBCT.

To adaptively suppresses over-smoothing of anatomical structures and reduce noise/

streaking in TV minimization, our approach is to approximately identify anatomical 

structures of interest from the image and use them as a prior. The thoracic region consists of 

several distinct anatomical structures of interest in a CT or CBCT image: soft tissue, lungs/

airways, bony anatomy, and pulmonary details tumors, vessels, and bronchus walls inside 

the lungs). These structures can be visually identified based on general a priori knowledge 

of the thoracic anatomy, i.e. the likely attenuation coefficients, positions, and shapes of each 

structure. By exploiting general anatomical knowledge, anatomical structures can also be 

automatically segmented via strategies such as intensity thresholding, connectivity analysis, 

region growing, and morphological operators (Haas et al, 2008; van Rikxoort et al, 2009; 

Volpi et al, 2009; Vandemeulebroucke et al, 2012). The use of a CT anatomy segmentation 

prior has been demonstrated for improving the performance of PET reconstruction (Chan et 

al, 2009, 2014). However, the use of a 4D CBCT anatomy segmentation prior is hindered by 

its relatively low accuracy due to the inferior image quality of 4D CBCT images, and, to the 

best of our knowledge, has not been previously investigated.

In this paper, we demonstrate a proof of concept that the use of a 4D CBCT anatomy 

segmentation prior can considerably improve 4D CBCT image reconstruction. We present a 

novel thoracic 4D CBCT image reconstruction method that improves on the blurry anatomy 

and low computational efficiency of conventional TV minimization methods. The proposed 

method, referred as the anatomical-adaptive image regularization (AAIR), is based on the 

ASD-POCS TV minimization framework, but with a heuristic anatomical-adaptive TV 
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minimization step that utilizes a thoracic 4D CBCT anatomy segmentation method. Sec. 2 

describes the theory, implementation and performance evaluation of AAIR. In Sec. 3, the 

effects of the reconstruction parameters on the performance of AAIR are studied. Then, 

AAIR was demonstrated with the reconstructions of a digital phantom and a patient scan, 

and compared qualitatively as well as quantitatively to FDK, ASD-POCS, and PICCS. 

Finally in Sec. 4, the limitations and potential future developments of AAIR are discussed.

2. Methods

2.1. The theory of AAIR

The core concept of AAIR is the use of general anatomical knowledge in the reconstruction 

via an anatomy segmentation prior. In this study, the anatomy segmentation prior is used to 

modify the ASD-POCS TV minimization framework, replacing the conventional TV 

minimization component with a heuristic anatomical-adaptive TV minimization component. 

In the following sections, the ASD-POCS TV minimization framework (cf. Sec. 2.1.1), the 

anatomical-adaptive TV minimization component (cf. Sec. 2.1.2), and the anatomy 

segmentation method (cf. Sec. 2.1.3) in AAIR are discussed. Finally, the implementation of 

AAIR is summarized in Sec. 2.1.4.

2.1.1. The ASD-POCS TV minimization framework—The AAIR method is based on 

the ASD-POCS TV minimization iterative framework, which is a constrained optimization 

method for solving a solution image with minimized TV. Denoting the image as f⃗, the 

measured projection data as p̃, and the forward projection operator as R, the constrained 

optimization problem is defined as

(1)

where ε is the maximum discrepancy between the projection data and the forward 

projections of the solution image, and TV is defined as

(2)

where

(3)

and where r, s, t are the three dimensional spatial indices.

The implementation of ASD-POCS consists of iterative alternations between two major 

components – the POCS component and the TV minimization component. The POCS 

component enforces the positivity constraint f⃗ ≥ 0 and the data fidelity constraint ‖Rf⃗ − p̃‖ ≤ 

ε in every iteration, and is realized by applying either an algebraic reconstruction technique 

(ART) (Gordon et al, 1970) or simultaneous algebraic reconstruction technique (SART) 

(Andersen and Kak, 1984) step. Following every POCS step, TV is minimized by a few 

Shieh et al. Page 4

Phys Med Biol. Author manuscript; available in PMC 2016 January 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



iterations of gradient steepest-descent (GSD) steps. The TV GSD step is approximated by 

that derived in the literature (Niu and Zhu, 2012)

(4)

where δ is a small positive number to avoid singularities in the calculation, and was set to 

the machine epsilon (≈ 2 × 10−16) in this study. At the end of each iteration, the POCS step 

size and the TV minimization step size are adaptively reduced to achieve balance between 

the two components. Detailed descriptions of the step size reduction schemes can be found 

in Sidky and Pan (2008).

2.1.2. Anatomical-adaptive TV minimization—TV is essentially the sum of pixel 

intensity variations (cf. equation (2)) regardless of whether the intensity variation of a pixel 

is attributed to noise/streaking or the presence of anatomical structures. In other words, the 

TV GSD step (cf. equation (4) and Fig. 2(c)) reduces all intensity variations 

indistinguishably since it has no knowledge of the difference between anatomical structures 

and noise/streaking, and thus often causes loss of image details due to over-smoothing.

It is possible to reduce over-smoothing if some of the anatomical structures can be roughly 

identified or segmented before the TV GSD step. In this study, we propose the use of an 

“anatomy segmentation image” as a reference image for over-smoothing reduction. The 

anatomy segmentation image, as illustrated in Fig. 1 and Fig. 2(b), is a “simplified sketch” 

of the updated solution image f⃗ in each iteration, with only the major anatomical structures 

(i.e. soft tissue, lungs/airways, bony anatomy, and pulmonary details) segmented from f⃗ and 

represented by their likely attenuation coefficients. The acquisition of the anatomy 

segmentation image f⃗Seg from f⃗ is critical to the AAIR method, and is discussed in detail in 

Sec. 2.1.3. It is worth mentioning that although f⃗Seg is obtained from f⃗ itself, the use of f⃗Seg 

as a reference image does incorporate additional a priori knowledge into the reconstruction, 

since the anatomy segmentation process relies on the general knowledge of the thoracic 

anatomy, i.e. the likely positions, shapes, and attenuation coefficients of anatomical 

structures.

There are potentially various ways to incorporate the anatomy segmentation image into the 

reconstruction. In this study, we adopt a naive approach to demonstrate a proof of concept 

that the use of the anatomy segmentation image can considerably improve the reconstruction 

performance. Consider the term −∇f⃗Seg TV (f⃗Seg) (cf. Fig. 2(d)), which is the TV GSD step 
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of f⃗Seg (cf. Fig. 2(b)). Since f⃗Seg contains only major anatomical structures that can be 

confidently identified from f⃗, −∇f⃗Seg TV (f⃗Seg) represents edges of the major structures that 

should be preserved. In addition to edge preserving, the approximate directions and 

magnitudes of the image gradients at the edges are also encoded in −∇f⃗Seg TV (f⃗Seg), since 

f⃗Seg not only comprises the segmented anatomies, but also their likely attenuation 

coefficients. A natural choice to avoid over-smoothing is therefore to subtract −∇f⃗Seg TV 

(f⃗Seg) from the TV GSD step to obtain an “anatomical-adaptive” TV minimization step:

(5)

where λ is the prior weighting controlling the weighting of the anatomy segmentation prior 

term, −∇f⃗Seg TV (f⃗Seg) (higher λ corresponds to higher weighting). In practice, λ is 

gradually reduced from unity as the TV GSD step size decreases, so that the impact of the 

anatomy segmentation prior is greater when the TV GSD step is more prone to over-

smoothing. This λ reduction scheme allows the anatomy segmentation image to render 

considerable improvement in the reconstruction performance while not biasing the solution 

towards inaccuracies in the segmentation image. The reduction scheme for λ is discussed in 

Sec. 2.1.4.

An important property of equation (5) is that the anatomy segmentation prior term only 

affects edges that are identified in fS⃗eg (cf. Fig. 2(d)). For anatomical structures that are 

“missed” in the segmentation process, the ∇f⃗ TV (f⃗Seg) term vanishes at the corresponding 

pixels, and equation (5) simply reduces to the conventional TV GSD step. In other words, 

equation (5) aims to ”preserve structures as much as possible” while not imposing similarity 

between f⃗ and f⃗Seg.

Replacing the TV GSD step with the anatomical-adaptive TV minimization step can 

potentially improve reconstruction performance in the following aspects. Firstly, it can 

greatly mitigate the majority of over-smoothing, leading to a sharper image. Secondly, it 

allows adoption of a larger TV minimization step size without severely over-smoothing the 

image, thus enabling more rapid reduction in noise and streaking artifacts. Last but not least, 

it enhances contrast and sharpness for not only objects that are well identified in f⃗Seg, but 

potentially also for some small objects that are missed in the segmentation process. This can 

be explained by viewing the POCS step as a one-iteration SART reconstruction using the 

image in the previous iteration as the initial image. Even though the anatomical-adaptive TV 

minimization step alone only results in improvements at major anatomical structures that are 

identified in f⃗Seg, an improved initial image for the one-iteration SART reconstruction 

implies an improved outcome of the POCS step, the benefits of which may include better 

recovery of details whether identified or missed in the anatomy segmentation step.

2.1.3. Anatomy segmentation—The anatomy segmentation image is obtained by 

segmenting the four major anatomical structures – soft tissue, lungs/airways, bony anatomy, 

and pulmonary details – from the updated solution f⃗ in every iteration. For the purpose of 

AAIR reconstruction, a reasonable anatomy estimation is sufficient to considerably improve 

the reconstruction performance. Thus, the anatomy segmentation method utilized in AAIR is 

mainly based on simple intensity thresholding and pixel connectivity strategies, and does not 

Shieh et al. Page 6

Phys Med Biol. Author manuscript; available in PMC 2016 January 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



aim for a perfectly accurate segmentation. The step-by-step segmentation details are given 

below.

i. Estimate representative attenuation coefficients: The attenuation coefficients in 

CBCT images can be unreliable due to scatter contamination, objects outside the 

field-of-view (FOV), and calibration issues. As a result, the optimal intensity 

threshold values may be scan dependent, and need to be selected on a scan-by-scan 

basis. The 3D motion blurred FDK image offers a reliable estimate of the 

representative attenuation coefficient of each anatomical structure since it contains 

much less noise than the 4D images, i.e. similar but more concentrated distributions 

of pixel values within regions compared to that of the 4D images (see Fig. 3). 

Before every 4D AAIR reconstruction, subregions of the soft tissue, lungs, and 

bony anatomy in the 3D FDK image were manually selected to estimate the 

representative attenuation coefficients of anatomical structures by the mean pixel 

values of the selected regions. It is worth mentioning that this step does not require 

accurate delineation and is not time-consuming since any subregions with 

reasonable sizes (≳ 20 pixels) would result in similarly reliable estimates due to the 

concentrated distributions of pixel values. The representative attenuation 

coefficients of the soft tissue, lungs, and bony anatomy were then used for intensity 

threshold value selection in later steps.

ii. Soft tissue: The soft tissue was segmented by pixels with attenuation coefficients 

higher than the soft tissue attenuation threshold ISoft. ISoft was chosen to be half-

way between the estimated lung and soft tissue attenuation coefficients in order to 

exclude most of the lung pixels preserving most of the soft tissue pixels as shown 

in Fig. 3. Then, only the largest connected area in the thresholded mask was labeled 

as soft tissue, so that noise/streaking exterior to the patient and mis-included lung 

regions were removed. Soft tissue pixels mis-excluded by intensity thresholding 

due to noise can be later restored in the lung segmentation step.

iii. Lungs/airways: Once the soft tissue has been segmented, the rest of the low 

attenuation regions belong to either the background or the lungs/airways. To 

eliminate the background, for every axial slice, a background removal operator 

starts multiple searches from the pixels on the four boundaries, each search moving 

towards the center along the anterior-posterior (AP) or left-right (LR) direction. 

Once a search encounters the soft tissue region, pixels preceding the first soft tissue 

pixel are identified as background and eliminated from the image. Having removed 

the background, the rest of the low attenuation regions are attributed to the lungs/

airways and some soft tissue regions mis-excluded in the previous step due to 

noise. Since the lungs and airways are in general much larger in volume than noise, 

only regions with connected volume larger than the lung/airway volume threshold 

VLung ≈ 100 mm3 were labeled as lungs/airways, and the rest of the regions were 

re-labeled as soft tissue.

iv. Pulmonary details: Pulmonary details refer to any contrast objects inside the lung, 

e.g. tumors, vessels, bronchus walls. In general, pulmonary details are similar in 

attenuation coefficients to soft tissue. However, pulmonary details often suffer 
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from loss of contrast either due to their small sizes or motion artifacts. Thus, 

compared to the soft tissue attenuation threshold, a slightly lower threshold value 

IPulmonary, which was chosen to be around 90% of ISoft, was used to segment 

pulmonary details inside the lungs.

v. Bony anatomy: The bony anatomy can be roughly segmented by pixels with 

attenuation coefficients higher than the bone attenuation threshold IBone. IBone was 

chosen to be one-third of the way between the estimated bone and soft tissue 

attenuation coefficients. To remove the majority of the mis-included soft tissue due 

to the highly overlapped intensity distributions (cf. Fig. 3), a reference 

segmentation of the bony anatomy was first acquired by segmenting the 3D FDK 

image. Since the 3D FDK image has almost no overlapped intensity distributions 

due to its much lower level of noise/streaking, and does not suffer from significant 

motion artifacts in the bony anatomy, the attenuation thresholded result alone is 

sufficient to render an accurate reference segmentation. A “search region” was then 

constructed to account for respiratory motion by extending the reference 

segmentation in the coronal, sagittal, and axial directions by approximately 2 mm, 

2 mm, and 5 mm, respectively. Finally, the attenuation thresholded segmentation of 

the 4D image was masked with the search region to give a more accurate 

segmentation of the bony anatomy.

vi. Combine segmentations: Anatomical structures are assigned their representative 

attenuation coefficients estimated in the first step, and combined to give the 

anatomy segmentation image, as illustrated in Fig. 1. The pulmonary details are 

represented by the soft tissue attenuation coefficient. This implies that whether 

certain contrast objects within the lungs are labeled as pulmonary details (if 

isolated from the lung boundaries) or soft tissue (if attached to the lung boundaries) 

do not affect the reconstruction outcomes.

It is worth mentioning that since the soft tissue and the lungs/airways are in general large 

connected regions, their segmentation outcomes are reasonably robust to noise and the 

selection of ISoft due to the connectivity constraints (see Appendix A for more details). In 

contrast, segmentation outcomes of the pulmonary details and bony anatomy are relatively 

more sensitive to the selection of IPulmonary and IBone due to the highly overlapped intensity 

distributions (cf. Fig. 3) and the lack of connectivity constraint. The effects of IPulmonary and 

IBone on AAIR reconstructions are discussed in more detail in Sec. 3.1.2.

2.1.4. Implementation of AAIR—The implementation of AAIR is summarized in Fig. 4. 

Prior to the iterative process, the 3D FDK image is reconstructed, and its anatomy 

segmentation image is acquired as a reference guide to the anatomy segmentation of the 4D 

images (cf. Sec. 2.1.3). Then, the iterative process is usually initialized from either a zero 

image or a FDK image. Each iteration starts with a POCS component (realized as SART 

(Andersen and Kak, 1984)) to enforce the data fidelity constraint. Then, the anatomy 

segmentation image of the POCS updated image is acquired, with which a few steps 

(typically ≈ 20) of equation (5) are applied to the POCS updated image. At the end of each 

iteration, the iterative process either ceases and returns the POCS updated image if the norm 

of the image change in one iteration is small enough, or calculates new POCS/TV step sizes 
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and the prior weighting λ before continuing to the next iteration. See the pseudo code in 

Appendix B for more details.

The selection schemes for the POCS and TV step sizes are described in detail in Sidky and 

Pan (2008). The prior weighting λ was initialized to be unity, and was gradually reduced 

with the TV step size α, using a heuristic update scheme

(6)

where k is the current iteration number, and γ > 0 is the impact factor determining how 

rapidly λ is reduced. A higher γ slows the reduction of λ, resulting in an overall greater 

impact of the anatomy segmentation prior. The effects of λ and γ on AAIR reconstructions 

are discussed in more detail in Sec. 3.1.1.

We would like to point out that although the anatomical-adaptive TV minimization step was 

designed to minimize TV while preserving structures as discussed in Sec. 2.1.2, there is no 

theoretical proof regarding the convergence of the method to a solution with minimized TV, 

since equation (5) is not the TV GSD step. Theoretical analysis of the convergence 

properties of AAIR is difficult because there is no direct numerical relation between f⃗ and 

f⃗Seg. Nevertheless, the iterative behavior of AAIR in terms of reconstruction accuracy was 

numerically investigated and is discussed in Sec. 3.1.

2.2. Performance assessment

AAIR was applied to both a digital phantom dataset and a clinical patient dataset for 

performance evaluation. For comparison, both datasets were also reconstructed with FDK, 

ASD-POCS and PICCS.

2.2.1. Phantom data—We simulated a realistic ten-phase 4D thoracic phantom using the 

XCAT digital phantom (Segars et al, 2010). Ten ground truth images were generated with 

5122 voxels ((0.88 mm)2 voxel size) in 128 axial slices (2 mm slice thickness). A spherical 

tumor with a diameter of 12 mm was placed in the lower lobe of the right lung near the 

mediastinum. The scan geometry was chosen according to the Varian On-Board Imager 

(Varian Medical Systems, Palo Alto, CA) half-fan acquisition mode Lu et al (2007). In order 

to exclude any respiratory binning related motion artifacts and only focus on the effect of the 

reconstruction methods, the projections were generated from forward projecting the ten 

discrete ground truth images instead of a continuously breathing phantom, and each 

respiratory phase was later reconstructed with the projections that were forward projected 

from the corresponding ground truth image. The scan duration was 250 s, in which 50 

respiratory cycles of 5 s were included. A total of 1200 half-fan projection images were 

generated, covering an angular range of 360° and each with a dimension of 256 × 128 and 

pixel size of 1.552 × 3.104 mm2. Monoenergetic 120 keV photon beam with Poisson noise 

modeling 30000 photons per ray was simulated for projection acquisition. The 

reconstruction voxel size was the same as that of the ground truth images.
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2.2.2. Patient data—AAIR was also applied to a clinical scan from a stereotactic body 

radiation therapy patient. The scan was acquired with the Elekta Synergy (Elekta Oncology 

Systems Ltd, Crawley, UK) full-fan acquisition mode. Due to the limited FOV of full-fan 

acquisition, the left lung was truncated in the reconstructed image. The mean photon energy 

was approximately 60 keV, with a tube voltage of 120 kVp and filtration of 3.5 mm 

aluminum + 0.1 mm copper. It should be noted that the observed attenuation coefficients (cf. 

Fig. 3) are lower than that expected for this energy range, possibly due to calibration issues 

and scatter contamination. The scan duration was approximately 4 minutes, in which 71 

respiratory cycles (free breathing) were included. The scan contains a total of 1340 

projection images, covering an angular range of 200°. The dimension of the projection 

image was 5122 with a pixel size of (0.8 mm)2. The projection images were sorted into ten 

phase bins using a projection intensity based sorting method (Kavanagh et al, 2009). The 

reconstructed image contained 128 axial slices with a slice spacing of 2 mm, each slice 

containing 5122 voxels with a voxel size of (0.5 mm)2.

2.2.3. Reconstruction details—The FDK algorithm is a simple filtered backprojection 

method and requires no input parameter. The reconstruction filter was the standard RamLak 

kernel. For each iterative method, the parameters were adjusted to render the best image 

quality, and are outlined below.

For the ASD-POCS reconstruction, the initial TV minimization step size, α, was set to 0.05 

(phantom case) and 0.1 (patient case). The TV reduction factor, αred, was set to 0.8 for both 

the phantom and patient cases. The threshold for TV reduction, rmax, was set to 0.9 

(phantom case) and 0.8 (patient case). The residual error tolerance for TV reduction, tol, was 

set to 0.11 (phantom case) and 1.25 (patient case). The POCS reduction factor, βred, was set 

to 0.99 for both the phantom and patient case.

For the PICCS reconstruction, the 3D motion blurred FDK image was used as the prior 

image with a prior weighting factor λPICCS of 0.5 as adopted by Chen et al (2008). There is 

no step size reduction scheme for PICCS, and therefore α was set to be 0.025 (phantom 

case) and 0.004 (patient case), which is relatively small compared to that of ASD-POCS.

For the AAIR reconstruction, the anatomy segmentation prior allows the use of a larger 

initial TV minimization step size without over-smoothing anatomical details. Thus, α was 

set to 0.2 (phantom case) and 0.4 (patient case). Since this renders much more rapid removal 

of noise and streaking artifacts than ASD-POCS, a smaller TV reduction factor of 0.4 was 

used to accelerate the reconstruction without sacrificing image quality. The other parameters 

were set to be the same as that of ASD-POCS.

For all three iterative methods, the 4D FDK image of the corresponding phase was used as 

the initial image. The POCS step was realized as SART (Andersen and Kak, 1984). The 

stopping criterion was the norm of the image change in one iteration dropping below 2 × 

10−4 mm−1 for the phantom case and 2.5 × 10−4 mm−1 for the patient case. Twenty steps 

were used for the regularization component, in which ASD-POCS applies equation (4), 

AAIR applies equation (5), and PICCS applies the GSD step of the objective function 

combining TV and the similarity between f⃗ and the prior image f⃗Prior, viz.
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(7)

The reconstructions were computed on a dual Intel Xeon E5-2687W CPU with a clock 

speed of 3.1 GHz each. All the reconstructions were performed using our in-house 

MATLAB codes, with the FDK backprojection, forward projection, and SART modules 

from the Reconstruction Toolkit developed by Rit et al (2014).

2.2.4. Image quality metrics—The reconstruction accuracy of the digital phantom was 

assessed by the similarity between the reconstructed image, f⃗, and the ground truth (GT) 

image, f⃗GT, using two metrics. The first metric, the mean absolute difference (MAD), 

measures similarity relative to ground truth on a pixel-by-pixel basis, and is mathematically 

defined by

(8)

where N is the number of image pixels. A lower MAD indicates higher similarity with the 

ground truth image, hence better image quality. The second metric, the structural similarity 

(SSIM) index, measures human visual perception to degradation of structural information, 

and is more clinically relevant than MAD. SSIM ranges from 0 to 1, with a higher value 

indicating higher similarity with the ground truth image. A detailed definition of SSIM can 

be found in (Wang et al, 2004). In this study the mean SSIM value over all axial slices was 

used.

The image quality of the reconstructed patient image was assessed by the level of noise and 

streaking and the visibility of anatomical structures. The level of noise and streaking was 

quantified by the signal-to-noise ratio (SNR). SNR was calculated over a selected uniform 

region over 25 continuous axial slices, the set of pixel values belonging to which is denoted 

by fSNR (cf. Fig. 5), using the following formula

(9)

where SD denotes standard deviation. The visibility of anatomical structures was quantified 

by the contrast-to-noise ratio (CNR) of the tumor and the bony anatomy. To calculate CNR, 

the tumor and the part of the scapula in the axial slices where the tumor was visible were 

first manually delineated from the reconstructed image. The scapula was chosen for bone 

CNR calculation because it can be clearly delineated in all reconstructed images. A lung 

region near the tumor and a soft tissue region near the scapula were selected as the 

“background”. Denoting the sets of pixel values of the tumor, scapula, lung, and soft tissue 

as fTumor, fBone, fLung, and fSoft (cf. Fig. 5), the tumor and bone CNRs can be calculated by
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(10)

(11)

with both of them evaluated in all axial slices (≈ 15 slices) where the tumor was visible. It 

should be noted that both SNR and CNR are used as surrogates to assess potential gain in 

image quality, since direct measurements are not feasible without a ground truth.

3. Results

The iterative behaviors of AAIR are first investigated in Sec. 3.1 using the digital phantom. 

Then, in Sec. 3.2, AAIR is compared with FDK, ASD-POCS, and PICCS in terms of image 

quality using the image quality metrics described in Sec. 2.2.4. Finally, the computational 

efficiency of AAIR is compared with that of ASD-POCS and PICCS in Sec. 3.3.

3.1. Sensitivity of AAIR to reconstruction parameters

3.1.1. Prior weighting λ and the impact factor γ—The weighting of the anatomy 

segmentation prior is controlled by λ. In this section, the effects of λ are investigated using 

the digital phantom in two scenarios: (i) adopting different fixed λ values, and (ii) adopting 

the λ reduction scheme described in equation (6) with different γ values.

The MAD values between the 20% phase ground truth and the corresponding AAIR 

reconstructions adopting different constant λ values are plotted w.r.t. iteration number in 

Fig. 6(a). Results from the other phases show similar trends, and are not included. It is worth 

mentioning that these results only illustrate the gradual reduction in the discrepancies 

between the ground truth and the reconstructed images rather than demonstrating the 

reconstruction convergence. All the AAIR reconstructions resulted in noticeably lower 

MAD values than conventional ASD-POCS. More specifically, larger λ values (λ = 0.8, 1) 

resulted in more rapid decrease in MAD in early iterations, but only limited improvements 

in later iterations. This is because a large λ is prone to slightly biasing the solution towards 

any small inaccuracies in the segmentation (e.g. tiny noise-like structures around the bony 

anatomy in Fig. 6(e)), while a smaller λ allows for more flexibility to correct for those 

inaccuracies as the algorithm iterates. This motivated the use of the λ reduction scheme, 

which integrates the rapid decrease in MAD of large λ values in early iterations and the 

flexibility of small λ values in later iterations. It can be seen in Fig. 6(a) that the λ reduction 

scheme (γ = 4) significantly outperformed all the other cases.

The effects of adopting the λ reduction scheme with different γ values are shown in Fig. 

6(b). All the AAIR curves behaved similarly in early iterations (iteration number < 3) since 

λ was initiated to be unity for all cases. As the algorithm iterated, the MAD values began to 

diverge. In particular, the decrease in MAD was slightly smaller for γ = 1 and γ = 2, while 

the other larger γ values were found to perform similarly well. This can be expected since a 
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smaller γ value leads to more rapid reduction in λ (cf. equation (6)), and therefore an overall 

smaller impact of the anatomy segmentation prior. Consequently, images reconstructed with 

small γ values (e.g. Fig. 6(f)) are prone to over-smoothing like ASD-POCS images, while 

images reconstructed with reasonably large γ values (e.g. Fig. 6(g)) benefit significantly 

from the anatomy segmentation prior.

Out of all the results, γ = 4 was found to produce the lowest MAD value. This suggests that 

the choice of γ = 4 not only enables sufficient impact of the anatomy segmentation prior, but 

also allows for flexibility to correct for inaccuracies in the segmentation as the algorithm 

iterates. Nevertheless, it should be noted that the results were very similar for γ ∈ [3, 6], 

indicating that the reconstruction outcome is not sensitive to the choice of γ within this 

range. For both the digital phantom and patient results presented in Sec. 3.2, γ = 4 was used.

3.1.2. Segmentation parameters—The AAIR method relies on the general anatomical 

knowledge encoded in the anatomy segmentation image. It is therefore crucial to investigate 

the effects of segmentation parameters on reconstruction outcomes. As mentioned in Sec. 

2.1.3, the segmentation of soft tissue and lungs/airways are reasonably tolerant to the 

selection of parameters due to the connectivity constraints. However, the segmentation of 

the smaller structures, i.e. the bony anatomy and the pulmonary details, can be sensitive to 

the choice of IBone and IPulmonary. Specifically, smaller values of IBone and IPulmonary may 

lead to noisy segmentation, while larger values often fail to capture low contrast objects.

In this section, three sets of reasonable segmentation parameters for the phantom data, 

(IBone, IPulmonary) ∈ {(0.018, 0.008), (0.019, 0.009), (0.020, 0.010)mm−1}, were investigated 

(with (IBone, IPulmonary) = (0.019, 0.009) directly estimated by the methods described in Sec. 

2.1.3). In addition, a set of purposely exaggerated parameters, (IBone, IPulmonary) = (0.012, 

0.004)mm−1, was also included to investigate the effects of extremely inappropriate 

segmentation parameters on reconstruction outcomes. In can be seen in Fig. 7(a) that except 

for (IBone, IPulmonary) = (0.012, 0.004)mm−1, all other three sets of parameters resulted in 

very similar MAD values. The corresponding reconstructed images (cf. Fig. 7(c–e)) also 

show no observable qualitative differences. In comparison, the exaggerated parameter set 

(IBone, IPulmonary) = (0.012, 0.004)mm−1 resulted in considerably higher MAD values. The 

reconstructed image (cf. Fig. 7(b)) is also slightly but noticeably blurrier than the other three 

cases. Nevertheless, all four sets of parameters performed better than ASD-POCS. These 

results suggest that the reconstruction outcomes of AAIR are not very sensitive to the 

segmentation parameters as long as the parameters are within a reasonable range. In 

appropriate parameters may fail to capture fine anatomical structures, thereby making the 

reconstruction prone to more over-smoothing like in ASD-POCS.

3.2. Image quality

3.2.1. Phantom data—The 20% phase (mid-exhale) of the reconstructed digital phantom 

images are displayed in Fig. 8. Images of the other phases are included in Fig. C1 in 

Appendix C. In terms of noise and streaking, all three iterative methods (ASD-POCS, 

PICCS, and AAIR) performed significantly better than FDK. The ASD-POCS image has the 

lowest level of noise and streaking, closely followed by the AAIR image, in which minor 
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streaking artifacts can be observed but barely influence the visibility of any details. Among 

the three iterative algorithms, the PICCS image contains the most noise and streaking 

artifacts inherited from the prior image. In terms of blurring, the ASD-POCS image shows 

the worst contrast and sharpness of the bony anatomy and pulmonary details due to over-

smoothing, which is expected as TV minimization smooths all intensity variations 

indistinguishably. The PICCS image has a much improved overall contrast and sharpness 

compared to the ASD-POCS image. In particular, the bony anatomy in the PICCS image is 

the clearest among all four reconstructed images. Nevertheless, the contrast of the 

pulmonary details is slightly worse than that of FDK, which is likely due to motion blur 

inherited from the prior image. AAIR is much less prone to over-smoothing compared to 

ASD-POCS, and does not suffer from motion blur inherited from the prior image as in 

PICCS. AAIR thus rendered the best contrast of pulmonary details. The bony anatomy 

appears to be slightly blurrier in the AAIR image compared to the PICCS image, but is 

considerably clearer than that in the FDK and ASD-POCS images.

Regions highlighted by the red circles also demonstrate how AAIR can potentially improve 

the visual inspections of the reconstructed images. Although the pulmonary details in these 

regions can be observed in the FDK image, they can barely be confidently identified from 

the surrounding noise and streaks without the ground truth as a reference. On the other hand, 

these details are either lost in the ASD-POCS image, or suffer from degraded contrast and 

sharpness in the PICCS image. With significant reduction in noise and streaks but no 

apparent over-smoothing, the AAIR image offers the best visibility of these details. The 

sagittal zoom in also shows that AAIR rendered the most accurate and distinct 

reconstruction of the tumor shape. ASD-POCS “over-polished” the edges, resulting in a 

reasonably defined but blunt contour. PICCS was unable to restore a distinct tumor contour 

due to motion blur. The FDK image is heavily corrupted by noise and streaking artifacts, 

making it difficult to delineate the tumor. However, it is worth mentioning that the vessel 

near the tumor was the most accurately reconstructed with FDK.

The reconstruction performances for all ten phases were quantitatively investigated using 

MAD and SSIM (c.f. Sec. 2.2.4 for detailed definitions). Fig. 9(a) and Fig. 9(b) show that 

AAIR had the best quantitative performances (lowest MAD and highest SSIM), followed by 

ASD-POCS, PICCS, and FDK, for all phases. These results suggest that AAIR rendered the 

most accurate reconstruction of the ground truth from both a pixel-by-pixel and a visual 

perception aspect. However, it should be noted that the quantitative analysis does not 

necessarily imply the usability of the images. For example, the PICCS images, despite 

having worse quantitative performances than ASD-POCS, appear to have better visibility of 

fine details. For all four reconstruction methods, the best quantitative performances are 

observed in the 0% (end inhale) and 50% (end exhale) phases as expected, since they are in 

general allocated the most projections (300 half-fan projections in our case). Compared to 

ASD-POCS, the gain in image quality of AAIR is also the smallest for end inhale/exhale 

phases, and largest for mid-inhale/exhale phases, implying that the use of the anatomy 

segmentation prior is more beneficial for phases allocated less projections.

3.2.2. Patient data—The 20% phase (mid-exhale) of the reconstructed patient images are 

displayed in Fig. 10. Images of the other phases are included in Fig. C2 in Appendix C. All 
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three iterative methods rendered significant improvements in image quality compared to 

FDK in terms of noise and streaking reduction. However, it should be noted that in this 

study the FDK filter was the standard RamLak kernel, whereas in practice FDK is usually 

used with a Hanning smoothing window to slightly suppress noise and streaks. Among the 

three iterative methods, the PICCS image exhibits the most noise and streaking artifacts, 

most likely inherited from the prior image. Unlike the phantom case, no apparent motion 

blur can be observed at the tumor in the patient PICCS image, most likely because the tumor 

has very little motion in this particular scan (cf. Fig. C2 for 4D images), favoring the use of 

the 3D motion blurred image prior. The ASD-POCS image is smoother than the PICCS 

image, but suffers from slight blurring of the bony anatomy. The AAIR image not only 

exhibits the least noise and streaking artifacts, but also shows the best contrast and 

sharpness. Fine pulmonary details, especially those highlighted by the red circles, can be 

much better identified in the AAIR image than in the FDK image as a result of the 

significant reduction in noise and streaks, and also have more distinct contours than in the 

ASD-POCS and PICCS images as a result of the improved contrast and sharpness. 

Nevertheless, it should be kept in mind that without a ground truth for the patient data, there 

is no guarantee that AAIR resulted in the most accurate reconstructions.

SNR and CNR were used as surrogates to assess potential improvements in the visibility of 

details due to reduction in noise, streaks, or blurring, and are showed in Fig. 11. It can be 

seen that for all reconstruction methods, the image quality metrics are in general higher at 

phases allocated more projections, i.e. end inhale (0%) and end exhale (50%), similarly to 

that observed in the phantom study (cf. Fig. 9). All three iterative methods performed 

considerably better than FDK. Both ASD-POCS and PICCS resulted in lower SNR and 

CNR values than AAIR, with ASD-POCS slightly outperforming PICCS in SNR and CNR 

of the tumor. However, PICCS performed slightly better than ASD-POCS in terms of CNR 

of the bony anatomy in some phases, which can be expected since the use of the 3D motion 

blurred prior image is likely to benefit the reconstruction quality of relatively static 

structures more. AAIR reconstructions have the highest SNR and CNR values for all ten 

phases, corroborating the best visibility of details observed in Fig. 10. Once again, the SNR 

and CNR results provide some evidence of the potential improvements in image quality by 

AAIR, but do not guarantee the accuracy of the reconstruction since there is no ground truth.

3.3. Computational efficiency

The computational efficiency of AAIR was compared to that of the other iterative 

algorithms, i.e. ASD-POCS and PICCS, by the total computation time. The total 

computation time was recorded as the sum of the time spent on the major operations – 

SART, TV gradient calculation, and anatomy segmentation (AAIR only). The computation 

time and its components for the 20% phase are shown in Fig. 12 as an example. It can be 

seen that for 3D images, the TV gradient calculation is the most computationally expensive 

and accounts for the majority of the computation time. Consequently, PICCS required more 

computation time than that suggested by its small number of iterations because it computes 

double the amount of TV gradients than ASD-POCS in each iteration. More specifically, for 

a 20-step TV minimization per main iteration, the number of TV gradients computed in each 

method is: 20 for ASD-POCS, 21 for AAIR (one additional calculation for the anatomy 
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segmentation prior, cf. equation (5)), and 40 for PICCS (2 × 20 since there are two TV terms 

in the objective function, cf. equation (8)). In contrast, AAIR is more computationally 

economical as it reduces the number of iterations for the relatively low cost of only one 

additional TV gradient calculation and one computationally cost-effective anatomy 

segmentation step per iteration. For all three iterative methods the POCS component was 

more time consuming in the patient case than in the phantom case, which is due to the larger 

dimension of the patient projection image (5122 vs. 256 × 128). It should be noted that the 

computation time occupied by each operation may vary depending on factors such as code 

optimizations and computer hardware specifications.

The computation time for all ten phases is compared and displayed in Fig. 13. Computation 

time is in general higher for phases allocated more projections (end inhale 0% and end 

exhale 50%) because the time required for the POCS step increases with the number of 

projections. For all phases, AAIR required the least computation time to reach the stopping 

criterion, and was in general more than two times faster than ASD-POCS. This indicates that 

in addition to improving image quality, the use of the anatomy segmentation prior is also 

beneficial to reducing reconstruction time. The computation time of PICCS was also 

considerably reduced compared to ASD-POCS, except for a few phases of the patient case. 

It is worth mentioning that other step size selection schemes and optimization algorithms 

have been proposed for PICCS (Lauzier et al, 2012), and may improve computational 

performance than that found in this study.

4. Discussion

We have introduced a novel thoracic 4D CBCT image regularization method, i.e. the AAIR 

method, which builds on and overcomes some limitations of conventional TV minimization 

reconstructions by exploiting the general anatomical knowledge of the thoracic region in the 

form of an anatomy segmentation prior. The anatomy segmentation prior helps the 

reconstruction algorithm roughly identify and adaptively preserve anatomical structures of 

interest, thereby not only avoiding loss of contrast, but also allowing the use of a larger step 

size of the smoothing process for more rapid noise and streaking removal. As a result, the 

incorporation of the anatomy segmentation prior improves both image quality and 

computational efficiency as demonstrated by both the phantom and patient cases.

The main difference between ASD-POCS and AAIR is that an anatomy segmentation prior 

term is used to preserve structures that are identified in the segmentation process (cf. 

equation (5) and Fig. 2(d)). However, it is important to point out that AAIR can potentially 

improve the reconstruction of details missed in the segmentation process as well. This is 

because by preserving some of the anatomical structures in the anatomical-adaptive TV 

minimization step, the POCS step that follows is initialized with an improved image, which 

may then lead to global improvements in the image quality. An example is shown in Fig. 14, 

in which AAIR was able to recover some of the tiny vessels in the digital phantom even 

without them being identified in the anatomy segmentation image.

The main purpose of this work is to demonstrate a proof of concept that the use of an 

anatomy segmentation prior can improve thoracic 4D CBCT reconstruction. For this 
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purpose, the anatomy segmentation image was incorporated into the reconstruction using a 

heuristic method (cf. equation (5)). The heuristic method has some desirable properties as 

described in Sec. 2.1.2, and its iterative behavior was also numerically demonstrated to be 

stable provided that the parameters are selected within a certain range. Nevertheless, a 

limitation of this method is that there is no theoretical proof of the convergence of AAIR, 

making AAIR not reliable for practical use, yet. Thus, future work involves implementing 

the anatomy segmentation prior with an improved framework with desirable theoretical 

properties.

The anatomy segmentation method used in this work is simple and largely based on 

intensity thresholding, the potential limitation of which is that the segmentation outcome 

may be sensitive to the intensity thresholding parameters. AAIR was therefore tested with a 

few segmentation parameter sets, and was found to be robust as long as the parameters were 

within a reasonable range. The simple anatomy segmentation method was demonstrated to 

be sufficient to render significant improvements in the reconstruction performance. That 

said, AAIR is expected to benefit from more advanced segmentation methods (Haas et al, 

2008; van Rikxoort et al, 2009; Volpi et al, 2009; Vandemeulebroucke et al, 2012). For 

example, techniques such as region growing or morphological operators may enable 

accurate segmentation even in early iterations, sparing the need for recomputing the 

segmentation in every iteration.

There are a few other limitations of AAIR. Firstly, the anatomy segmentation prior helps the 

reconstruction “make the best use of” the projections allocated to that phase, but does not 

utilize information encoded in projections allocated to other phases. Thus, in extreme under-

sampling cases, AAIR is unlikely to recover anatomical details that are not contained in the 

projections. Secondly, the improvements in image quality were mainly observed in terms of 

visibility of high contrast objects such as tumors and vessels in the lungs, but not for 

differentiation between low contrast structures such as tumors in soft tissues since they are 

difficult to segment from 4D CBCT images. These limitations can be improved by 

combining AAIR with methods that utilize information from additional projections or scans 

such as PICCS (using the 3D motion blurred image or the planning CT as the prior) (Chen et 

al, 2008; Leng et al, 2008b) or projection sharing (O’Brien et al, 2014). Thirdly, AAIR was 

only tested with a standard clinical 4D acquisition protocol in this study, and its performance 

in extremely low dose or sparse sampling scenarios is yet to be investigated. It is possible 

that in these challenging cases the inferior image quality leads to faulty anatomy 

segmentation which could potentially bias the solution. Lastly, despite the much improved 

computational efficiency, it still takes 15 minutes or more for AAIR to reconstruct a single 

phase. Further efficiency gains can be realized through GPU implementation, which may 

speed up the reconstruction process by a factor of 20 or more (Jia et al, 2010; Tian et al, 

2011), thereby potentially facilitating AAIR for practical use.

SNR and CNR were used as surrogates to assess potential improvements in image quality 

for the patient scan in the absence of a ground truth, the limitation of which is that the 

quantitative results do not necessarily represent the accuracy of the reconstruction and the 

clinical usability of the images. Furthermore, the improved CNR values of the tumor and the 

bony anatomy imply but do not guarantee better visibilities of fine anatomical details. These 
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limitations can be overcome by simulating clinical CBCT scans with a realistic noise model 

(Wang et al, 2014), in which case a ground truth is available, and clinically relevant metrics 

such as the detectability index (Popescu and Myers, 2013) can be calculated.

It is noteworthy that although AAIR is presented for thoracic 4D CBCT reconstruction, the 

core concept of AAIR, i.e. exploiting general anatomical knowledge in the form of anatomy 

segmentation, is not limited to thoracic CBCT scans, and may also be applied to other 

anatomical regions and imaging modalities.

5. Conclusion

In this paper, we demonstrated, for the first time, a proof of concept that the use of anatomy 

segmentation can improve thoracic 4D CBCT reconstruction. The proposed Anatomical-

Adaptive Image Regularization (AAIR) method incorporates the anatomy segmentation 

prior into the ASD-POCS framework by a heuristic approach. Using a phantom and a patient 

study, we have shown that compared to other iterative methods, AAIR not only significantly 

improves image quality in terms of reconstruction accuracy, signal-to-noise ratio, and 

contrast-to-noise ratio, but also shortens the computation time by over 50% compared to 

conventional TV minimization methods. Further development in AAIR is required to 

facilitate AAIR for practical use.
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Appendix A. Soft tissue segmentation with connectivity constraints

Fig. A1 shows the segmentation of soft tissue with different values of ISoft before and after 

the connectivity constraints of the soft tissue and lungs are applied. It can be seen that 

although different values of ISoft may produce very different thresholded images, the 

connectivity constraints were able to correct for the mis-included and mis-excluded regions, 

leading to almost identical segmentation results. Thus, soft tissue segmentation is in general 

not sensitive to the selection of ISoft.

Appendix B. Pseudo code for AAIR

In the pseudo code below, N is the number of reconstructed pixels, M is the number of 

projections, and p̃ is the projection set with pi being its element.

1: β(1) ← 1; βred ← 0.99; α(1) ← 0.05; αred ← 0.9;

2: tol ← 0.11; NTV ← 20; rmax ← 0.9;

3: λ(1) ← 1; γ ← 4;

4: MaxIteration ← 1000; Δfmin ← 2 × 10−4;
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5: f⃗(0) ← f⃗FDK ⊲ Use FDK image as the initial image

6: for k ← 1, MaxIteration do ⊲ main loop

7:   for j ← 1,N do ⊲ POCS step via SART with positivity constraint.

8:

    

9:   end for

10:

  

11:

  

12:   res(k) ← ‖p̃ − Rf⃗(k)‖

13:   if k = 1 then

14:

    

⊲ Initialize TV step size

15:   end if

16:

     ← AnatomySegmentation (f⃗(k))

17:   for kTV ← 1,NTV do

18:

    

19:     f⃗(k) ← f⃗(k) + α(k)d⃗fAATV

20:   end for

21:

  

22:

  if  then

⊲ Stopping criterion

23:     break;

24:   else

25:     β(k+1) ← β(k) × βred ⊲ Calculate new step sizes

26:

    if  and res(k) > tol then

27:       α(k+1) ← α(k) × αred

28:     end if

29:

    

30:   end if
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31: end for

32:

return 

Appendix C. 4D reconstructed phantom and patient images

Fig. C1 and Fig. C2 show the sagittal views of all ten phases of the reconstructed images for 

the phantom and the patient cases, respectively.
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Figure 1. 
An illustration of how the anatomy segmentation image f⃗Seg can be obtained from 

segmenting the soft tissue, lungs/airways, bony anatomy, and pulmonary details in the 

updated solution image f⃗.
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Figure 2. 
(a) A noisy image f⃗. (b) f⃗Seg, the anatomy segmentation image of f⃗. (c) −∇f⃗ TV (f⃗), the TV 

GSD step of f⃗. (d) −∇f⃗Seg TV (f⃗Seg), the TV GSD step of f⃗Seg, which represents over-

smoothing of the major anatomical structures that should be avoided.

Shieh et al. Page 24

Phys Med Biol. Author manuscript; available in PMC 2016 January 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3. 
The attenuation coefficient histograms of anatomical structures in (a) the phantom FDK 

images and (b) the patient FDK images (see Sec. 2.2.1 and Sec. 2.2.2 for details of the 

phantom and patient data). The histograms were obtained via manual delineation of the 

anatomies. All the curves are normalized to a peak value of unity. Histograms for both 4D 

FDK images (solid curves) and the 3D motion blurred FDK image (dashed curves) are 

shown. The intensity thresholding parameters used in this study are also shown by the dotted 

vertical lines.
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Figure 4. 
A flowchart illustrating the AAIR method.
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Figure 5. 
The selected region fSNR in the patient images for calculating SNR, and fBone, fTumor, fSoft, 

and fLung for calculating CNRs.
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Figure 6. 
(a) The mean absolute difference (MAD) values between the ground truth (digital phantom 

20% phase) and AAIR reconstructions adopting different constant λ values plotted w.r.t. 

iteration number. The results of the ASD-POCS and AAIR reconstructions using the λ 

reduction scheme (γ = 4) (cf. equation (6)) are included as references. (b) Similarly to (a), 

but with all the AAIR results obtained using the λ reduction scheme and with different γ 

values. Both (a) and (b) only illustrate the gradual reduction in the discrepancies between the 

ground truth and the reconstructed images rather than demonstrating the reconstruction 

convergence. (c) and (d) are the ground truth and ASD-POCS images of the 20% digital 

phantom images, respectively. (e)–(g) are the corresponding AAIR images adopting a fixed 

λ = 1 and the λ reduction scheme with γ = 1 and γ = 4, respectively. (C/W = 0.0115/0.023 

mm−1)
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Figure 7. 
(a) The mean absolute difference (MAD) values between the ground truth (digital phantom 

20% phase) and AAIR reconstructions using different intensity thresholds in the anatomy 

segmentation process (for the bony anatomy and the pulmonary details) plotted w.r.t. 

iteration number. The curves only illustrate the gradual reduction in the discrepancies 

between the ground truth and the reconstructed images rather than demonstrating the 

reconstruction convergence. The result of the ASD-POCS reconstruction is included as a 

reference. (b)–(e) are the corresponding AAIR reconstructed images, with the intensity 
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thresholds used in each case labeled. All the results were reconstructed using the λ reduction 

scheme with γ = 4. (C/W = 0.0115/0.023 mm−1)
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Figure 8. 
The ground truth image and the FDK, ASD-POCS, PICCS and AAIR reconstructed images 

(with 50 half-fan projections) of the digital phantom (20% phase). The tumor is highlighted 

by an red arrow and by the sagittal zoom-in on the right. The red circles highlight regions 

where AAIR resulted in noticeable improvements. (C/W = 0.0115/0.023 mm−1)
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Figure 9. 
(a) The mean absolute differences (MAD) of all ten phases of the reconstructed phantom 

images. A lower MAD indicates a more accurate reconstruction of the ground truth. Note 

that the y-axis has been inverted so that an upward trend corresponds to better image quality. 

(b) The structural similarity (SSIM) indices of all ten phases of the reconstructed phantom 

images. A higher SSIM indicates a more accurate reconstruction of the ground truth.
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Figure 10. 
The FDK, ASD-POCS, PICCS and AAIR reconstructed images (with 73 full-fan 

projections) of the 20% phase patient image. The tumor is highlighted by an red arrow and 

by the sagittal zoom-in on the right. The red circles highlight regions where AAIR resulted 

in potential improvements in the visibility of fine details. (C/W = 0.01/0.02 mm−1)
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Figure 11. 
The (a) SNR values, (b) CNR values of the tumor, (c) CNR values of the bony anatomy of 

all ten phases of the patient images.
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Figure 12. 
The total computation time of each iterative reconstruction for 20% phase of the (a) 

phantom data, and (b) patient data. The total computation time was calculated as the sum of 

the time spent on the SART and TV gradient calculations, as well as the anatomy 

segmentation operation in the case of AAIR. The number of iterations required for each 

reconstruction is also shown.
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Figure 13. 
The total computation time of each iterative reconstruction for all ten phases of the (a) 

phantom data, and (b) patient data.
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Figure 14. 
Zoom in views of the digital phantom images illustrating that the use of the anatomy 

segmentation prior can improve the reconstruction of fine details even if they are missed in 

the segmentation process. The anatomy segmentation image displayed was acquired from 

the last iteration of the AAIR reconstruction. (C/W = 0.0115/0.023 mm−1)
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Figure A1. 
The segmentation of soft tissue (phantom data) with different values of ISoft before and after 

the connectivity constraints of the soft tissue and lungs are applied.
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Figure C1. 
All ten phases of the ground truth, FDK, ASD-POCS, PICCS, and AAIR reconstructions of 

the digital phantom in sagittal view. The red dashed lines were added to help the observation 

of the tumor motion. (C/W = 0.0115/0.023 mm−1)
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Figure C2. 
All ten phases of the FDK, ASD-POCS, PICCS, and AAIR reconstructions of the patient 

scan in sagittal view. The red dashed lines were added to help the observation of the tumor 

motion. (C/W = 0.01/0.02 mm−1)
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