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Abstract

This article develops hypothesis testing procedures for the stratified mark-specific proportional
hazards model in the presence of missing marks. The motivating application is preventive HIV
vaccine efficacy trials, where the mark is the genetic distance of an infecting HIV sequence to an
HIV sequence represented inside the vaccine. The test statistics are constructed based on two-
stage efficient estimators, which utilize auxiliary predictors of the missing marks. The asymptotic
properties and finite-sample performances of the testing procedures are investigated,
demonstrating double-robustness and effectiveness of the predictive auxiliaries to recover
efficiency. The methods are applied to the RV144 vaccine trial.
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1 Introduction

The primary objective of a preventive HIV vaccine efficacy trial is to assess vaccine
efficacy (VE) to prevent HIV infection, where typically VE is defined as one minus the
hazard ratio (vaccine/placebo) of HIV infection diagnosis. However, the great genetic
variability of HIV poses a central challenge to developing a highly efficacious vaccine
(Fauci et al., 2008). The trial population is exposed to many HIV genotypes but the vaccine
only contains a few, and the vaccine is less likely to protect against HIVs with greater
genetic distance from the sequences inside the vaccine (Gilbert et al., 1999). The trial has
objectives to assess whether and how the vaccine impacts the infection rate with any HIV
genotype and whether and how the vaccine effect varies by HIV genotype; assessment of
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these objectives has been named ‘sieve analysis’ (Gilbert et al., 1998).Gilbert et al.
(2008),Sun et al. (2009), and Sun and Gilbert (2012) developed sieve analysis methods
using the competing risks failure time framework (Prentice et al., 1978), which attach a
continuous ‘mark’ variable to HIV infected subjects that measures the genetic distance of an
infecting HIV sequence to a sequence inside the vaccine. The goal of the sieve analysis
methods is evaluation of mark-specific vaccine efficacy, here defined as one minus the
mark-specific hazard ratio (vaccine/placebo) of infection. Beyond HIV, the methods apply
generally to any preventative vaccine efficacy trial for which the pathogen targeted by the
vaccine is genetically diverse, which include influenza, malaria, tuberculosis, dengue,
streptococcus pneumoniae, human papilloma virus, and hepatitis C virus.

Gilbert et al. (2008) and Sun et al. (2009) assumed no missing mark data in infected
subjects, whereas Sun and Gilbert (2012) allowed missing at random (MAR) marks. In
practice there are missing marks, for example in the Vax004 trial 32 of 368 infected subjects
had no HIV sequence data (Gilbert et al., 2008), due to drop-out or to inability of the HIV
sequencing technology to measure the infecting HIV sequence, and in the ‘Step’ trial 22 of
88 infected subjects had no HIV sequence data (Rolland et al., 2011). While it is of scientific
interest to evaluate amark defined based on the earliest available HIV sequence, a mark of
particular scientific interest is defined based on an HIV sequence measured near the time of
acquisition, which is missing in a much larger fraction of infected subjects due to the
periodic (typically 6-monthly) diagnostic tests for HIV infection. Specifically, HIV
sequences are measured from the earliest available post-infection blood sample, and a ‘near
acquisition’ or ‘early’ sample may be defined as one documented to be sufficiently near
acquisition. In the Step trial, only 23 of the 66 infected subjects with sequence data had an
early mark measured, defined as sampling within 3 weeks. Sun and Gilbert (2012) provide
details on the HIV testing algorithm that is used to define an early mark.

Sun and Gilbert (2012) is currently the only paper on sieve analysis that accommodates
missing continuous marks. It develops two valid estimation approaches based on the
stratified mark-specific proportional hazards model. The first uses inverse probability
weighting (IPW) of the complete-case estimator, which leverages auxiliary predictors of
whether the mark is observed, whereas the second, adapting Robins et al. (1994), augments
the IPW complete-case estimator with auxiliary predictors of the missing marks. Sun and
Gilbert (2012) restricted attention to estimation methods, and this article is a sequel that
develops corresponding inferential/hypothesis testing methods based on the augmented IPW
estimator. An important new component of this work compared to the previous work is to
center it around the sieve analysis of the RVV144 Thai trial, which recently delivered the
landmark result that a prime-boost HIV vaccine appeared to provide partial protection
against HIV infection (estimated VE = 31%, 95% CI 1% to 51%, Rerks-Ngarm et al., 2009).
This result has stimulated intense interest in the sieve analysis, for two reasons. First, there
is controversy about whether the vaccine is really partially working versus a false positive
result (Gilbert et al., 2011), and the sieve analysis of HIV sequences can help resolve this
question. In particular, if evidence is found that the vaccine efficacy declines with genetic
distance, and the distance is defined based on known parts of HIV that contain putatively
protective antibody epitopes, then an interpretation of real vaccine efficacy is supported.
Secondly, the HIV vaccine field is grappling with how to modify the tested vaccine to
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increase its potential vaccine efficacy for the next efficacy trial, and understanding the
relationship between vaccine efficacy and the genetic distance provides direct guidance on
which HIV sequences to put inside of the next generation vaccines.

This article is organized as follows. Notations, assumptions, and the stratified mark-specific
proportional hazards model are introduced in Section 2. Background on the estimation
procedures needed for the testing procedures are described in Section 3. The testing
procedures are developed, and asymptotic properties described, in Section 4. The finite-
sample performances of the tests are evaluated via simulations in Section 5. The application
to the Thai trial is given in Section 6, and the asymptotic results and their proofs are placed
in the Appendix.

2 Model and missing mark data

2.1 stratified mark-specific proportional hazards (PH) model

Let T be the failure time, V a continuous mark variable with bounded support [0, 1], and Z(t)
a possibly time-dependent p-dimensional covariate. The mark V is only observable when T
is observed. Suppose that the conditional mark-specific hazard function at time t given the
covariate history Z(s), for s < t, only depends on the current value Z(t). We consider the
stratified mark-specific proportional hazards (PH) model

i (t,v|z(t))=Xo (t, v)exp {,@(U)Tz(t)} Jk=1,...,K, @

where Ai(t, v|z(t)) is the conditional mark-specific hazard function given covariate z(t) for an
individual in the kth stratum, Aok (-, V) = A(t, v|z(t) = 0) is the unspecified baseline hazard
function for the kth stratum, B(v) is the p-dimensional unknown regression coefficient
function of v, and K is the number of strata. Model (1) allows different baseline functions for
different strata and flexibly allows for arbitrary mark-specific infection hazards over time in
the placebo group. In practice, different key subgroups (e.g., men and women in the Thai
trial) are assigned different baseline mark-specific hazards of HIV infection.

Arranging 3(v)=(31(v), ﬁg(v))T, so that 31 (v) is the coefficient for vaccination status and
B2 (v) for other covariates, the covariate and stratum adjusted mark-specific vaccine efficacy
VE(v) equals 1 - exp(B1 (v)).Sun et al. (2009) developed some statistical procedures for
model (1) with K =1 based on observations of the random variables (X,Z(-), V) for 6 = 1 and
(X,Z(")) for 6 = 0, where X = min{T,C}, A, = I(T < C), and C is a censoring random variable.
Sun and Gilbert (2012) developed estimation procedures for model (1) with general K
allowing V to be missing for some subjects with § = 1; these methods incorporate auxiliary
covariates and/or auxiliary mark variables that inform about the probability V is observed
and about the distribution of V. This article develops parallel hypothesis testing procedures
for assessing VE(v). As summarized in the Introduction, the two objectives are to assess if
the vaccine efficacy ever deviates from 0 [i.e., test VE(v) = 0] and to assess if the vaccine
efficacy changes with the mark [i.e., test VE(v) = VE].
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2.2 Missing data assumptions
Let R be the indicator of whether all possible data are observed for a subject; R = 1 if either
8 = 0 (right-censored) or if § = 1 and V is observed; and R = 0 otherwise. Auxiliary variables
A may be helpful for predicting missing marks. Since the mark can only be missing for
failures, supplemental information is potentially useful only for failures, for predicting
missingness and for informing about the distribution of missing marks. For example, if V is
defined based on the early virus, then V*, the auxiliary mark information, may include
sequences of later sampled viruses, and can be considered a subset of A. In general, A could
include multiple viral sequences per infected subject at multiple time-points, giving
information on intra-subject HIV evolution. The relationship between A and V can be
modelled to help predict V (see Section 5 for a simulated example).

We assume C is conditionally independent of (T, V') given Z(-) and the stratum. We also
assume V is MAR (Rubin, 1976); that is, given 6 = 1 and W = (T,Z(T), A), the probability V
is missing depends only on the observed W, not on the value of V; this assumption is
expressed as

ri(W) = P(R=1]6=1, W)=P(R=1|V,6=1,W). (2)

Let m(Q) = P(R = 1|Q) where Q = (8, W). Then m(Q) = (W) + (1 - §). The MAR
assumption (2) also implies that V is independent of R given Q:

pe(v, W) = P(V <o |6=1,W)=P(V <v| R=1,=1,W). (3)

Define ry (W) =P(R=1|8 =1, W =w) and pi(v, w) = P(V < v|]A = 1, W = w). The stratum-
specific definitions of ry (w) and pc(v, w) allow the models of the probability of complete-
case and of the mark distribution to differ across strata.

Let © be the end of the follow-up period, and ny be the humber of subjects in the kth stratum;

K
the total sample size is ”:Zkzlnk. Let {Xxi, Zki (), &i» Riir Vii» Axi s 1=1,..., ng } be iid
replicates of {X,Z('), &, R, V, A} from the kth stratum. The observed data are {Oyj ;i =1,...,
Nk, k=1,..., K}, where Oki = {in, Zki (), Rki’ Rki Vki: Aki }fOl’ ﬁ(i =1and Oki = {in, Zki
(+), Rgi = 1} for 8 = 0. We assume the Oy; are independent for all subjects.

2.3 Hypotheses to test

We develop procedures for testing the following two sets of hypotheses. Let [a, b] C (0, 1).
The first set of hypotheses is

Hqo: VE(v) =0 forv € [a, b]

versus Hy, : VE(v) # 0 for some v (general alternative)

or Hym - VE(v) = 0 with strict inequality for some v (monotone alternative).
The second set of hypotheses is

Hyo : VE(v) does not depend on v € [a, b]

J R Stat Soc Ser C Appl Stat. Author manuscript; available in PMC 2016 January 01.
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versus Hog : VE(V) depends on v (general alternative)
or Hon - VE(V) decreases as v increases (monotone alternative).

The null hypothesis Hqg implies the vaccine affords no protection (nor increased risk)
against any HIV genotype. The ordered alternative Hqp,, indicates that the vaccine provides
protection for at least some of the HIV genotypes, while Hq, indicates that the vaccine
provides protection and/or increased risk for some HIV genotypes. The null hypothesis Hyg
implies there is no difference in vaccine protection against different HIV genotypes. The
ordered alternative Hyp, indicates that vaccine efficacy decreases with v and Hp, indicates
that the vaccine efficacy changes with v. With 3, (v) the first component of f(v), the first set
of hypotheses is equivalent to Hyg : f1 (v) = 0 for v € [a, b] versus Hq, : 1 (v) # 0 for some
v or Hym @ B1 (V) < 0 with strict inequality for some v. The second set of hypotheses is
equivalent to Hpg : 1 (v) does not depend on v € [a, b] versus Hy, : B1 (v) depends on v or
Hom @ By (V) increases as v increases. We develop testing procedures for detecting departures
from Hyg in the direction of Hy4 and Hyp, and for detecting departures from Hyq in the
direction of Hp, and Hpp,. The procedures are developed based on the augmented IPW
complete-case estimator developed by Sun and Gilbert (2012).

3 Estimation procedure with missing marks

The augmented IPW estimator for model (1) is obtained in two stages. First the IPW
complete-case estimator is derived and second the augmented IPW estimator is obtained,
which improves efficiency by accounting for information in the conditional distribution of V
given the auxiliaries.

Let r (Wi, wi) be the parametric model for the probability of complete-case, ry (W)
defined in (2), where Wy = (Tki, Zki (Tki), Axi) and wy is a g-dimensional parameter. For
example, one can assume the logistic model with logit (r, (W, ¥.) =17 W ;== for those
with Ay = 1, where Wy = (Tki, Zki (Tki), Axi)- By (2), the maximum likelihood estimator v =
(W1,-.., V)T of Y = (w1,..., wk)T is obtained by maximizing the observed data likelihood,

H{Tk(Wki,W)]’Rm“{l — 76 (Whi, ¢k)}(1_Rki)5ki~ @
K

Let K(x) be a kernel function with support [-1, 1] and let h = h,, be a bandwidth. Let N; (t,
V) =1 <t &i =1, Vi < v) and Y (€) = 1(Xki 2 1). Let Qi = (Ski, Wii) and 7 (Quir W) =
8ki Tk (Wi, wi) + (1 = 8y;). The first-stage estimator is the IPW estimator 'V (v), which
solves the following estimating equation for B: Ujpy (v, /3 ) = 0, where

K ng R

Uipw(yv /@7 &):ZZ[(I)[gKh(U_U) (Zkl(t) _Zk(t’ ;87 @k))#Nki(dtv du)v )
k=1li=1 7Tk(czkia wk)
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Ky(z)=K(z/h)/h, Zk(t B, ¥x)
(1)(t /8 QPk)/S (taﬁvwk)andsg)(tvﬁawk)

where =n, Z sz (7 (Quis Y1)~ Vii(t)exp {/BTZki(t)} Z(t)® forj=0,1,
where z&0 = 1 and z®1 =z for any z € RP. The score function (5) can be viewed as an
extension of the score function used for the cause-specific Cox model (Prentice et al., 1978)
for a particular failure cause J = j, for which the counting process only counts events of type
j. It borrows strength from observations having marks in the neighborhood of v. The kernel
function is designed to give greater weight to observations with marks near v than those
further away.

The baseline function Ao (t, v) can be estimated by A’>" (¢, v), obtained by smoothing the
increments of the following estimator of the doubly cumulative baseline function

Ao (t, ) =[5 [o ok (s, u)dsdu:

Ry Nyi(ds, du)
(QAM/Jk)nkSk)(S pr( )ﬂz)k).

Ag;cw(t v) Zfofo (6)

For example, one can use the following kernel smoothing

~ipw

Ao () =[5 [EA) (t — $) K2 (v —w)Agy (ds, du), ()

where K\ (z)=K " (z/hy) /land K2 (2)=K® (2 /h2) /by, with KO (-) and K@ () the
kernel functlons and h; and hy the bandW|dths.

Following Robins et al. (1994), Sun and Gilbert (2012) proposed a more efficient procedure
for estimating (1) by incorporating the knowledge of p (w, v) into the estimation procedure.
Letw =(t,z,a) and gk (alt, v, z) = P(Axi = a|Tki = t, Vi =V, Zxj = Z, &j = 1). Then

pr(w,v)=[o A (t,u ‘z)gk(a|t,u, z)du/ [ Ne(t, u|z)gr(al t, u, z)du. (8)

If no auxiliary variables are available or if Ay; is conditionally independent of Vi given (Ty;,

Zui, &), then pr(W, v)=[EAk(t, u \Z)du/ftlj/\k(tv U’ z)du, |n this case, p(W, V) can be
estimated by

B w0)= [ (e @)y FIAT™ (1 ), e (1, o] )AL w)exp { (57" ) 2
. When the auxiliary marks Ay are correlated with V,; conditional on Ty, Zxj and & = 1, the
conditional distribution p(w, v) involves the function gy (alt, u, z), for which a parametric or
semiparametric model may be developed to describe the dependence between Ay; and Vi;.
Let g« (alt, u, z) be an estimator of gi (alt, u, z) with a convergence rate of at least (nh)™272,
Then p(w, v) can be estimated by

:pw
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A (e 0)= [ (@) ol . 2)3 (@l 2)du/ SOAL” (0, wl2)gg ] v . @

estimating equation for f is Ugyg (v, £ %, p (-)) = 0, where

Let N7 (¢)=1(Xy; < t,6;=1)andNy;(v)=I(Vy; < v). The augmented IPW (AIPW)

K np
aug( ﬁ 1/) P )) ZZIOIOKh U_U)(Zkz(t) Zk(t,,@))
k=1i=1 w0
Rik U — L T ~dpw
{Wk(QkMﬁk)Nm(dt )t (1 m(QkMﬁk)) Nalddpe™ (Wi, ))}’

and Zi(t, /=S8, (. 8)/S" (1, B), 8 (1. B)=n 3" Via(t)exp {B7 Z1i() } Zia()™
for j =0, 1. The AIPW estimator of p(v) solves the above equatlon and is denoted by Bau@
(v). The estimator of the cumulative function

B(v)=[.B(u)duis given byB""(v)=[2B8"" (u)du. Note that there is no vy in Zy (t, A);
this is a difference between the IPW and AIPW estimators.

aug

To implement the estimation procedures in practice, one can use arbitrary auxiliaries for
estimating ka; these auxiliaries may include covariates and marks at multiple time-points
pre-infection and post-infection, respectively. In contrast, while in principle arbitrary
auxiliaries may also be used for the terms gk (alt, u, z) in (9), due to the curse of
dimensionality the method is expected to perform best in practice with a univariate
auxiliary, where semiparametric or fully parametric models for gy (alt, u, z) would be
required to include multivariate auxiliaries.

Sun and Gilbert (2012) proved that the estimators B,pw (t, v) and Bau@ (t, v) are consistent and
that Baug (v) is more efficient than B'F’W (v). In the next section, we develop some hypothesis
testing procedures for assessing mark-specific vaccine efficacy based on Baug (V).

4 Testing of mark-specific vaccine efficacy

The covariate-adjusted vaccine efficacy VE(v) is defined through the first component of
B(v). Let By (v) be the first component of the cumulative coefficient function B(v). The

hypothesis tests concernlng VE(v) are constructed based on the first component B, (v) of
the AIPW estimator BaU9 (v). The cumulative estimator Baug (v) has more stable large-
sample behavior and a faster convergence rate than 249 (v).

~ aug

Let Wp (v) = n¥/2 {Ba9 (v) - BAUY (a)} - n¥/2 {B(v) - B(a)} for v € [a, b]. In the Appendix
we show that Wpg (v), v € [a, b], converges weakly to a p-dimensional mean-zero Gaussian
process with continuous sample paths on v € [a, b]. Further, the distribution of Wg (v), for v
€ [a, b], can be approximated using the Gaussian multipliers resampling method [of Lin et

* — K n T .
al. (1993)] based on W7, (v)=n""2%" " ™" & H,i(v)v € [a, b], where {&q, i = 1
N, k = 1,...,K} are iid standard normal random variables and Hy i(v) is defined in (22) in the
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Appendix. Let Wg, (v) and W (v) be the first component of Wg(v) and W7, (v),

respectively. With the Gaussian multipliers method, the variance Var {31 (v) = aug(a)}
can be consistently estimated by

A(mJ

Var{B;"(v) — (a)} =n 1Val"*(4’* (v)), where Var«(IW7 (v)) s the first component
on the diagonal of the covariance given in (23) in the Appendix.

4.1 Testing the null hypothesis Hjg

Consider the test process @ (v)= 1/2{ By (v) - gf”g(a)} ;v € [a,0] Then QU (v) =
Wg,(v) + nt2 {By (v) - By (@)}, v € [a, b]. Under Hyg, By (v) = By (a) = 0 for v € [a, b],
which motivates the following test statistics for testing Hqg:

Tﬁ): sup Q<1)(U)|,Té;):.fZ{Q(l)(v)}QdVar* {VV* (v)} T(l)— 1nf |Q(1) (v)|, be(Q)(v)dVar* {ﬂ’* (v)},

v€|a,b]

The test statistics T(l)andT capture general departures Hy,, while the test statistics

T,(nll) andT(1> are sensitive to the monotone departures Hy. It is easy to derive that all the test
statistics 7D, 7)) 71 and7Y) are consistent against their respective alternative
hypotheses, and the Appendix derives their limiting distributions under Hqy.

Under Hyy, the distribution of Q) (v), v € [a, b], can be approximated by the conditional
distribution of W5 (), v € [a, b], given the observed data sequence. Hence, the distributions

of 72 72 7% and7? under Hig can be approximated by the conditional distributions of

7D
’ a2

T fl)_supve[a b] ‘Hr (/U)

=2, (v)} dVar
(s )} T =ity Wy, (0)and L5 = LW (v)dVars {5 (v)}, given the

observed data sequence, respectively. The critical values, ¢ l)andc of the test statistics

T(l)andT(1 can be approximated by the (1 — «)-quantile of 7*(* o JandT 2‘2(1 , Which can be

obtained by repeatedly generating a large number, say 500, of independent sets of normal
samples {\j, i =1,..., ng, k =1,..., K} while holding the observed data sequence fixed.

Similarly, the critical values, ¢!*) andc!2), of the test statistics 7} and7\}) can be

m2'
approximated by the a-quantile of 7*(Y and7*(}, which again can be obtained by repeatedly

generating independent sets of normal samples {&, i = 1,..., ng, k=1,..., K}. At
significance level , the tests based on 7D and T’} reject Hyg in favor of Hy, if

TS W andr > ), respectively, and the tests based on 7 and7'(2) reject Hyg in favor

) andT ) <2, respectively.

ml m2!

of Hyp, if Tm1 <ec
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4.2 Testing the null hypothesis Hyg
Let

QP (W)=(v —a) " n!? {B"(v) = BY"(a)}—(b — ) 'n!/? { By (6) - BY"(a)} Then
Q@ (v)=T(v, W, )+n'/*T (v, By)fora<v < b, (1)

where (v, Fq) = (v - a) 2 {F1 (v) - F1 (@)} - (b — @)L {F1 (b) - F1 (@)} is a transformation
of F1 (-). We note that T'(-, B1) = 0 under Hyg and T'(-, B1) # 0 under the alternatives,
motivating Q@) (v) as the test process and the following test statistics for testing Hyo:

2
Tg): sup Q(2)(v)\,Tg)zfz,{Q@)(v)} dVarx {W’;(v)},

vela’,b]

7= inf |00, TH= L0 @aver {177, )}

vela b]

where a < a’< b. We choose a’> a to avoid zero in the denominator of Q) (v). In practice,
one can choose a’close to a to make use of available data and to ensure the tests are
consistent.

By the asymptotic results shown in the Appendix and the continuous mapping theorem,
under Hyg the distribution of Q@ (v), v € [a, b], can be approximated by the conditional

distribution of I'(v, W5 ), v € [a, b], given the observed data sequence. Hence, the

distributions of Tﬁ), T(g), T,Sfl) andTT(nZ% under Hyg can be approximated by the conditional
distributions of

2 S 2
T;l( ):SUPve[a’,b]F<vvﬂ ; ’,T;Z( )

2
=15 {r@,w; )} avar
(W )} 1 =infuw g D, W7 ), TG = [0 T (0, W5 Jand TS = [0 (v, W7 YdVars {7 (v)}

m2 .

, given the observed data sequence, respectlvely. Similar to Sectlon 4.1, the respective

critical values c{? andc? of the test statistics 7% and72) can be approximated by the (1 -

a)-quantiles of the conditional distributions of 77 2)andT ) obtained through repeatedly

generating independent sets of normal samples {é’;k,, i=1,..,nk=1,..., K} while holding
the observed data sequence fixed. The critical values c,” )andc(2) forT(z)andT@ can be

approximated similarly. At the significance level a, the tests based on TQandT(g) reject

Hyg in favor of Hy, if T(2)>c 21)andT(2)>ca2, respectively, and the tests based on

T(2) andT(2

ml m?2

reject Hyg in favor of Hap if 7% <) and, 7%) <), respectively.

ml m m2’

The tests 7' and7'? capture general departures Hy, while the tests 7% and7 (%) are
sensitive to the monotone departure Hop,. Note that the derivative dZ{v, By)/dv = (v — a)™1
[B1 (v) = (v — @)~1 By (v)] = 0 under Hyy, with strict inequality for at least some v € [a, b].

This plus the fact that I'(v,B4) is non-decreasing with I'(b,B1) = 0 lead to the results that the
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tests based on 7% and %) are consistent against Hom and the tests based on 7% and T2 are
consistent against Ho,. The proofs are given in the second paragraph following Theorem 1
in the Appendix.

In Sections 4.1 and 4.2, we considered two types of test statistics, namely the integration-
based test statistics and the supremum-based test statistics, for each pair of hypotheses. The
former are generalizations of the Cramér-von Mises test statistic, and involve integration of
deviations over the whole range of the mark, whereas the latter are extensions of the classic
Kolmogorov-Smirnov test statistic for testing goodness-of-fit of a distribution function, and
take the supremum of such deviations. As demonstrated in a comprehensive analysis of the
relative powers of the classic Kolmogorov-Smirnov test and the Cramér-von Mises test by
Stephens (1974), we expect that the two types of test statistics have different powers for
different true alternative distributions. The integration-based test statistics are best-suited for
situations where the true alternative distribution deviates a little over the whole support of
the mark and the supremum-based test statistics may have more power against situations
where the true alternative has large deviations over a small section of the support. For
example, for testing differential VE(v), Hyq, the supremum-based tests will tend to be

relatively more powerful if V};@) is very high for a small range of marks near a and
declines sharply to zero and is constant at zero for all other marks.

5 Simulation study

5.1 Numerical assessment of the tests under correctly specified models

We conduct a simulation study to evaluate the finite-sample performance of the proposed
testing procedures. The empirical sizes and powers of the test statistics are assessed for
various models, sample sizes (500 and 800) and choices of bandwidths. The powers of the
tests are evaluated in both situations where a correlated auxiliary variable is used and where
it is absent.

We consider K = 1 stratum. Let Z; be the treatment indicator with P(Zy; = 1) = 0.5. The (Ty;,
Vyi) are generated from the following mark-specific proportional hazards model:

A(t,v|z)=exp {yv+(a+pv)z},t > 0,0 <v <1, (12

where a, p and vy are constants. Under model (12), Aq (t, v) = exp(v) and VE(v) =1 - exp (a

+ /). Fora =0and B = 0, VE(v) = 0, indicating no vaccine efficacy, and for § = 0, VE(v) =
VE, indicating mark-invariant vaccine efficacy; whereas § > 0 indicates VE(v) decreasing in
v. We examine the hypothesis testing procedures for the following specific models:

e (M1) (a, B, v)=(0,0,0.3), implying VE(v) = 0;

e (M2)(a, B, v)=(-0.69, 0, 0.3), implying VE(v) does not depend on v;
e (M3)(a,B,v)=(-0.6,0.6,0.3), implying VE(v) decreases;

o (M4) (a, B, v)=(-1.2,1.2,0.3), implying VE(v) decreases;

e (M5)(a,B,y)=(-15, 1.5, 0.3), implying VE(v) decreases.
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We generate the censoring times from an exponential distribution, independent of (T, V),
with censoring rates ranging from 20% to 30%. We take t = 2.0. The complete-case
indicator Ry is generated with conditional probability ri (W) = P(Rki = 1| = 1, W),
where

logit(rk(ﬂ’ki)):ka—f—wklei,z':l, ooy Ny kzl, e ,K. (13)

With yyo = 0.2 and g1 = —0.2 about 50% of observed failures are missing marks.
Conditional on (T, Zki, Vki), we assume that the auxiliary marks follow the model
Api=(0+1) " (Vi +0Uy,;), 00, (14)

fori=1,...,n, k=1,..., K, where V; are the possibly missing marks, Uy; is uniformly
distributed on [0, 1] independent of Vi, and 6 > 0 is an association parameter between Ay
and V. The correlation coefficient p between Ay and Vi is 1 for 6 = 0. Since Ay is
observed for all observed failure times, the AIPW estimator in this case is the full data
estimator. The Ayj and V,; are independent for 6 = oo, yielding p = 0. In addition, the 0
values of 0.8, 0.4 and 0.2 correspond to p = 0.78, 0.92 and 0.98.

Under model (14), the conditional density of Ay given (Tki, Zi, Vi) is
1+6 { )

v+6
gk(a’t,v,z;e):TI 10 <a< 170 ,0<a<1,0<v<1. (15)

The likelihood function for O is

146 ( Vi Vi 0
L(6)= LIy ) for0>0.
(6) 11 ( {1+0— kS g }) orf>

It is easy to show that the maximum likelihood estimator equals

6 max {Vii/Awi,(1—Vi)/(1 — Ap)} — 1.
0ri=1,Rp;=1

The density estimator gy (alt, v, z; Gfis plugged into (9) to obtain ﬁ}f’w(w, v), which is used to
construct the AIPW estimator of (3 in (10).

The performances of the proposed test procedures are evaluated through simulations for the
models described in (12), (13) and (14) under the settings (M1)-(M5), where (M1) is a
setting under the null hypothesis H1g and (M2) is a setting under the null hypothesis Hoy.
We consider the situations where no auxiliary information is provided and where the
correlation between the auxiliary mark and the mark of interest is p = 0.92 [under model
(14) with 6 = 0.4]. Table 1 presents the empirical sizes and powers of the tests

7® 70 M and7 ) for testing Hig at the nominal level 0.05. Table 2 presents the
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empirical sizes and powers of the tests Tﬁ) , Tg) , T,Sfl) andng) for testing Hog at the nominal
level 0.05. The results are presented for n = 500 with h;y = 0.1 and h = h, =0.15 and 0.2, and
for n =800 with hy =0.1 and h=hy = 0.1 and 0.15. We take a =0, b =1 and a’= 0.5 for the
tests. The Epanechnikov kernel K(x) = .75(1 — x3)I{|x| < 1} is used throughout the numerical

analysis.

Tables 1 and 2 show that all of the tests have satisfactory empirical sizes close to the
nominal level 0.05. The powers of the tests increase with sample size and they are not overly
sensitive to the selected bandwidths. The powers of the tests for testing Hyg increase as the
model moves in the direction M1 — M3 — M4 — M2, representing increased departure
from the null hypothesis H1g. The powers of the tests for testing Hyq increase as the model
moves in the direction M2 — M3 — M4 — M5, representing increased departure from the
null hypothesis Hyg. The tests utilizing the auxiliary marks have higher power than those
without using the auxiliary marks.

As with any nonparametric smoothing procedure, one needs to carefully select bandwidths.
In practice, the appropriate bandwidth selection can be based on a .#-fold cross-validation
method [e.g., Efron and Tibshirani (1993), Hoover et al. (1998), Cai et al. (2000) and Tian et
al. (2005)].

The proposed testing procedures properly handles missing marks under MAR with
asymptotically correct significance levels. However, if only the observations with complete
information are used, i.e., the complete-case analysis, then the testing procedures are
expected to often not provide correct type | error control. We conduct a simulation study to
evaluate the observed sizes of the proposed tests using the complete cases under two
different models for missing the indicator Ry; — model (13) and the following model:

logit(ry(Wi;))=0.8 — Zj,; — 0.3T};,i=1, ... ,ng, k=1,..., K. (16)

For K = 1 both models (13) and (16) yield about 50% missing marks among the observed

failures. The sizes of 7Y 71 1) anq7 (V) for testing Hy are evaluated under model (M1)

ml
and the sizes of Tﬁ) , T(g) , T,Efl) andeg for testing Hog are evaluated under model (M2)
(Table 3). Under model (13), the observed sizes for testing Hqg are elevated (around 7-
15%), whereas those for testing Hpg remain around 5%. Under model (16), the observed

sizes for testing Hqg exceed 37% for all tests, whereas those for testing Hog reach 12% and

14% for the tests 7% and () when n = 800.

These simulation results verify that the testing procedures applied to complete cases
generally do not have nominal size, although for some of the scenarios the sizes are nominal.
To explain this, it can be shown that, under MAR, A (t, v|z,Rxj = 1) = A (t, v|2)hg (t, 2),
where hy (t, z) = P(Rxj = 1Tkj = t,Zk = 2)/P(Rki = 1|Tki = t, Zyj = 2). If hy (t, z) does not
depend on z and MAR holds, then the observations for individuals with the observed marks
only can be viewed as a random sample from a mark-specific proportional hazards model
with a different baseline hazard function but the same regression function B(v). In this case,
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the tests for both Hyg and Hyg based on the complete cases are valid. If hy (t, z) depends on z

but not on t and MAR holds, then hy (t, z) can be expressed as 1, (t, Z):exp(ﬁ/kz) [the
scenario under model (13)], and the tests of Hqg based on the complete cases will be biased.
However, the tests of Hyg remain unbiased since the biases in the estimation of B(v) that do
not depend on v, such that the test process Q@ (v) is still asymptotically a mean zero
process. In general, if hy (t, ) depends on both z and t and MAR holds, which is the scenario
under the missing model (16), then the test process Q@ (v) is not an asymptotically mean
zero process. The magnitude of departure of the asymptotic sizes of the test statistics of Hyg
from the nominal level depends on hi (t, z) in a complicated manner.

5.2 Numerical assessment of the tests under mis-specified models

This subsection evaluates robustness of the proposed test procedures to mis-specifications of
re (w) and/or g (alt, v, z), and to violation of the MAR assumption. The Zy;, (Tki, Vi), and
Cyi are generated using the same models as above, again with approximately 30% censoring.

Robustness of the tests to mis-specification of ry (w) is examined by assuming model (13)
while the actual complete-case indicator Ryj is generated with the conditional probability ry
(Wii) = P(Ryi = 1[0ki = 1, W), where

loglt(rk(sz))zllﬁ—Zkz — 2Tyi,1=1,...,ny. a7)

This model yields approximately 50% missing marks among observed failures under (M1)-
(M5).

Robustness of the tests is also examined when g (alt, v, z) is mis-specified. This is carried
out by assuming model (14) for the auxiliary mark, or, equivalently, model (15) for gy (alt, v,
z), while the actual mark for A = 1 is generated from

Aki:(1'4+27)_1(‘/ki+0'4Uk:i+2in)a (18)
fori=1,..., ng. Here Uy is uniformly distributed on [0, 1] and is independent of V.

Robustness of the tests to violation of the MAR assumption (2) is examined by assuming
model (13), while the actual Ry; depends on Vi through the model

logit(ry(Wi))=0.64+Zp; — 2V, i=1,...,nk.  (19)

The proportion of missing marks among the observed failures is kept around 50% in all
scenarios.

The models (17), (18) and (19) are similar to those used in Sun and Gilbert (2012) for
examining robustness of the AIPW estimator. However, instead of examining biases and
standard errors of the estimators, here we check whether the empirical sizes of the tests are
close to their nominal level 0.05 and how the powers of the tests are affected by these mis-
specifications. For sample size n = 500 and bandwidths hy = 0.1 and h = h, = 0.20, Table 4
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shows the empirical sizes and powers of the tests of Hyg and Table 5 shows the empirical
sizes and powers of the tests of Hyg. In both tables, the first block shows the results when ry
(w) is mis-specified following (17) and g (alt, v, z) is correctly specified by (15) with A =
0.4; the second block shows the results when gy (alt, v, z) is mis-specified following (18) and
ri (w) is correctly specified by (13) with yyq = 0.2 and yy1 = —0.2; the third block shows the
results when ry (w) is mis-specified following (17) and gy (alt, v, z) is mis-specified
following (18); and the fourth block shows the results when ry (w) depends on Vj; following
(19) and g (alt, v, 2) is correctly specified by (15) with A = 0.4.

Tables 4 and 5 show that the empirical sizes of the tests are very close to the nominal level
0.05 when one of ry (w) and gy (alt, v, z) is mis-specified, reflecting the double robustness
property of the AIPW estimator. The empirical sizes are also close to 0.05 when both r (w)
and g (alt, v, z) are mis-specified and when the MAR assumption is violated, which is
intriguing. When only ry (w) is mis-specified and MAR holds, the empirical powers in
Tables 4 and 5 closely track the corresponding powers in Tables 1 and 2 under correct
model specifications. The empirical powers are lower than those observed in Table 1 and 2
when gy (alt, v, z) is mis-specified or when both r, (w) and gy (alt, v, z) are mis-specified,
whereas the empirical powers in Tables 4 and 5 are very close to those in Tables 1 and 2
when MAR is violated. Apparently for our particular data simulation, the bias due to the
MAR violation counter-balances the bias due to mis-specification of both r, (w) and gy (alt,
v, z); however, in general these violations could distort sizes and powers.

5.3 Simulation study for the Thai trial

We conduct a simulation of the Thai trial, to gain insight about the power available for this
real trial. Specifically, we simulated data to yield about the numbers of infections observed
(74 in the placebo group and 51 in the vaccine group), the overall vaccine efficacy from the
proportional hazards model is about 31%, and the true VE(V) curve decreases with v to be
around 65-70% for v close to zero and around 0% for v close to 1. The actual infection rate
was only 0.3% over 3.5 years; to speed the simulations we use a 20% placebo infection rate
and retain 74 infections on average.

Again with K = 1 stratum, the (T, Vi) are generated from the following model:
A(t,v]z)=vexp {(a+Bv)z},t > 0,0 <v <1, (20

where a, p and vy are constants. Under model (20), VE(v) = 1 — exp(A+ fv), the marginal
hazards are Ag (t) = o for z =0, and Aq (t) =y exp(a)(exp(B)-1)/p for z = 1, and the Cox
proportional hazards vaccine efficacy equals VEc =1 — L1 ()/hg (t) = 1 — exp(a)(exp(B) -
1)/B. We choose (a, B, v) = (-1.1, 1.3, 0.068), yielding VE¢ = 0.32, VE(0) = 0.67, and
VE(0.85) = 0. We study 400 subjects each in the vaccine and placebo groups. Matching the
actual trial, the censoring rate before v is kept very low, just under 5%. The missing mark
indicator is generated from model (13), with (wko, Wk1) Set to yield about 0%, 25% (-1.2,
-0.2), 50% (0.2, —0.2), and 75% (1.0, —0.2) missing marks among observed failures. We
assume the auxiliary variable Ay follows the model (14) given in Section 5.1, where the 0
values of oo, 0.8, 0.4 and 0.2 correspond to . =0, 0.78, 0.92 and 0.98 for the correlation
coefficient between Ay; and V.
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Because of lost information on the mark, we choose larger bandwidths for higher

percentages of missing marks. We use h = 0.4 for the case with 75% missing marks; h = 0.3
for the case with 50% missing marks; h = 0.2 for the case with 25% missing marks; and h =
0.15 for the case with 0% missing marks. The bandwidths h; and h, in (7) in the estimation

~ipw

of )y, (¢,v)are taken to be 0.50 and hy = h in each case. Power of the proposed tests

Tﬁ), Tg), Tfnll), T,(nlz) , Tﬁ), Tﬁ), TT%) andTT(an) for the simulations based on the Thai trial at
the nominal level 0.05 are reported in Table 6. The tests show similar performance as was
found in the simulation study of Section 5.1. As only 10% of infected subjects had missing
marks in RV144 and the auxiliary was very weakly predictive, we focus on the entries with
0% or 25% missing marks and p = 0. There is 67%—95% power to reject Hyg, and 33%—60%
power to reject Hyq. These results show that a fairly strong sieve effect with V E(v) declining
from 67% to 0% could readily be missed in the Thai trial due to limited power. The only
slightly improved power with an excellent auxiliary p = 0.98 shows that greater numbers of

events would be needed to achieve high power for testing Hpg.

6 Analysis of the RV144 Thai trial

In the RV144 Thai trial, 125 subjects (51 of 8197 in the vaccine group and 74 of 8198 in the
placebo group) were diagnosed with HIV infection over a 42 month follow-up period, from
whom full-length HIV genomes were measured from 121; 3 missed data because their HIV
viral load was too low for the Sanger sequencing technology to work, and 1 dropped out
[Rerks-Ngarm et al. (2009), Rolland et al. (2012)]. We focus on the gp120 region of the HIV
Env protein, because this region stimulates anti-HIV antibody responses which are the
putative cause of the observed partial vaccine efficacy. Three gp120 sequences were
included in the vaccine: 92TH023 in the ALVAC canarypox vector prime component; and
CM244, MN in the AIDSVAX gp120 protein boost component. 92TH023 and CM244 are
subtype E HIVs where as MN is subtype B, and 110 of the 121 subjects were infected with
subtype E sequences. The subtype E vaccine-insert sequences are much closer genetically to
the infecting (and regional circulating) sequences than MN, and thus are more likely to
stimulate protective immune responses. Accordingly, the analysis focuses on the 92THO023
and CM244 reference sequences, and right-censors the 15 subjects HIV infected with
subtype B or with unknown subtype. One subject who acquired HIV infection during the
trial was documented to have acquired HIV from another trial participant who had
previously become HIV infected; the analysis excludes this subject because his/her inclusion
would violate the independent observations assumption. In the context of our model set-up,
T is the time to HIV infection diagnosis with subtype E HIV. The time to HIV infection
diagnosis with subtype B or with unknown HIV subtype is treated as censoring.

We define V based on HIV sequence data measured from a blood sample drawn at or before
the HIV diagnosis date. (The trial documented acute-phase/pre-seroconversion infection in
only a few subjects, prohibiting defining the mark based on acute-phase sequences.) Eleven
of the 109 (11%) subtype E infected subjects have sequences measured from a post-
diagnosis sample and hence are missing V. To maximize biological relevance and statistical
power, we restrict the gp120 distances to the published set of gp120 sites in contact with
known broadly neutralizing monoclonal antibodies (Moore et al., 2009; Wei et al., 2003).
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For each HIV sequence from a subject and each of the two reference vaccine sequences, V is
computed as a weighted Hamming distance using the PAM-between scoring matrix (Nickle
etal., 2007). Between 2 and 13 sequences (total 1030) sequences) were measured per
infected subject, and V is defined as the subject’s sequence closest to his or her consensus
sequence (the consensus sequence is comprised of the majority amino acids at each site, one
site at a time). Finally, the distances are re-scaled to values between 0 and 1. In total, 109
infected subjects (43 vaccine, 66 placebo) are included in the analysis, of which 98 (39
vaccine, 59 placebo) have an observed mark V ; Figure 1 displays the observed V’s.

To predict the probability of observing V among the 109 infected subjects, we use all-
subsets logistic regression model selection considering demographics, host genetics, and
biomarker data post-infection. The best model by BIC includes only the years from entry
until HIV infection diagnosis (X1), with model fit logit(P (R =118 =1, Xq)) =1.17 + 0.70X;
for the CM244 reference sequence. The model was very similar for the 92THO023 reference
sequence (not shown). In addition, we consider linear and logistic regression models for
relating the mean of various potential auxiliary variables (A) to V, X4, and treatment
indicator Z. Model selection did not reveal any significantly predictive auxiliary variables;
we expect that HIV sequence information measured after V is defined would be a good
predictor, but these data were not collected. Nevertheless, to implement the AIPW method
we select the best available auxiliary variable, gender (A = X5, 1=male; O=female), and use
the logistic regression model that results; for CM244 the fitted model g(A = a|V, Xy, Z) is
Iogit(P(S(z =16=1,V, Xq,2) =0.24 - 0.33V + 0.16X; + 0.38Z, and the model was very
similar for 92THO023 (not shown).

The AIPW estimation and testing procedures are applied to the Thai trial data set with
bandwidths h; =0.5and h, =h=0.3,a=0.05b=1and a’=a + 0.01 (a and a”are near the
minimum observed marks). As in the simulation study, 500 simulated Gaussian multipliers
are used. Because the results are nearly identical with and without the auxiliary variable,
only the latter results are presented. Figure 2 shows the estimated VE(v) along with 95%
pointwise confidence bands, indicating that vaccine efficacy appears to be high against HIVs
near to the 92TH023 reference sequence [estimated VE(0.01) = 56%], and declines to zero
against HIVs farthest from the 92THO023 reference sequence [estimated VE(1.0) = 2.4%].
The decline is similar for the CM244 reference sequence, with estimated VE(0.01) = 45%
and estimated VE(0.95) = -9.1%.

Figure 3 (a) and (b) shows the test processes Q) (v) versus 20 realizations from the

Gaussian multiplier process W; (v) given the observed data, and Figure 3 (c) and (d) shows
the parallel results for the test process Q@ (v), each suggesting departures from the null
hypothesis Hyg and from the null hypothesis Hog for each reference sequence. The p-values

of the tests based on the test statistics Tgl) andTT%) for testing Hyg against the monotone

alternative over v € [0, 1] are 0.032 and 0.008 for 92TH023, and 0.014 and 0.010 for

CM244. The p-values of the test statistics 71 and 7Y for testing Ho against the general
alternative are 0.054 and 0.018 for 92TH023 and 0.030 and 0.010 for CM244. For testing
Hyg over v € [0, 1], the p-values of the supremum-type tests based on the test statistics
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Tﬁ)andTg) are 0.53 and 0.27 for 92THO023 and 0.37 and 0.18 for CM244. The p-values of
2)

1
the integrated square type tests based on the test statistics Téz andeg are 0.35 and 0.14 for
92THO023 and 0.44 and 0.19 for CM244.

These analyses provide more evidence that the vaccine had some protective efficacy than the
original primary analysis that did not account for the mark information (Rerks-Ngarm et al.,
2009): the primary analysis test for any vaccine efficacy yielded p=0.04 whereas the tests for
any vaccine efficacy against any mark reported here yielded median p-value of 0.016 across
the four test statistics and two reference sequences. The analyses also showed a
nonsignificant trend (p-values around 0.14-0.19) that the vaccine protected better against
HIVs closely matched to the vaccine strain HIVs in the monoclonal antibody contact sites,
but had less or absent protection against HIVs with many mismatches in these sites. While
the significance levels are not compelling, the simulation study presented in Section 5.3 of
the power available for detecting a vaccine sieve effect in the Thai trial showed that the
study is well-powered only to detect large sieve effects [with greater decline of V E(v) inv
than what was observed in the estimated V E(v) curves]; thus a moderate-to-large sieve
effect is consistent with the observed results. These results may guide future vaccine
research by suggesting modifications of future vaccine candidates to include HIV sequences
more closely matched to circulating HIVs in the monoclonal antibody contact sites. They
may also motivate the design of future experiments to understand functional effects of
amino acid mutations at the monoclonal antibody contact sites.
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Appendix: Asymptotic results

The following regularity conditions from Sun and Gilbert (2012) are assumed.

Condition A

(A.1) B(v) has component wise continuous second derivatives on [0, 1]. For each k = 1,
..., K;the second partial derivative of Agy (t, v) with respect to v exists and is
continuous on [0, t]X[0, 1]. The covariate process Z (t) has paths that are left
continuous and of bounded variation, and satisfies the moment condition E[||Zy
014 exp(2M||Z (D)I)] < oo, where M is a constant such that (v, Av)) € [0, 1] x
(=M, M)P for all v and [|Al| = maxy | |a| for a matrix A = (ayj).
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(A-2) Each component of sk]>(t 6) is continuous on [0, T] x [-M, M]P, §; (t ,1)is
continuous on [0, t] x [-M, M]P x [-L, L]9 for some M, L >0 andj =0,1,2

() _ ~1/2 g\
SUP, ¢ (0,061~ n,mpp o 1857 (2, 0)[|[=0p(n / )andSUPtE (0,71.6C[ M. MIP Hce|| (t,0,¢r)—8

(A3) The limit py = limp_, 5, NK/N exists and 0 < py < oo. s (t 6)>0o0n [0, t] x [-M,

M]P and the matrix E(U):z: Pr2x(v) is positive definite, where

k=1

=30 [t B) dow(t, ) (1, B(v))dtand I (¢, B)=s (¢, B) /s (1. B

(A.4) The kernel function K(-) is symmetric with support [-1, 1] and of bounded
variation. The bandwidth h satisfies nh2 — co and nh% — 0 as n — cc.

(A.5) There is a o > 0 such that ry (W) = o for all k, i with §; = 1.

Let Z=o{l(Xki <, &i=1), I(Xki <5, & =0), Vi I(Xki £, &i=1), Zki (5); 0<s<t i=1,
., Nk, k=1,..., K} be the (right-continuous) filtration generated by the full data processes
{Nki (5, V), Yki (8), Zkj (5); 0<s<t,0<sv<l,i=1,...,n,k=1,..., K} Assume E(N; (dt,
dv)|%-) = E(Nk;j (dt, dv)|Yi (1), Zgi (1)), that is, the mark speC|f|c instantaneous failure rate at
time t given the observed information up to time t only depends on the failure status and the
current covariate value. By the definition of the conditional mark-specific hazard function,
E(Ngi (dt, dv)|%-) = Yii (DA(t, v|Zi (1)) dtdv. Hence, the mark-specific intensity of Ny; (t, v)
with respect to % equals Yii (D)Agj (t, v|Zy (1)). Let
Myi(t,w)= [ [4] Nii(ds, dz) — Yii(s) M (s, 2| Z1i(s))dsdz). By Aalen and Johansen (1978),
Mi (-, v1) and My (-, v2) — My (-, v1) are orthogonal square integrable martingales with
respect to % forany 0 <vy vy, < 1.

The weak convergence of Wg (v) = n/2 {BaU9 (v) - B(v)} - n¥/2 {Ba49 (a) - B(a)} for v €

[a, b] is given in Theorem 1 below.

Theorem 1. Under conditions (A.1)—(A.5), W —n_l/QZk 12"'“ Hyi(v)+o,(1),
uniformly in v € [a, b], where

j\{ki(dtv du)—|— {1 —

Ry; ki
T ( Qi) T (Qri)

The processes Wpg (v) converges weakly to a p-dimensional mean-zero Gaussian process
with continuous sample paths on v € [a, b], where

zi(t, B)=sy" (t.8)/s\’ (t, B)ands{ (t, B)=ES (t, B)

Theorem 1 provides the basis for obtaining asymptotically correct critical values for the
testing procedures for Hqg and for Hyq. In particular, let G(v) be the limiting Gaussian

process 0fWg, (v), v € [a, b], as n — co. Then under Hyp, Q) (v) 2 G(v), v € [a, b], as n
— 0o. By Theorem 1 and the continuous mapping theorem,
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T 25 supyepan [GO)], T 2L [2{G ()} dVar {G(v)} TS 2> inf,e(qyG(v)and Ty 2> [5G (v)dVar {G(

»Tml

under Hyg as n — oco. Under Hag, Q® (v)=T'(v, W, ) 2, T(v,G),v € [a, b], as n — oco.
Applying the continuous mapping theorem, under Hyg,

T(Q) 2, SUDye[ar ] |T(v, G)|, a2 4 fZ,{F(U,G)}2dVar {G(v)} ,Tffl Z, inf,¢ /b]F(U,G)andng) Z,

,asn — oo.

The proof of the consistency of the tests for testing Hy are straightforward. To show the
consistency of the tests for testing Hyg, we note that the derivative dI'(v, By)/dv = (v — a)~1
[B1 (v) = (v — @)~ By (v)] = 0 under Hyp,, with strict inequality for at least some v € [a, b].
The function T'(v, B;) is non-decreasing with T'(b, B1) = 0. We have, under Hop, T'(v, B1) <0
with strict inequality for at least some v € [a, b]. Let vg € [a, b] be such that T'(vg, B1) < 0.

Then T'(v, By) < 0 for v < vo. Now defining v}, =sup {v:T'(v, B;)<0,a < v < b}, we have
I'(v, By) <0 for y<o?* and T'(v, By) = 0 for v" <v < h. It follows from (11) and Theorem 1
that 7% £ —ocandT'y) £ —oo under Ham as n — oo for o/ <v*. Thus the tests based on

Tffl) andT@) are consistent against Hop,. Similarly, let
Uy =Sup {UﬁSHpue[v,b] T'(u, B1)| >0,a <v < b}. Then under H,, [T'(v, By)| > 0 for v <v7,

and [T(v, By)| = 0 for v* < v < b. Hence T2 £ scandT® £ oo under Hy, as n — oo for
a’ <, resulting in the consistent tests against Hp,.

We use the Gaussian multiplier resampling method [Lin et al. (1993)] to approximate the
distribution of Wg (v), v € [a, b]. Let {&, i = 1,..., n, k=1,..., K} be iid standard normal
random variables. Replacing each term of (26), which is asymptotically equivalent to (21),
by its empirical counterpart and multiplying by &, we obtain

(v _n71/22k 12 §szkl ), Where

Fgi(v) =[5 [T H (0, 0) { Zr(t) = Zr(t, 8" (w)) }

Rk Rk' Aaug
{7(Qkuw )Nkl(dt ydu)+(1 — 7(Qkuw ))N,m(dt) (P (Wi, u)) @2

aug

—mmwwﬁww%m»%ﬂﬁm@

where H (v, u)= [ (Sug(z))  Kp(u — z)dz..

Following an application of Lemma 1 of Sun and Wu (2005), the distribution of Wg (v), v €

[a, b], can be approximated by the conditional distribution of W7, (v), v € [a, b], given the
observed data sequence, which can be obtained through repeatedly generating independent
sets of 23 {&, i = 1,..., nk, k=1,..., K}. Hence, the distribution of Q) (v), v € [a, b], under

Hyo, can be approximated by the conditional distribution of W , v € [a, b], given the
observed data sequence. By the continuous mapping theorem, the distribution of Q@ (v), v

J R Stat Soc Ser C Appl Stat. Author manuscript; available in PMC 2016 January 01.
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€ [a, b], under Hyo, can be approximated by the conditional distribution of T (v, W), v €
[a, b], given the observed data sequence.
With the Gaussian multiplier method, the variance Var {B;mg(v) - 3(1”@(‘1)} can be
consistently estimated by

aug

Var { B1" (v) - B
on the diagonal of

(a)} anlvar*(W;l (v))where Var«(W (v))is the first component

Cov(W7,(v))
=Cov(W7, (v)|observed data)
K ng
=n"! YT Hw, ) { Z0(t) — Zi(t, B (u {%Nl dt, du
kg; [fofo (v,u) { Zilt) = Zi(t, B" (w)) } g Nt v -
R

— L NE(dt)d(p (Wi, u
+7Tk(Qki71/)k) 5 (dt)d(pr, (Wi, u))

— Vi (®exp((B™ ()" Za(t)Agy” (dt, du)}]?>.

Proof of Theorem 1
Let

Ry;
1 (Qui)

Bi(0)= [ L[ (=) (Z1s(D) 7 (t, B(w))) (1 -

i(V)=[ o [oEn(w — v)(Z1i(t)) — Zu(t, B(u))) My (dt, du),

Ry; (24)

71'k((gki)

) E{Myi(dt, du)|Qp} -

Following the proof of Theorem 4 of Sun and Gilbert (2012, the web Appendix (W.19)) and
under nhy — 0,

K ng

nl/? {Ba"‘q(v) - B(U)} =~ (2() 'Y (i (0)+ Bi(v)+0,(1). (25)
k=1i=1
Hence
K ng
n1/2(1§““9(v)_13(v)):_n*1/2zz Jo(2(w) ™ (hi (w)+Brs () )duto0, (1),
k=1i=1

which, by exchanging the order of integrations, equals to
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_I/QZZ (So LS En(w — 2){S(x)} " da][ Z1i(t) — % {t, B(w)}]

=1i=1 (26)

Ry, Ry
|:7Tk(Qk"L) My;(dt, du)+ {1 e (Qr) } B { My;(dt, du)‘ka ]
Let
-1/2 & v T _ Ry;
v)=n ;;10]o[Zki(t)—Zk(taﬁ(U))] [Wk(le)MkL(dt | du)+ {1 - m(ka)}E{M“ (dt, du)| Qi }]-

It follows that

n!2 (B (0)=B(v)) == [3(S(w)) " [oKn(z—u)Tn(dz)dutoy(1) == [o] [o(E(w) ™ Kn(e—u)du)T,(dz)+0,(1).

Since the kernel function K(:) has compact support on [-1, 1], (27) equals to

— [ M5 (B(w) T K (e — u)du]d , (dx)
— [T (B W) T K (2 — u)du] 3, (dz) (28)
— [V 6 (2(w) T K (x — u)duld, (de)+o,(1).

It can be shown that J,: (x) converges weakly to a mean-zero Gaussian process with

continuous paths. Under the assumption (A.4), [¢(%(u)) ™' K} (z — u)du has bounded
variation and converges uniformly to 2(x)~1 for x € (h, v - h). By Lemma 2 of Gilbert et al.
(2008), the first term in (28) is equal to — [ (2 (u)) ', (dz)4o0,(1). Similar arguments lead
to the second and the third terms in (28) to be op (1). Hence,

nY/2(B"(v) - B(v))
K nk

= VIS (Jo 5} Zhi() — 7 {8 B}
k=1i=1
R Ry
[m(le)Z\fm(dt du) {1 T Qe } E{ My (dt, du)| Qm}]) +0p(1),

which converges weakly to a p-dimensional mean-zero Gaussian process on v € [a, b] with
continuous sample paths by Lemma 1 of Sun and Wu (2005). Theorem 1 follows since Wg
(v) = n¥2 {Ba9 (v) - B(v)} - n1/2 {Ba9 (a) — B(a)} is a linear transformation of n/2 (Ba9

() = B()).
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Contact site gp120 distances versus HIV infection times
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HIV Sequence Distance
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Scatterplots of the marks V versus the HIV infection time T for the 98 HIV infected subjects
in the Thai trial with an observed mark. The mark V is the HIV-specific PAM-matrix
(Nickle et al., 2007) weighted Hamming distances between a subject’s HIV Envelope gp120
amino acid sequence (nearest to his/her consensus sequence) and the 92TH023 or CM244
vaccine reference sequence; the distances restrict to the 172 amino acid sites in gp120
documented to contact broadly neutralizing monoclonal antibodies. The lines are lowess
smooth fits (Cleveland, 1979).
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Estimated VE(v) for two gp120 distances
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AIPW estimation of VE(v) and 95% pointwise confidence bands without using auxiliary
variables for the Thai trial with bandwidths hy = 0.5, h, =h = 0.3, for the monoclonal
antibody contact site distances to the 92TH023 and CM244 reference sequences.
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Test processes for testing any VE and mark-varying VE(v)
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(b) H_10: VE(v)=0 [CM244]

100
75
50

25

Test process

T T T |
0 02 04 06 08 1

v

(d) H_20: VE(v)=VE [CM244]
100
75
50
25

0_

Test process

_25 —

_50 —

_75 -

-100 -

| T T T | |
0 02 04 06 08 1

\

Diagnostic plots of the test processes for the Thai trial data set with bandwidths hy = 0.5, hy
=h=0.3and a=0.05, b =1and a’=a+ 0.01 without using auxiliary variables. (a) and (b)
Plots of QW (v) (solid dark line) versus 20 realizations (grey lines) from the Gaussian

multiplier process Wy, (v) (92THf023, CM244 reference). (c) and (d) Plots of Q®)(v) (solid

dark line) versus 20 realizations (grey lines) from the Gaussian multiplier process I' (v, W;)

(92TH023, CM244 reference).
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