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Abstract

Our unique collection of memories determines our individuality and shapes our future interactions 

with the world. Remarkable advances into the neurobiological basis of memory have identified 

key epigenetic mechanisms that support the stability of memory. Various forms of epigenetic 

regulation at the levels of DNA methylation, histone modification, and non-coding RNAs 

(ncRNAs) can modulate transcriptional and translational events required for memory processes. 

By changing the cellular profile in the brain’s emotional, reward, and memory circuits, these 

epigenetic modifications have also been linked to perseverant, pathogenic memories. In this 

review, we will delve into the relevance of epigenetic dysregulation to pathogenic memory 

mechanisms by focusing on two neuropsychiatric disorders perpetuated by aberrant memory 

associations: substance use disorder (SUD) and post-traumatic stress disorder (PTSD). As our 

understanding improves, neuroepigenetic mechanisms may someday be harnessed to develop 

novel therapeutic targets for the treatment of these chronic, relapsing disorders.

Memory formation requires the complex refinement of synaptic structures to yield 

long-lasting changes in plasticity that support and maintain a memory trace. Nuclear 

histone modifications are poised to regulate such processes because they receive cellular 

signals and integrate this molecular information into transcriptional and translational 

events that modulate synaptic plasticity. Rodent learning and memory paradigms result 

in hyperacetylation of histone proteins in an ERK/MAPK-dependent manner, illustrating 

this principle of signal integration and demonstrating that histone acetylation is a hallmark 

feature of memory formation [1, 2]. Dampening histone acetylation by decreasing histone 

acetyltransferases (HATs) or over-expressing histone deacetylases (HDACs) produces 

deficits in contextual fear learning, synaptic plasticity, dendritic synapse structure, and 

long-term memory [3–7]. Conversely, HDAC inhibitors promote histone acetylation and 

have been hypothesized to change the synaptic architecture of dendrites, allowing for new 

synapses to take shape during memory formation [8]; thus, ameliorating impairments of 
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neuronal plasticity and memory, boosting cognitive function and increasing synapse number 

[2–4, 6, 9–12].

Interestingly, pretreatment with an HDAC inhibitor can counteract and overcome the 

memory disrupting effects of DNA methyltransferase (DNMT) inhibition, indicating that 

multiple epigenetic signals are integrated to produce a behavioral outcome [13]. Epigenetic 

regulation by methylation of genomic DNA contributes to the support of stable memory 

consolidation, as well as dynamic synaptic processes during new memory formation, 

demonstrating its utility as a reversible post-translational modification [14–16]. Indeed, 

DNA methylation is a critical contributor to memory consolidation and learning-induced 

synaptic plasticity, events that can be blocked by DNMT inhibition [13, 17]. At the 

transcriptional level, alteration of DNA methylation within the hippocampus at the time of 

learning has bidirectional consequences on gene expression, inducing genes that support 

memory formation, while silencing memory-suppressing genes [15, 18]. Interestingly, 

hippocampal methylation induced by learning at gene promoters that have been assayed 

appears to be transient, returning to baseline within 24 hours [15]. However, cortical 

integration occurs during consolidation of memories, shifting a hippocampus-dependent 

memory to rely on the cortex and, ultimately, resulting in a lasting cortical hypermethylation 

pattern in the cortex that contributes to preservation of the memory trace [19]. Thus, 

integrative DNA methylation represents both dynamic and stable processes of memory 

formation. For additional information on the general mechanisms discussed above, a number 

of more extensive, excellent reviews have been written on histone modifications and DNA 

methylation involved in learning and memory [20–22].

Beyond these traditional modifications, ncRNAs have emerged as potent epigenetic 

regulators that can ubiquitously repress and/or activate a broad repertoire of targets. 

MicroRNAs (miRNAs) are non-coding, endogenous RNAs that act as translational 

repressors through direct binding to the 3′-UTR of target mRNAs and non-cleavage 

degradation of the target mRNA via deadenylation [23–25]. Since a single miRNA has 

hundreds of predicted targets based on seed region complementarity, this wide-genomic 

range likely affords it the ability to efficiently coordinate complex processes, such as those 

required to form and maintain a memory [26]. Indeed, miRNAs have been studied for their 

involvement in basic mechanisms of learning and memory, synaptic plasticity, and cognitive 

dysfunction (For review see [27]). For example, the brain specific miR-134 is enriched in 

the synapto-dendritic compartment of cultured hippocampal neurons, where it targets actin-

related proteins that regulate spine development [28]. Because actin is the major cytoskeletal 

component of dendritic spines [29], and its polymerization is required for the regulation of 

structural and functional plasticity and memory formation [30–34], miRNAs like miR-134 

are well-suited to exert strict regulatory control over structural plasticity [35–38]. Indeed, 

exposure to conditioned fear learning paradigms regulates the expression of several miRNAs 

[26, 39, 40] and manipulation of a single miRNA can prevent memory consolidation and 

inhibit learning-induced dendritic spine changes [26, 39–43].

While recent work in the field of neuroepigenetics has provided us with insight into the 

effects of epigenetic dysregulation during memory processes, we have only reached the tip 

of the iceberg. It is well established that stressful, pathogenic events such as abuse, early-life 
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trauma and combat exposure induce epigenetic modifications [44–48] that have been linked 

to neuropsychiatric disease susceptibility [49–51]. However, much remains elusive regarding 

the role of epigenetics in maintaining long-lasting pathogenic memories such as those 

experienced by substance abusers and PTSD patients. Moreover, a better grasp of the ability 

of epigenetic mechanisms to modulate pathogenic memories will allow for the identification 

of potential targets for therapeutic use in the treatment of deeply engrained associations 

capable of perpetuating SUD and PTSD.

Epigenetic mechanisms in pathogenic memory: Drug-associated memories

Learned associations between environmental stimuli and the rewarding effects of drugs of 

abuse serve as lasting, potent memories capable of triggering a conditioned, physiological 

response and feelings of intense craving in abstinent drug users. These memories are 

highly resistant to extinction and contribute to the high rate of relapse among addicts. 

Therefore, a common approach in the field is to identify mechanisms capable of accelerating 

the extinction or blocking the reconsolidation of these deeply engrained memories. Our 

understanding of epigenetic contributions to these memories is limited and far more is 

known about the mechanisms contributing to the formation of drug-associated memories 

than the mechanisms involved in their expression, extinction or reconsolidation.

Currently, everything known about epigenetic contributions to drug-associated memories 

comes from studies utilizing conditioned place preference (CPP), a behavior task in 

which animals learn to associate the rewarding effects of a drug with the environmental 

context in which it is administered and later show a preference for that environment. 

Histone acetylation and methylation, as well as DNA methylation have been implicated 

in the formation and extinction of drug-context associations. For instance, elevating 

histone acetylation via HDAC inhibition (HDACi) enhances cocaine, morphine and heroin 

place preferences, but decreases nicotine CPP [52–58]. Similarly, HDACi accelerates the 

extinction of cocaine and morphine CPP [54, 59, 60] and prevents the blockade of morphine 

CPP reconsolidation induced by an inhibitor of nuclear factor-kB (NF-kB) [61]. However, 

HDACi was shown in another study to delay cocaine CPP extinction [62]. Under certain 

conditions, rodents develop conditioned place aversions to ethanol and morphine, and rather 

than the accelerated extinction seen with place preferences, HDACi seems to delay the 

extinction of these aversive memories [63, 64].

Because there are 11 HDAC isoforms, excluding the non-histone related sirtuins, that can be 

subdivided into four classes, a major goal within the field of neuroepigenetics is to identify 

which HDACs contribute to the behavioral effects identified with somewhat broadly acting 

HDAC inhibitors. To that end, overexpression of HDAC4 in the striatum has been found to 

disrupt a cocaine place preference [57]. This same type of association is enhanced by genetic 

knockdown of HDAC3 within the brain’s reward center, the nucleus accumbens (NAc) [65]. 

Further, reducing the nuclear accumulation of HDAC5 in the NAc via dephosphorylation 

and focal knockdown of the HAT, CBP, in the NAc both disrupt cocaine CPP [66, 67]. New 

HDAC inhibitors are becoming available with increased selectivity and one such compound, 

RGFP966, bears a high degree of specificity for HDAC3, a member of the Class I family 
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of HDACs. Consistent with the effect of more broadly acting HDACi’s, inhibition limited to 

HDAC3 was also capable of enhancing cocaine CPP [68].

By adding methyl groups to lysine 9 on histone H3 (H3K9), the histone methyltransferase 

(HMT), G9a, is capable of inhibiting transcription. Consistent with this function, intra-

NAc knockdown of G9a enhanced cocaine CPP, while overexpression disrupted a place 

preference for morphine CPP [69, 70]. Recent technical advances are allowing researchers to 

target subpopulations of neurons. This is particularly advantageous in the striatum, a brain 

region populated by neurons with very different downstream projections. These neurons can 

be delineated by their expression of either the D1 receptor (Drd1) or D2 receptor (Drd2). 

A recent study employing one such cell type-specific technique found that G9a knockdown 

in D1-containing striatal neurons decreased cocaine CPP, while knockdown in D2 neurons 

enhanced the strength of the association [71]. Similarly, knockdown of the transcriptionally 

permissive H3K4 HMT, Mll1, in the NAc prevented the formation of a methamphetamine 

place preference [72]. H3K4 methyl moieties can be removed by the histone demethylase, 

Kdm5c, driving transcriptional repression. Interestingly, intra-NAc knockdown of this 

enzyme has no effect of the formation of a methamphetamine association, but prevents 

its storage and/or expression [72].

DNA methylation and non-coding RNAs have received even less attention in the context 

of drug-associated memory. DNA methylation is associated with transcriptional silencing 

and represents another attractive mechanism for mediating long-lasting memories [15, 

19]. Changes in DNA methylation can be triggered through activity of the de novo 
methylatransferases, Dnmt3a and Dnmt3b. Indeed, reduction of the repressive state has 

been observed in the brain’s reward system after a single administration of cocaine 

through changes in Dnmt3a expression and chronic, systemic methyl supplementation with 

methionine disrupted a place preference for cocaine [73, 74]. Paradoxically, infusion of a 

DNMT inhibitor directly into Area CA1 of the hippocampus also disrupted the formation 

of cocaine CPP [75], while DNMT inhibition in the NAc enhanced cocaine CPP [73]. 

Additionally, the expression of cocaine CPP was prevented by DNMT inhibition within the 

prelimbic cortex [75]. Together, these results indicate a clear need to identify the gene- 

and region-specific roles of DNA methylation, as well as this epigenetic modification’s 

contribution to the long-term storage of drug-associated memories.

Non-coding RNAs have been implicated in transcriptional and translational regulation. 

Recent studies suggest that cocaine and heroin can induce changes in long, non-coding 

RNA (lncRNA) expression [76, 77]. For example, the expression profiles of lncRNAs 

and associated mRNA are changed in the NAc 24 hours after expression of cocaine CPP 

[76]. miRNAs are also changed after cocaine locomotor sensitization, a process involving 

substantial synaptic plasticity [78]. Specific miRNAs have also been implicated in the 

regulation of the transcription factor CREB, as well as BDNF [79, 80], both of which are 

key participants in synaptic plasticity. Although further investigation will be required to 

determine if differential profiles of lncRNAs and miRNAs occur during the different phases 

of memory, as well as identification of the underlying mechanisms, the existing data suggest 

they may be capable of participating in the formation, and perhaps, post-consolidation 

regulation of drug-associated memories.
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Together, these findings suggest that substances of abuse have the capacity to prime neural 

circuits to increase susceptibility to relapse by mediating long-lasting memories through 

either facilitating a permissive state or inhibiting a repressive state. However, a challenge 

presented by CPP acquisition studies involves interpretation of the findings, as they are 

used as both a measure of drug reward and learning ability. Indeed, the majority of authors 

have interpreted their acquisition phase findings, particularly those related to the NAc, as 

epigenetic-induced changes to the rewarding properties of drugs of abuse. This interpretation 

is supported by the numerous, concomitant reports of changes in locomotor sensitization 

with epigenetic modification. The likelihood of influences on reward, rather than learning, is 

further indicated by the finding that HDAC inhibition with sodium butyrate (NaB) increases 

cocaine self-administration during the protocol’s maintenance phase [81]. Though, another 

study found that systemic HDAC inhibition with trichostatin A (TSA) or phenylbutyrate 

(PB) decreased cocaine self-administration and correlated with decreased HDAC activity 

within the prefrontal cortex (PFC), a key member of the neural circuitry governing drug-

associated memory [82]. This may represent epigenetic-mediated compensatory actions in 

the PFC, such as activation of BDNF [83]. Interestingly, the discrepancy of findings between 

the two studies examining the effects of HDAC inhibition on cocaine self-administration 

may lie in the selectivity of the particular inhibitors that were utilized. While TSA and 

PB are broad spectrum HDAC inhibitors, hitting members of every HDAC Class, NaB’s 

targets are limited to Class I HDACs (HDAC1, 2, 3 and 8) [11]. Regardless, there is clearly 

a need to further characterize the region-specific contribution of epigenetic modifiers to 

drug-associated and other pathological memory associations, particularly in terms of how 

these memories are stored, expressed and subsequently modified.

Epigenetic mechanisms in pathogenic memory: Implications for PTSD

During PTSD, an individual experiences or witnesses a traumatic event or events that 

later lead to substantial dysfunction in fear processing, including hyperactivation of the 

amygdala (AMY), upon exposure to fearful stimuli and generalization of fearful responses 

to nonfearful stimuli. The AMY, the brains emotional memory center, plays a critical role 

in many forms of cognition, including psychiatric disorders with a memory component 

[84, 85]. Unlike hippocampus-dependent memories, which shift to the cortex as long-term 

memory develops [19, 86, 87], AMY-dependent memories continue to rely on the AMY 

weeks after learning [88, 89]. Understanding the mechanisms through which the AMY 

maintains these painful memories in a stable state for months to years has significant 

clinical importance. Given the powerful transcriptional and translational effects of epigenetic 

modifications, as well as their long-lasting potential, epigenetics represent a promising 

avenue of research for PTSD.

Stress has been shown to induce epigenetic modifications [90, 91]. Taken together with 

the fact that manipulation of the chromatin state or abundance of regulatory miRNAs can 

affect how the brain forms and recalls a memory, one can postulate that a stressful event 

that precipitates PTSD will produce epigenetic changes in brain regions that differentially 

process that memory, as well as the subsequent behavioral responses to reminders of the 

stressful event. In accordance with this notion, the pathogenic memories of PTSD are 

resistant to prolonged exposure therapy (i.e. extinction). Therefore, the focus of many 
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researchers in the field has been to identify molecular targets that accelerate the extinction 

process.

Evidence that epigenetic mechanisms contribute to the perseverant memory state that is 

characteristic of PTSD is beginning to accumulate [92–94]. As mentioned above, traditional 

fear conditioning in rodents has provided insight into the epigenetic mechanisms of memory, 

thus laying the groundwork for traumatic fear memory studies in models of PTSD with 

strong face validity [95, 96]. Most studies on pathogenic memory research have employed 

animal models of PTSD that include a test of “traumatic memory” in a conditioned fear 

paradigm. For instance, in rodents, a “normal” fear memory can be converted to a traumatic, 

extinction-resistant memory by pre-exposure to a stressor [97]. Subsequent fear conditioning 

results in a fear memory that displays greater resistance to extinction than one formed in 

the absence of prior stress [97, 98]. Treatment with an HDAC inhibitor ameliorates fear 

extinction deficits in such a paradigm, presumably because it increases histone acetylation 

to support the formation of new extinction memories [99]. Under basal conditions, this 

model produces enhanced consolidation after contextual fear conditioning and increased 

acetylation of histones H3 and H4 at the promoter of bdnf [100]. When taking into 

consideration the fact that histone acetylation contributes to basic memory processes, these 

studies suggest that histone acetylation contributes to the formation of a very strong initial 

fear memory in PTSD, but that it can also be exploited for the formation of extinction 

memories that aid in the inhibition of pathogenic fear memory responses.

While many studies have reported altered DNA methylation patterns in PTSD patients or 

animal models of PTSD (for review see [101, 102]), the contribution of these epigenetic 

changes to the development or maintenance of PTSD traumatic memories has not been 

described. Likewise, the role of miRNAs in PTSD remains a complete mystery. In recent 

years, animal models of PTSD with good face validity have been described, in which key 

facets of the disorder, such as fear extinction resistance and generalization of fear, are 

recapitulated, [95, 96]. Therefore, it is highly likely that future studies will employ these 

models to delve into the roles of epigenetic modifications in pathogenic memory processes. 

Finally, it should be noted that the development of PTSD is considered a maladaptive 

response to a stressful event. Exposure to stress throughout life is unavoidable; yet most 

individuals are resilient and do not develop PTSD [50, 103]. The interaction between 

vulnerable genetic factors and exposure-based epigenetic modifications that one incurs 

throughout life is believed to be a crucial contributor to the individual variability seen in 

the development of disorders such as PTSD [94]. Thus, pathogenic epigenetic modifications 

induced by stress in some individuals may dysregulate the mechanisms recruited for the 

formation, storage and/or retrieval of a subsequent, particularly salient stressful event. This 

could also lead to resistance of the “traumatic” memory to extinction and inappropriately 

sensitized behavioral responses to seemingly non-stressful stimuli.

Conclusion

Understanding the contribution of epigenetic mechanisms to how pathological memories 

associated with SUD and PTSD are stored, expressed and subsequently modified will 

have the potential to uncover novel therapeutic targets. However, the current status of the 
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literature highlights the need to refine the models in which these disorders are investigated. 

In the context of SUD, conditioned place preference studies represent a first line approach to 

identifying novel therapeutic targets, but the next step will be to test them in gold standard 

reinstatement models of self-administration. Similarly, while traditional fear conditioning 

paradigms have laid the ground work for epigenetic studies into pathogenic memory, the use 

of models that aim to include multiple components of PTSD may uncover more relevant 

epigenetic targets that will be critical to mitigate this relapsing disorder. Nonetheless, it will 

be interesting to see how the current work with rodent fear conditioning paradigms maps 

onto future PTSD studies. By utilizing the most appropriate tools and animal models of SUD 

and PTSD, future studies will allow us to gain critical insight into the therapeutic window of 

targets and biomarkers of pathogenic memory disorders.
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