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Abstract

This article develops hypothesis testing procedures for the stratified mark-specific proportional 

hazards model in the presence of missing marks. The motivating application is preventive HIV 

vaccine efficacy trials, where the mark is the genetic distance of an infecting HIV sequence to an 

HIV sequence represented inside the vaccine. The test statistics are constructed based on two-

stage efficient estimators, which utilize auxiliary predictors of the missing marks. The asymptotic 

properties and finite-sample performances of the testing procedures are investigated, 

demonstrating double-robustness and effectiveness of the predictive auxiliaries to recover 

efficiency. The methods are applied to the RV144 vaccine trial.
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1 Introduction

The primary objective of a preventive HIV vaccine efficacy trial is to assess vaccine 

efficacy (VE) to prevent HIV infection, where typically VE is defined as one minus the 

hazard ratio (vaccine/placebo) of HIV infection diagnosis. However, the great genetic 

variability of HIV poses a central challenge to developing a highly efficacious vaccine 

(Fauci et al., 2008). The trial population is exposed to many HIV genotypes but the vaccine 

only contains a few, and the vaccine is less likely to protect against HIVs with greater 

genetic distance from the sequences inside the vaccine (Gilbert et al., 1999). The trial has 

objectives to assess whether and how the vaccine impacts the infection rate with any HIV 

genotype and whether and how the vaccine effect varies by HIV genotype; assessment of 
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these objectives has been named ‘sieve analysis’ (Gilbert et al., 1998).Gilbert et al. 

(2008),Sun et al. (2009), and Sun and Gilbert (2012) developed sieve analysis methods 

using the competing risks failure time framework (Prentice et al., 1978), which attach a 

continuous ‘mark’ variable to HIV infected subjects that measures the genetic distance of an 

infecting HIV sequence to a sequence inside the vaccine. The goal of the sieve analysis 

methods is evaluation of mark-specific vaccine efficacy, here defined as one minus the 

mark-specific hazard ratio (vaccine/placebo) of infection. Beyond HIV, the methods apply 

generally to any preventative vaccine efficacy trial for which the pathogen targeted by the 

vaccine is genetically diverse, which include influenza, malaria, tuberculosis, dengue, 

streptococcus pneumoniae, human papilloma virus, and hepatitis C virus.

Gilbert et al. (2008) and Sun et al. (2009) assumed no missing mark data in infected 

subjects, whereas Sun and Gilbert (2012) allowed missing at random (MAR) marks. In 

practice there are missing marks, for example in the Vax004 trial 32 of 368 infected subjects 

had no HIV sequence data (Gilbert et al., 2008), due to drop-out or to inability of the HIV 

sequencing technology to measure the infecting HIV sequence, and in the ‘Step’ trial 22 of 

88 infected subjects had no HIV sequence data (Rolland et al., 2011). While it is of scientific 

interest to evaluate amark defined based on the earliest available HIV sequence, a mark of 

particular scientific interest is defined based on an HIV sequence measured near the time of 

acquisition, which is missing in a much larger fraction of infected subjects due to the 

periodic (typically 6-monthly) diagnostic tests for HIV infection. Specifically, HIV 

sequences are measured from the earliest available post-infection blood sample, and a ‘near 

acquisition’ or ‘early’ sample may be defined as one documented to be sufficiently near 

acquisition. In the Step trial, only 23 of the 66 infected subjects with sequence data had an 

early mark measured, defined as sampling within 3 weeks. Sun and Gilbert (2012) provide 

details on the HIV testing algorithm that is used to define an early mark.

Sun and Gilbert (2012) is currently the only paper on sieve analysis that accommodates 

missing continuous marks. It develops two valid estimation approaches based on the 

stratified mark-specific proportional hazards model. The first uses inverse probability 

weighting (IPW) of the complete-case estimator, which leverages auxiliary predictors of 

whether the mark is observed, whereas the second, adapting Robins et al. (1994), augments 

the IPW complete-case estimator with auxiliary predictors of the missing marks. Sun and 

Gilbert (2012) restricted attention to estimation methods, and this article is a sequel that 

develops corresponding inferential/hypothesis testing methods based on the augmented IPW 

estimator. An important new component of this work compared to the previous work is to 

center it around the sieve analysis of the RV144 Thai trial, which recently delivered the 

landmark result that a prime-boost HIV vaccine appeared to provide partial protection 

against HIV infection (estimated VE = 31%, 95% CI 1% to 51%, Rerks-Ngarm et al., 2009). 

This result has stimulated intense interest in the sieve analysis, for two reasons. First, there 

is controversy about whether the vaccine is really partially working versus a false positive 

result (Gilbert et al., 2011), and the sieve analysis of HIV sequences can help resolve this 

question. In particular, if evidence is found that the vaccine efficacy declines with genetic 

distance, and the distance is defined based on known parts of HIV that contain putatively 

protective antibody epitopes, then an interpretation of real vaccine efficacy is supported. 

Secondly, the HIV vaccine field is grappling with how to modify the tested vaccine to 
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increase its potential vaccine efficacy for the next efficacy trial, and understanding the 

relationship between vaccine efficacy and the genetic distance provides direct guidance on 

which HIV sequences to put inside of the next generation vaccines.

This article is organized as follows. Notations, assumptions, and the stratified mark-specific 

proportional hazards model are introduced in Section 2. Background on the estimation 

procedures needed for the testing procedures are described in Section 3. The testing 

procedures are developed, and asymptotic properties described, in Section 4. The finite-

sample performances of the tests are evaluated via simulations in Section 5. The application 

to the Thai trial is given in Section 6, and the asymptotic results and their proofs are placed 

in the Appendix.

2 Model and missing mark data

2.1 Stratified mark-specific proportional hazards (PH) model

Let T be the failure time, V a continuous mark variable with bounded support [0, 1], and Z(t) 

a possibly time-dependent p-dimensional covariate. The mark V is only observable when T 

is observed. Suppose that the conditional mark-specific hazard function at time t given the 

covariate history Z(s), for s ≤ t, only depends on the current value Z(t). We consider the 

stratified mark-specific proportional hazards (PH) model

(1)

where λk(t, v|z(t)) is the conditional mark-specific hazard function given covariate z(t) for an 

individual in the kth stratum, λ0k (·, v) = λk(t, v|z(t) = 0) is the unspecified baseline hazard 

function for the kth stratum, β(v) is the p-dimensional unknown regression coefficient 

function of v, and K is the number of strata. Model (1) allows different baseline functions for 

different strata and flexibly allows for arbitrary mark-specific infection hazards over time in 

the placebo group. In practice, different key subgroups (e.g., men and women in the Thai 

trial) are assigned different baseline mark-specific hazards of HIV infection.

Arranging , so that β1 (v) is the coefficient for vaccination status and 

β2 (v) for other covariates, the covariate and stratum adjusted mark-specific vaccine efficacy 

VE(v) equals 1 − exp(β1 (v)).Sun et al. (2009) developed some statistical procedures for 

model (1) with K = 1 based on observations of the random variables (X,Z(·), V) for δ = 1 and 

(X,Z(·)) for δ = 0, where X = min{T,C}, λ = I(T ≤ C), and C is a censoring random variable. 

Sun and Gilbert (2012) developed estimation procedures for model (1) with general K 

allowing V to be missing for some subjects with δ = 1; these methods incorporate auxiliary 

covariates and/or auxiliary mark variables that inform about the probability V is observed 

and about the distribution of V. This article develops parallel hypothesis testing procedures 

for assessing VE(v). As summarized in the Introduction, the two objectives are to assess if 

the vaccine efficacy ever deviates from 0 [i.e., test VE(v) = 0] and to assess if the vaccine 

efficacy changes with the mark [i.e., test VE(v) = VE].
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2.2 Missing data assumptions

Let R be the indicator of whether all possible data are observed for a subject; R = 1 if either 

δ = 0 (right-censored) or if δ = 1 and V is observed; and R = 0 otherwise. Auxiliary variables 

A may be helpful for predicting missing marks. Since the mark can only be missing for 

failures, supplemental information is potentially useful only for failures, for predicting 

missingness and for informing about the distribution of missing marks. For example, if V is 

defined based on the early virus, then V*, the auxiliary mark information, may include 

sequences of later sampled viruses, and can be considered a subset of A. In general, A could 

include multiple viral sequences per infected subject at multiple time-points, giving 

information on intra-subject HIV evolution. The relationship between A and V can be 

modelled to help predict V (see Section 5 for a simulated example).

We assume C is conditionally independent of (T, V ) given Z(·) and the stratum. We also 

assume V is MAR (Rubin, 1976); that is, given δ = 1 and W = (T,Z(T), A), the probability V 

is missing depends only on the observed W, not on the value of V; this assumption is 

expressed as

(2)

Let πk(Q) = P(R = 1|Q) where Q = (δ, W). Then πk(Q) = δrk(W) + (1 − δ). The MAR 

assumption (2) also implies that V is independent of R given Q:

(3)

Define rk (w) = P(R = 1|δ = 1, W = w) and ρk(v, w) = P(V ≤ v|λ = 1, W = w). The stratum-

specific definitions of rk (w) and ρk(v, w) allow the models of the probability of complete-

case and of the mark distribution to differ across strata.

Let τ be the end of the follow-up period, and nk be the number of subjects in the kth stratum; 

the total sample size is . Let {Xki, Zki (·), δki, Rki, Vki, Aki ; i = 1,…, nk } be iid 

replicates of {X,Z(·), δ, R, V, A} from the kth stratum. The observed data are {Oki ; i = 1,…, 

nk, k = 1,…, K}, where Oki = {Xki, Zki (·), Rki, Rki Vki, Aki } for δki = 1 and Oki = {Xki, Zki 

(·), Rki = 1} for δki = 0. We assume the Oki are independent for all subjects.

2.3 Hypotheses to test

We develop procedures for testing the following two sets of hypotheses. Let [a, b] ⊂ (0, 1). 

The first set of hypotheses is

H10 : VE(v) = 0 for v ∈ [a, b]

versus H1a : VE(v) ≠ 0 for some v (general alternative)

or H1m : VE(v) ≥ 0 with strict inequality for some v (monotone alternative).

The second set of hypotheses is

H20 : VE(v) does not depend on v ∈ [a, b]
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versus H2a : VE(v) depends on v (general alternative)

or H2m : VE(v) decreases as v increases (monotone alternative).

The null hypothesis H10 implies the vaccine affords no protection (nor increased risk) 

against any HIV genotype. The ordered alternative H1m indicates that the vaccine provides 

protection for at least some of the HIV genotypes, while H1a indicates that the vaccine 

provides protection and/or increased risk for some HIV genotypes. The null hypothesis H20 

implies there is no difference in vaccine protection against different HIV genotypes. The 

ordered alternative H2m indicates that vaccine efficacy decreases with v and H2a indicates 

that the vaccine efficacy changes with v. With β1 (v) the first component of β(v), the first set 

of hypotheses is equivalent to H10 : β1 (v) = 0 for v ∈ [a, b] versus H1a : β1 (v) ≠ 0 for some 

v or H1m : β1 (v) ≤ 0 with strict inequality for some v. The second set of hypotheses is 

equivalent to H20 : β1 (v) does not depend on v ∈ [a, b] versus H2a : β1 (v) depends on v or 

H2m : β1 (v) increases as v increases. We develop testing procedures for detecting departures 

from H10 in the direction of H1a and H1m and for detecting departures from H20 in the 

direction of H2a and H2m. The procedures are developed based on the augmented IPW 

complete-case estimator developed by Sun and Gilbert (2012).

3 Estimation procedure with missing marks

The augmented IPW estimator for model (1) is obtained in two stages. First the IPW 

complete-case estimator is derived and second the augmented IPW estimator is obtained, 

which improves efficiency by accounting for information in the conditional distribution of V 

given the auxiliaries.

Let rk (Wki, ψk) be the parametric model for the probability of complete-case, rk (Wki) 

defined in (2), where Wki = (Tki, Zki (Tki), Aki) and ψk is a q-dimensional parameter. For 

example, one can assume the logistic model with  for those 

with λki = 1, where Wki = (Tki, Zki (Tki), Aki). By (2), the maximum likelihood estimator ψ̂ = 

(ψ̂
1,…, ψ̂

K)T of ψ = (ψ1,…, ψK)T is obtained by maximizing the observed data likelihood,

(4)

Let K(x) be a kernel function with support [−1, 1] and let h = hn be a bandwidth. Let Nki (t, 

v) = I(Xki ≤ t, δki = 1, Vki ≤ v) and Yki (t) = I(Xki ≥ t). Let Qki = (δki, Wki) and πk (Qki, ψk) = 

δki rk (Wki, ψk) + (1 − δki). The first-stage estimator is the IPW estimator β̂ipw (v), which 

solves the following estimating equation for β: Uipw (v, β, ψ̂) = 0, where

(5)
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where  for j = 0, 1, 

where z⊗0 = 1 and z⊗1 = z for any z ∈ ℝp. The score function (5) can be viewed as an 

extension of the score function used for the cause-specific Cox model (Prentice et al., 1978) 

for a particular failure cause J = j, for which the counting process only counts events of type 

j. It borrows strength from observations having marks in the neighborhood of v. The kernel 

function is designed to give greater weight to observations with marks near v than those 

further away.

The baseline function λ0k (t, v) can be estimated by , obtained by smoothing the 

increments of the following estimator of the doubly cumulative baseline function 

:

(6)

For example, one can use the following kernel smoothing

(7)

where , with K(1) (·) and K(2) (·) the 

kernel functions and h1 and h2 the bandwidths.

Following Robins et al. (1994), Sun and Gilbert (2012) proposed a more efficient procedure 

for estimating (1) by incorporating the knowledge of ρk (w, v) into the estimation procedure. 

Let w = (t, z, a) and gk (a|t, v, z) = P(Aki = a|Tki = t, Vki = v, Zki = z, δki = 1). Then

(8)

If no auxiliary variables are available or if Aki is conditionally independent of Vki given (Tki, 

Zki, δki), then . In this case, ρk(w, v) can be 

estimated by 

. When the auxiliary marks Aki are correlated with Vki conditional on Tki, Zki and δki = 1, the 

conditional distribution ρk(w, v) involves the function gk (a|t, u, z), for which a parametric or 

semiparametric model may be developed to describe the dependence between Aki and Vki. 

Let ĝk (a|t, u, z) be an estimator of gk (a|t, u, z) with a convergence rate of at least (nh)−1/2. 

Then ρk(w, v) can be estimated by
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(9)

Let . The augmented IPW (AIPW) 

estimating equation for β is Uaug (v, β, ψ̂, ρ̂ (·)) = 0, where

(10)

and 

for j = 0, 1. The AIPW estimator of β(v) solves the above equation and is denoted by β̂aug 

(v). The estimator of the cumulative function 

. Note that there is no ψ̂
k in Z̄

k (t, β); 

this is a difference between the IPW and AIPW estimators.

To implement the estimation procedures in practice, one can use arbitrary auxiliaries for 

estimating ψ̂
k ; these auxiliaries may include covariates and marks at multiple time-points 

pre-infection and post-infection, respectively. In contrast, while in principle arbitrary 

auxiliaries may also be used for the terms ĝk (a|t, u, z) in (9), due to the curse of 

dimensionality the method is expected to perform best in practice with a univariate 

auxiliary, where semiparametric or fully parametric models for gk (a|t, u, z) would be 

required to include multivariate auxiliaries.

Sun and Gilbert (2012) proved that the estimators β̂
ipw (t, v) and β̂aug (t, v) are consistent and 

that β̂aug (v) is more efficient than β̂ipw (v). In the next section, we develop some hypothesis 

testing procedures for assessing mark-specific vaccine efficacy based on B̂aug (v).

4 Testing of mark-specific vaccine efficacy

The covariate-adjusted vaccine efficacy VE(v) is defined through the first component of 

β(v). Let B1 (v) be the first component of the cumulative coefficient function B(v). The 

hypothesis tests concerning VE(v) are constructed based on the first component  of 

the AIPW estimator B̂aug (v). The cumulative estimator B̂aug (v) has more stable large-

sample behavior and a faster convergence rate than βaug (v).

Let WB (v) = n1/2 {B̂aug (v) − B̂aug (a)} − n1/2 {B(v) − B(a)} for v ∈ [a, b]. In the Appendix 

we show that WB (v), v ∈ [a, b], converges weakly to a p-dimensional mean-zero Gaussian 

process with continuous sample paths on v ∈ [a, b]. Further, the distribution of WB (v), for v 

∈ [a, b], can be approximated using the Gaussian multipliers resampling method [of Lin et 

al. (1993)] based on  v ∈ [a, b], where {ξki, i = 1,…, 

nk, k = 1,…,K} are iid standard normal random variables and Ĥk i(v) is defined in (22) in the 
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Appendix. Let WB1 (v) and  be the first component of WB(v) and , 

respectively. With the Gaussian multipliers method, the variance 

can be consistently estimated by 

 is the first component 

on the diagonal of the covariance given in (23) in the Appendix.

4.1 Testing the null hypothesis H10

Consider the test process . Then Q(1) (v) = 

WB1(v) + n1/2 {B1 (v) − B1 (a)}, v ∈ [a, b]. Under H10, B1 (v) − B1 (a) = 0 for v ∈ [a, b], 

which motivates the following test statistics for testing H10:

The test statistics  capture general departures H1a, while the test statistics 

 are sensitive to the monotone departures H1m. It is easy to derive that all the test 

statistics  are consistent against their respective alternative 

hypotheses, and the Appendix derives their limiting distributions under H10.

Under H10, the distribution of Q(1) (v), v ∈ [a, b], can be approximated by the conditional 

distribution of , v ∈ [a, b], given the observed data sequence. Hence, the distributions 

of  under H10 can be approximated by the conditional distributions of 

, given the 

observed data sequence, respectively. The critical values, , of the test statistics 

 can be approximated by the (1 − α)-quantile of , which can be 

obtained by repeatedly generating a large number, say 500, of independent sets of normal 

samples {λki, i = 1,…, nk, k = 1,…, K} while holding the observed data sequence fixed. 

Similarly, the critical values, , of the test statistics  can be 

approximated by the α-quantile of , which again can be obtained by repeatedly 

generating independent sets of normal samples {ξki, i = 1,…, nk, k = 1,…, K}. At 

significance level α, the tests based on  reject H10 in favor of H1a if 

, respectively, and the tests based on  reject H10 in favor 

of H1m if , respectively.
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4.2 Testing the null hypothesis H20

Let 

.Then

(11)

where Γ(v, F1) = (v − a)−1 {F1 (v) − F1 (a)} − (b − a)−1 {F1 (b) − F1 (a)} is a transformation 

of F1 (·). We note that Γ(·, B1) = 0 under H20 and Γ(·, B1) ≠ 0 under the alternatives, 

motivating Q(2) (v) as the test process and the following test statistics for testing H20:

where a < a′ < b. We choose a′ > a to avoid zero in the denominator of Q(2) (v). In practice, 

one can choose a′ close to a to make use of available data and to ensure the tests are 

consistent.

By the asymptotic results shown in the Appendix and the continuous mapping theorem, 

under H20 the distribution of Q(2) (v), v ∈ [a, b], can be approximated by the conditional 

distribution of , v ∈ [a, b], given the observed data sequence. Hence, the 

distributions of  under H20 can be approximated by the conditional 

distributions of 

, given the observed data sequence, respectively. Similar to Section 4.1, the respective 

critical values  of the test statistics  can be approximated by the (1 − 

α)-quantiles of the conditional distributions of  obtained through repeatedly 

generating independent sets of normal samples {ξki, i = 1,…, nk, k = 1,…, K} while holding 

the observed data sequence fixed. The critical values  can be 

approximated similarly. At the significance level α, the tests based on  reject 

H20 in favor of H2a if , respectively, and the tests based on 

 reject H20 in favor of H2m if , respectively.

The tests  capture general departures H2a while the tests  are 

sensitive to the monotone departure H2m. Note that the derivative dΓ(v, B1)/dv = (v − a)−1 

[β1 (v) − (v − a)−1 B1 (v)] ≥ 0 under H2m with strict inequality for at least some v ∈ [a, b]. 

This plus the fact that Γ(v,B1) is non-decreasing with Γ(b,B1) = 0 lead to the results that the 
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tests based on  are consistent against H2m and the tests based on  are 

consistent against H2a. The proofs are given in the second paragraph following Theorem 1 

in the Appendix.

In Sections 4.1 and 4.2, we considered two types of test statistics, namely the integration-

based test statistics and the supremum-based test statistics, for each pair of hypotheses. The 

former are generalizations of the Cramér-von Mises test statistic, and involve integration of 

deviations over the whole range of the mark, whereas the latter are extensions of the classic 

Kolmogorov-Smirnov test statistic for testing goodness-of-fit of a distribution function, and 

take the supremum of such deviations. As demonstrated in a comprehensive analysis of the 

relative powers of the classic Kolmogorov-Smirnov test and the Cramér-von Mises test by 

Stephens (1974), we expect that the two types of test statistics have different powers for 

different true alternative distributions. The integration-based test statistics are best-suited for 

situations where the true alternative distribution deviates a little over the whole support of 

the mark and the supremum-based test statistics may have more power against situations 

where the true alternative has large deviations over a small section of the support. For 

example, for testing differential VE(v), H20, the supremum-based tests will tend to be 

relatively more powerful if  is very high for a small range of marks near a and 

declines sharply to zero and is constant at zero for all other marks.

5 Simulation study

5.1 Numerical assessment of the tests under correctly specified models

We conduct a simulation study to evaluate the finite-sample performance of the proposed 

testing procedures. The empirical sizes and powers of the test statistics are assessed for 

various models, sample sizes (500 and 800) and choices of bandwidths. The powers of the 

tests are evaluated in both situations where a correlated auxiliary variable is used and where 

it is absent.

We consider K = 1 stratum. Let Zki be the treatment indicator with P(Zki = 1) = 0.5. The (Tki, 

Vki) are generated from the following mark-specific proportional hazards model:

(12)

where α, β and γ are constants. Under model (12), λ0 (t, v) = exp(v) and VE(v) = 1 − exp (α 

+ βv). For α = 0 and β = 0, VE(v) = 0, indicating no vaccine efficacy, and for β = 0, VE(v) = 

VE, indicating mark-invariant vaccine efficacy; whereas β > 0 indicates VE(v) decreasing in 

v. We examine the hypothesis testing procedures for the following specific models:

• (M1) (α, β, γ) = (0, 0, 0.3), implying VE(v) = 0;

• (M2) (α, β, γ) = (−0.69, 0, 0.3), implying VE(v) does not depend on v;

• (M3) (α, β, γ) = (−0.6, 0.6, 0.3), implying VE(v) decreases;

• (M4) (α, β, γ) = (−1.2, 1.2, 0.3), implying VE(v) decreases;

• (M5) (α, β, γ) = (−1.5, 1.5, 0.3), implying VE(v) decreases.
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We generate the censoring times from an exponential distribution, independent of (T, V), 

with censoring rates ranging from 20% to 30%. We take τ = 2.0. The complete-case 

indicator Rki is generated with conditional probability rk(Wki) = P(Rki = 1|δki = 1, Wki), 

where

(13)

With ψk0 = 0.2 and ψk1 = −0.2 about 50% of observed failures are missing marks.

Conditional on (Tki, Zki, Vki), we assume that the auxiliary marks follow the model

(14)

for i = 1,…, nk, k = 1,…, K, where Vki are the possibly missing marks, Uki is uniformly 

distributed on [0, 1] independent of Vki, and θ > 0 is an association parameter between Aki 

and Vki. The correlation coefficient ρ between Aki and Vki is 1 for θ = 0. Since Aki is 

observed for all observed failure times, the AIPW estimator in this case is the full data 

estimator. The Aki and Vki are independent for θ = ∞, yielding ρ = 0. In addition, the θ 

values of 0.8, 0.4 and 0.2 correspond to ρ = 0.78, 0.92 and 0.98.

Under model (14), the conditional density of Aki given (Tki, Zki, Vki) is

(15)

The likelihood function for θ is

It is easy to show that the maximum likelihood estimator equals

The density estimator gk (a|t, v, z; θ̂) is plugged into (9) to obtain , which is used to 

construct the AIPW estimator of β in (10).

The performances of the proposed test procedures are evaluated through simulations for the 

models described in (12), (13) and (14) under the settings (M1)–(M5), where (M1) is a 

setting under the null hypothesis H10 and (M2) is a setting under the null hypothesis H20. 

We consider the situations where no auxiliary information is provided and where the 

correlation between the auxiliary mark and the mark of interest is ρ = 0.92 [under model 

(14) with θ = 0.4]. Table 1 presents the empirical sizes and powers of the tests 

 for testing H10 at the nominal level 0.05. Table 2 presents the 
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empirical sizes and powers of the tests  for testing H20 at the nominal 

level 0.05. The results are presented for n = 500 with h1 = 0.1 and h = h2 = 0.15 and 0.2, and 

for n = 800 with h1 = 0.1 and h = h2 = 0.1 and 0.15. We take a = 0, b = 1 and a′ = 0.5 for the 

tests. The Epanechnikov kernel K(x) = .75(1 − x2)I{|x| ≤ 1} is used throughout the numerical 

analysis.

Tables 1 and 2 show that all of the tests have satisfactory empirical sizes close to the 

nominal level 0.05. The powers of the tests increase with sample size and they are not overly 

sensitive to the selected bandwidths. The powers of the tests for testing H10 increase as the 

model moves in the direction M1 → M3 → M4 → M2, representing increased departure 

from the null hypothesis H10. The powers of the tests for testing H20 increase as the model 

moves in the direction M2 → M3 → M4 → M5, representing increased departure from the 

null hypothesis H20. The tests utilizing the auxiliary marks have higher power than those 

without using the auxiliary marks.

As with any nonparametric smoothing procedure, one needs to carefully select bandwidths. 

In practice, the appropriate bandwidth selection can be based on a -fold cross-validation 

method [e.g., Efron and Tibshirani (1993), Hoover et al. (1998), Cai et al. (2000) and Tian et 

al. (2005)].

The proposed testing procedures properly handles missing marks under MAR with 

asymptotically correct significance levels. However, if only the observations with complete 

information are used, i.e., the complete-case analysis, then the testing procedures are 

expected to often not provide correct type I error control. We conduct a simulation study to 

evaluate the observed sizes of the proposed tests using the complete cases under two 

different models for missing the indicator Rki – model (13) and the following model:

(16)

For K = 1 both models (13) and (16) yield about 50% missing marks among the observed 

failures. The sizes of  for testing H10 are evaluated under model (M1) 

and the sizes of  for testing H20 are evaluated under model (M2) 

(Table 3). Under model (13), the observed sizes for testing H10 are elevated (around 7–

15%), whereas those for testing H20 remain around 5%. Under model (16), the observed 

sizes for testing H10 exceed 37% for all tests, whereas those for testing H20 reach 12% and 

14% for the tests  when n = 800.

These simulation results verify that the testing procedures applied to complete cases 

generally do not have nominal size, although for some of the scenarios the sizes are nominal. 

To explain this, it can be shown that, under MAR, λk (t, v|z,Rki = 1) = λk (t, v|z)hk (t, z), 

where hk (t, z) = P(Rki = 1|Tki = t,Zki = z)/P(Rki = 1|Tki ≥ t, Zki = z). If hk (t, z) does not 

depend on z and MAR holds, then the observations for individuals with the observed marks 

only can be viewed as a random sample from a mark-specific proportional hazards model 

with a different baseline hazard function but the same regression function β(v). In this case, 
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the tests for both H10 and H20 based on the complete cases are valid. If hk (t, z) depends on z 

but not on t and MAR holds, then hk (t, z) can be expressed as  [the 

scenario under model (13)], and the tests of H10 based on the complete cases will be biased. 

However, the tests of H20 remain unbiased since the biases in the estimation of β(v) that do 

not depend on v, such that the test process Q(2) (v) is still asymptotically a mean zero 

process. In general, if hk (t, z) depends on both z and t and MAR holds, which is the scenario 

under the missing model (16), then the test process Q(2) (v) is not an asymptotically mean 

zero process. The magnitude of departure of the asymptotic sizes of the test statistics of H20 

from the nominal level depends on hk (t, z) in a complicated manner.

5.2 Numerical assessment of the tests under mis-specified models

This subsection evaluates robustness of the proposed test procedures to mis-specifications of 

rk (w) and/or gk (a|t, v, z), and to violation of the MAR assumption. The Zki, (Tki, Vki), and 

Cki are generated using the same models as above, again with approximately 30% censoring.

Robustness of the tests to mis-specification of rk (w) is examined by assuming model (13) 

while the actual complete-case indicator Rki is generated with the conditional probability rk 

(Wki) = P(Rki = 1|δki = 1, Wki), where

(17)

This model yields approximately 50% missing marks among observed failures under (M1)–

(M5).

Robustness of the tests is also examined when gk (a|t, v, z) is mis-specified. This is carried 

out by assuming model (14) for the auxiliary mark, or, equivalently, model (15) for gk (a|t, v, 

z), while the actual mark for λki = 1 is generated from

(18)

for i = 1,…, nk. Here Uki is uniformly distributed on [0, 1] and is independent of Vki.

Robustness of the tests to violation of the MAR assumption (2) is examined by assuming 

model (13), while the actual Rki depends on Vki through the model

(19)

The proportion of missing marks among the observed failures is kept around 50% in all 

scenarios.

The models (17), (18) and (19) are similar to those used in Sun and Gilbert (2012) for 

examining robustness of the AIPW estimator. However, instead of examining biases and 

standard errors of the estimators, here we check whether the empirical sizes of the tests are 

close to their nominal level 0.05 and how the powers of the tests are affected by these mis-

specifications. For sample size n = 500 and bandwidths h1 = 0.1 and h = h2 = 0.20, Table 4 
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shows the empirical sizes and powers of the tests of H10 and Table 5 shows the empirical 

sizes and powers of the tests of H20. In both tables, the first block shows the results when rk 

(w) is mis-specified following (17) and gk (a|t, v, z) is correctly specified by (15) with λ = 

0.4; the second block shows the results when gk (a|t, v, z) is mis-specified following (18) and 

rk (w) is correctly specified by (13) with ψk1 = 0.2 and ψk1 = −0.2; the third block shows the 

results when rk (w) is mis-specified following (17) and gk (a|t, v, z) is mis-specified 

following (18); and the fourth block shows the results when rk (w) depends on Vki following 

(19) and gk (a|t, v, z) is correctly specified by (15) with λ = 0.4.

Tables 4 and 5 show that the empirical sizes of the tests are very close to the nominal level 

0.05 when one of rk (w) and gk (a|t, v, z) is mis-specified, reflecting the double robustness 

property of the AIPW estimator. The empirical sizes are also close to 0.05 when both rk (w) 

and gk (a|t, v, z) are mis-specified and when the MAR assumption is violated, which is 

intriguing. When only rk (w) is mis-specified and MAR holds, the empirical powers in 

Tables 4 and 5 closely track the corresponding powers in Tables 1 and 2 under correct 

model specifications. The empirical powers are lower than those observed in Table 1 and 2 

when gk (a|t, v, z) is mis-specified or when both rk (w) and gk (a|t, v, z) are mis-specified, 

whereas the empirical powers in Tables 4 and 5 are very close to those in Tables 1 and 2 

when MAR is violated. Apparently for our particular data simulation, the bias due to the 

MAR violation counter-balances the bias due to mis-specification of both rk (w) and gk (a|t, 

v, z); however, in general these violations could distort sizes and powers.

5.3 Simulation study for the Thai trial

We conduct a simulation of the Thai trial, to gain insight about the power available for this 

real trial. Specifically, we simulated data to yield about the numbers of infections observed 

(74 in the placebo group and 51 in the vaccine group), the overall vaccine efficacy from the 

proportional hazards model is about 31%, and the true VE(v) curve decreases with v to be 

around 65–70% for v close to zero and around 0% for v close to 1. The actual infection rate 

was only 0.3% over 3.5 years; to speed the simulations we use a 20% placebo infection rate 

and retain 74 infections on average.

Again with K = 1 stratum, the (Tki, Vki) are generated from the following model:

(20)

where α, β and γ are constants. Under model (20), VE(v) = 1 − exp(λ+ βv), the marginal 

hazards are λ0 (t) = σ for z = 0, and λ1 (t) = γ exp(α)(exp(β)−1)/β for z = 1, and the Cox 

proportional hazards vaccine efficacy equals VEC = 1 − λ1 (t)/λ0 (t) = 1 − exp(α)(exp(β) − 

1)/β. We choose (α, β, γ) = (−1.1, 1.3, 0.068), yielding VEC = 0.32, VE(0) = 0.67, and 

VE(0.85) = 0. We study 400 subjects each in the vaccine and placebo groups. Matching the 

actual trial, the censoring rate before τ is kept very low, just under 5%. The missing mark 

indicator is generated from model (13), with (ψk0, ψk1) set to yield about 0%, 25% (−1.2, 

−0.2), 50% (0.2, −0.2), and 75% (−1.0, −0.2) missing marks among observed failures. We 

assume the auxiliary variable Aki follows the model (14) given in Section 5.1, where the θ 

values of ∞, 0.8, 0.4 and 0.2 correspond to λ = 0, 0.78, 0.92 and 0.98 for the correlation 

coefficient between Aki and Vki.
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Because of lost information on the mark, we choose larger bandwidths for higher 

percentages of missing marks. We use h = 0.4 for the case with 75% missing marks; h = 0.3 

for the case with 50% missing marks; h = 0.2 for the case with 25% missing marks; and h = 

0.15 for the case with 0% missing marks. The bandwidths h1 and h2 in (7) in the estimation 

of  are taken to be 0.50 and h2 = h in each case. Power of the proposed tests 

 for the simulations based on the Thai trial at 

the nominal level 0.05 are reported in Table 6. The tests show similar performance as was 

found in the simulation study of Section 5.1. As only 10% of infected subjects had missing 

marks in RV144 and the auxiliary was very weakly predictive, we focus on the entries with 

0% or 25% missing marks and ρ = 0. There is 67%–95% power to reject H10, and 33%–60% 

power to reject H20. These results show that a fairly strong sieve effect with V E(v) declining 

from 67% to 0% could readily be missed in the Thai trial due to limited power. The only 

slightly improved power with an excellent auxiliary ρ = 0.98 shows that greater numbers of 

events would be needed to achieve high power for testing H20.

6 Analysis of the RV144 Thai trial

In the RV144 Thai trial, 125 subjects (51 of 8197 in the vaccine group and 74 of 8198 in the 

placebo group) were diagnosed with HIV infection over a 42 month follow-up period, from 

whom full-length HIV genomes were measured from 121; 3 missed data because their HIV 

viral load was too low for the Sanger sequencing technology to work, and 1 dropped out 

[Rerks-Ngarm et al. (2009), Rolland et al. (2012)]. We focus on the gp120 region of the HIV 

Env protein, because this region stimulates anti-HIV antibody responses which are the 

putative cause of the observed partial vaccine efficacy. Three gp120 sequences were 

included in the vaccine: 92TH023 in the ALVAC canarypox vector prime component; and 

CM244, MN in the AIDSVAX gp120 protein boost component. 92TH023 and CM244 are 

subtype E HIVs where as MN is subtype B, and 110 of the 121 subjects were infected with 

subtype E sequences. The subtype E vaccine-insert sequences are much closer genetically to 

the infecting (and regional circulating) sequences than MN, and thus are more likely to 

stimulate protective immune responses. Accordingly, the analysis focuses on the 92TH023 

and CM244 reference sequences, and right-censors the 15 subjects HIV infected with 

subtype B or with unknown subtype. One subject who acquired HIV infection during the 

trial was documented to have acquired HIV from another trial participant who had 

previously become HIV infected; the analysis excludes this subject because his/her inclusion 

would violate the independent observations assumption. In the context of our model set-up, 

T is the time to HIV infection diagnosis with subtype E HIV. The time to HIV infection 

diagnosis with subtype B or with unknown HIV subtype is treated as censoring.

We define V based on HIV sequence data measured from a blood sample drawn at or before 

the HIV diagnosis date. (The trial documented acute-phase/pre-seroconversion infection in 

only a few subjects, prohibiting defining the mark based on acute-phase sequences.) Eleven 

of the 109 (11%) subtype E infected subjects have sequences measured from a post-

diagnosis sample and hence are missing V. To maximize biological relevance and statistical 

power, we restrict the gp120 distances to the published set of gp120 sites in contact with 

known broadly neutralizing monoclonal antibodies (Moore et al., 2009; Wei et al., 2003). 
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For each HIV sequence from a subject and each of the two reference vaccine sequences, V is 

computed as a weighted Hamming distance using the PAM-between scoring matrix (Nickle 

et al., 2007). Between 2 and 13 sequences (total 1030) sequences) were measured per 

infected subject, and V is defined as the subject’s sequence closest to his or her consensus 

sequence (the consensus sequence is comprised of the majority amino acids at each site, one 

site at a time). Finally, the distances are re-scaled to values between 0 and 1. In total, 109 

infected subjects (43 vaccine, 66 placebo) are included in the analysis, of which 98 (39 

vaccine, 59 placebo) have an observed mark V ; Figure 1 displays the observed V’s.

To predict the probability of observing V among the 109 infected subjects, we use all-

subsets logistic regression model selection considering demographics, host genetics, and 

biomarker data post-infection. The best model by BIC includes only the years from entry 

until HIV infection diagnosis (X1), with model fit logit(P̂ (R = 1|δ = 1, X1)) = 1.17 + 0.70X1 

for the CM244 reference sequence. The model was very similar for the 92TH023 reference 

sequence (not shown). In addition, we consider linear and logistic regression models for 

relating the mean of various potential auxiliary variables (A) to V, X1, and treatment 

indicator Z. Model selection did not reveal any significantly predictive auxiliary variables; 

we expect that HIV sequence information measured after V is defined would be a good 

predictor, but these data were not collected. Nevertheless, to implement the AIPW method 

we select the best available auxiliary variable, gender (A = X2, 1=male; 0=female), and use 

the logistic regression model that results; for CM244 the fitted model ĝ(A = a|V, X1, Z) is 

logit(P̂(X2 = 1|δ = 1, V, X1, Z) = 0.24 − 0.33V + 0.16X1 + 0.38Z, and the model was very 

similar for 92TH023 (not shown).

The AIPW estimation and testing procedures are applied to the Thai trial data set with 

bandwidths h1 = 0.5 and h2 = h = 0.3, a = 0.05, b = 1 and a′ = a + 0.01 (a and a′ are near the 

minimum observed marks). As in the simulation study, 500 simulated Gaussian multipliers 

are used. Because the results are nearly identical with and without the auxiliary variable, 

only the latter results are presented. Figure 2 shows the estimated VE(v) along with 95% 

pointwise confidence bands, indicating that vaccine efficacy appears to be high against HIVs 

near to the 92TH023 reference sequence [estimated VE(0.01) = 56%], and declines to zero 

against HIVs farthest from the 92TH023 reference sequence [estimated VE(1.0) = 2.4%]. 

The decline is similar for the CM244 reference sequence, with estimated VE(0.01) = 45% 

and estimated VE(0.95) = −9.1%.

Figure 3 (a) and (b) shows the test processes Q(1) (v) versus 20 realizations from the 

Gaussian multiplier process  given the observed data, and Figure 3 (c) and (d) shows 

the parallel results for the test process Q(2) (v), each suggesting departures from the null 

hypothesis H10 and from the null hypothesis H20 for each reference sequence. The p-values 

of the tests based on the test statistics  for testing H10 against the monotone 

alternative over v ∈ [0, 1] are 0.032 and 0.008 for 92TH023, and 0.014 and 0.010 for 

CM244. The p-values of the test statistics  for testing H10 against the general 

alternative are 0.054 and 0.018 for 92TH023 and 0.030 and 0.010 for CM244. For testing 

H20 over v ∈ [0, 1], the p-values of the supremum-type tests based on the test statistics 
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 are 0.53 and 0.27 for 92TH023 and 0.37 and 0.18 for CM244. The p-values of 

the integrated square type tests based on the test statistics  are 0.35 and 0.14 for 

92TH023 and 0.44 and 0.19 for CM244.

These analyses provide more evidence that the vaccine had some protective efficacy than the 

original primary analysis that did not account for the mark information (Rerks-Ngarm et al., 

2009): the primary analysis test for any vaccine efficacy yielded p=0.04 whereas the tests for 

any vaccine efficacy against any mark reported here yielded median p-value of 0.016 across 

the four test statistics and two reference sequences. The analyses also showed a 

nonsignificant trend (p-values around 0.14–0.19) that the vaccine protected better against 

HIVs closely matched to the vaccine strain HIVs in the monoclonal antibody contact sites, 

but had less or absent protection against HIVs with many mismatches in these sites. While 

the significance levels are not compelling, the simulation study presented in Section 5.3 of 

the power available for detecting a vaccine sieve effect in the Thai trial showed that the 

study is well-powered only to detect large sieve effects [with greater decline of V E(v) in v 

than what was observed in the estimated V E(v) curves]; thus a moderate-to-large sieve 

effect is consistent with the observed results. These results may guide future vaccine 

research by suggesting modifications of future vaccine candidates to include HIV sequences 

more closely matched to circulating HIVs in the monoclonal antibody contact sites. They 

may also motivate the design of future experiments to understand functional effects of 

amino acid mutations at the monoclonal antibody contact sites.

Acknowledgements

The authors thank Hasan Ahmed and Paul Edlefsen for generating the HIV sequence distances, and thank the 
participants, investigators, and sponsors of the RV144 Thai trial, including the U.S. Military HIV Research 
Program (MHRP); U.S. Army Medical Research and Materiel Command; NIAID; U.S. and Thai Components, 
Armed Forces Research Institute of Medical Science Ministry of Public Health, Thailand; Mahidol University; 
SanofiPasteur; and Global Solutions for Infectious Diseases. The authors thank the Editor, Associate Editor, and 
two referees for their helpful suggestions. The research of Yanqing Sun was partially supported by NSF grants 
DMS-0905777 and DMS-1208978, and the research of Drs. Sun and Peter Gilbert was partially supported by NIH 
NIAID grant R37AI054165. The content is solely the responsibility of the authors and does not necessarily 
represent the official views of the National Institutes of Health.

Appendix: Asymptotic results

The following regularity conditions from Sun and Gilbert (2012) are assumed.

Condition A

(A.1) β(v) has component wise continuous second derivatives on [0, 1]. For each k = 1,

…, K,the second partial derivative of λ0k (t, v) with respect to v exists and is 

continuous on [0, τ]×[0, 1]. The covariate process Zk (t) has paths that are left 

continuous and of bounded variation, and satisfies the moment condition E[‖Zk 

(t)‖4 exp(2M‖Zk (t)‖)] < ∞, where M is a constant such that (v, β(v)) ∈ [0, 1] × 

(−M, M)p for all v and ‖A‖ = maxk,l |akl| for a matrix A = (akl).
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(A.2) Each component of  is continuous on [0, τ] × [−M, M]p,  is 

continuous on [0, τ] × [−M, M]p × [−L, L]q for some M, L > 0 and j = 0, 1, 2. 

(A.3) The limit pk = limn→∞ nk/n exists and 0 < pk < ∞.  on [0, τ] × [−M, 

M]p and the matrix  is positive definite, where 

.

(A.4) The kernel function K(·) is symmetric with support [−1, 1] and of bounded 

variation. The bandwidth h satisfies nh2 → ∞ and nh4 → 0 as n → ∞.

(A.5) There is a σ > 0 such that rk (Wki) ≥ σ for all k, i with δki = 1.

Let ℱt = σ{I(Xki ≤ s, δki = 1), I(Xki ≤ s, δki = 0), Vki I(Xki ≤ s, δki = 1), Zki (s); 0 ≤ s ≤ t, i = 1,

…, nk, k = 1,…, K} be the (right-continuous) filtration generated by the full data processes 

{Nki (s, v), Yki (s), Zki (s); 0 ≤ s ≤ t, 0 ≤ v ≤ 1, i = 1,…, nk, k = 1,…, K}. Assume E(Nki (dt, 

dv)|ℱt−) = E(Nki (dt, dv)|Yki (t), Zki (t)), that is, the mark-specific instantaneous failure rate at 

time t given the observed information up to time t only depends on the failure status and the 

current covariate value. By the definition of the conditional mark-specific hazard function, 

E(Nki (dt, dv)|ℱt−) = Yki (t)λk(t, v|Zki (t)) dtdv. Hence, the mark-specific intensity of Nki (t, v) 

with respect to ℱt equals Yki (t)λki (t, v|Zki (t)). Let 

. By Aalen and Johansen (1978), 

Mki (·, v1) and Mki (·, v2) − Mki (·, v1) are orthogonal square integrable martingales with 

respect to ℱt for any 0 ≤ v1 ≤ v2 ≤ 1.

The weak convergence of WB (v) = n1/2 {B̂aug (v) − B(v)} − n1/2 {B̂aug (a) − B(a)} for v ∈ 

[a, b] is given in Theorem 1 below.

Theorem 1. Under conditions (A.1)–(A.5), , 

uniformly in v ∈ [a, b], where

(21)

The processes WB (v) converges weakly to a p-dimensional mean-zero Gaussian process 

with continuous sample paths on v ∈ [a, b], where 

.

Theorem 1 provides the basis for obtaining asymptotically correct critical values for the 

testing procedures for H10 and for H20. In particular, let G(v) be the limiting Gaussian 

process ofWB1 (v), v ∈ [a, b], as n → ∞. Then under H10, , v ∈ [a, b], as n 

→ ∞. By Theorem 1 and the continuous mapping theorem, 
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under H10 as n → ∞. Under H20, , v ∈ [a, b], as n → ∞. 

Applying the continuous mapping theorem, under H20, 

, as n → ∞.

The proof of the consistency of the tests for testing H10 are straightforward. To show the 

consistency of the tests for testing H20, we note that the derivative dΓ(v, B1)/dv = (v − a)−1 

[β1 (v) − (v − a)−1 B1 (v)] ≥ 0 under H2m with strict inequality for at least some v ∈ [a, b]. 

The function Γ(v, B1) is non-decreasing with Γ(b, B1) = 0. We have, under H2m, Γ(v, B1) ≤ 0 

with strict inequality for at least some v ∈ [a, b]. Let v0 ∈ [a, b] be such that Γ(v0, B1) < 0. 

Then Γ(v, B1) < 0 for v ≤ v0. Now defining , we have 

Γ(v, B1) < 0 for  and Γ(v, B1) = 0 for v* ≤ v < b. It follows from (11) and Theorem 1 

that  under H2m as n → ∞ for . Thus the tests based on 

 are consistent against H2m. Similarly, let 

. Then under H2a, |Γ(v, B1)| > 0 for , 

and |Γ(v, B1)| = 0 for . Hence  under H2a as n → ∞ for 

, resulting in the consistent tests against H2a.

We use the Gaussian multiplier resampling method [Lin et al. (1993)] to approximate the 

distribution of WB (v), v ∈ [a, b]. Let {ξki, i = 1,…, nk, k = 1,…, K} be iid standard normal 

random variables. Replacing each term of (26), which is asymptotically equivalent to (21), 

by its empirical counterpart and multiplying by ξki, we obtain 

, where

(22)

where .

Following an application of Lemma 1 of Sun and Wu (2005), the distribution of WB (v), v ∈ 

[a, b], can be approximated by the conditional distribution of , v ∈ [a, b], given the 

observed data sequence, which can be obtained through repeatedly generating independent 

sets of 23 {ξki, i = 1,…, nk, k = 1,…, K}. Hence, the distribution of Q(1) (v), v ∈ [a, b], under 

H10, can be approximated by the conditional distribution of , v ∈ [a, b], given the 

observed data sequence. By the continuous mapping theorem, the distribution of Q(2) (v), v 
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∈ [a, b], under H20, can be approximated by the conditional distribution of Γ (v, ), v ∈ 

[a, b], given the observed data sequence.

With the Gaussian multiplier method, the variance  can be 

consistently estimated by 

 is the first component 

on the diagonal of

(23)

Proof of Theorem 1

Let

(24)

Following the proof of Theorem 4 of Sun and Gilbert (2012, the web Appendix (W.19)) and 

under nh4 → 0,

(25)

Hence

which, by exchanging the order of integrations, equals to
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(26)

Let

It follows that

(27)

Since the kernel function K(·) has compact support on [−1, 1], (27) equals to

(28)

It can be shown that J̃
n (x) converges weakly to a mean-zero Gaussian process with 

continuous paths. Under the assumption (A.4),  has bounded 

variation and converges uniformly to Σ(x)−1 for x ∈ (h, v − h). By Lemma 2 of Gilbert et al. 

(2008), the first term in (28) is equal to . Similar arguments lead 

to the second and the third terms in (28) to be op (1). Hence,

which converges weakly to a p-dimensional mean-zero Gaussian process on v ∈ [a, b] with 

continuous sample paths by Lemma 1 of Sun and Wu (2005). Theorem 1 follows since WB 

(v) = n1/2 {B̂aug (v) − B(v)} − n1/2 {B̂aug (a) − B(a)} is a linear transformation of n1/2 (B̂aug 

(·) − B(·)).
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Figure 1. 
Scatterplots of the marks V versus the HIV infection time T for the 98 HIV infected subjects 

in the Thai trial with an observed mark. The mark V is the HIV-specific PAM-matrix 

(Nickle et al., 2007) weighted Hamming distances between a subject’s HIV Envelope gp120 

amino acid sequence (nearest to his/her consensus sequence) and the 92TH023 or CM244 

vaccine reference sequence; the distances restrict to the 172 amino acid sites in gp120 

documented to contact broadly neutralizing monoclonal antibodies. The lines are lowess 

smooth fits (Cleveland, 1979).
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Figure 2. 
AIPW estimation of VE(v) and 95% pointwise confidence bands without using auxiliary 

variables for the Thai trial with bandwidths h1 = 0.5, h2 = h = 0.3, for the monoclonal 

antibody contact site distances to the 92TH023 and CM244 reference sequences.
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Figure 3. 
Diagnostic plots of the test processes for the Thai trial data set with bandwidths h1 = 0.5, h2 

= h = 0.3 and a = 0.05, b = 1 and a′ = a + 0.01 without using auxiliary variables. (a) and (b) 

Plots of Q(1)(v) (solid dark line) versus 20 realizations (grey lines) from the Gaussian 

multiplier process  (92THf023, CM244 reference). (c) and (d) Plots of Q(2)(v) (solid 

dark line) versus 20 realizations (grey lines) from the Gaussian multiplier process 

(92TH023, CM244 reference).
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