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Background
Biochemically, the binding of a ligand-receptor pair (LRP) is 
a signal transduction event passing information from the out-
side of the plasma membrane to the interior of the cell. This 
event sets off a complex network of protein signaling cascades 
and interacting complexes that cause phenotypic changes on 
the level of the cell and in the context of cancer.1

Ligand-receptor systems are a major focus for targeted 
anti-cancer therapies. For example, Yarden2 reviewed the 
epidermal growth factor receptor (EGFR) pathway and the 
known molecular mechanisms that the cell processes to lead 
to proliferation or survival or migration, noting that these 
signals can be attacked by anti-EGFR monoclonal antibodies 

and tyrosine kinase inhibitors. These options face a long 
translational process3 as aberrant signaling is first identified in 
pre-clinical models and candidate therapies progress to early 
clinical trials. As Gschwind and colleagues observe, there are 
a number of these therapies in the development pipeline,4 so 
for a given cancer, we might imagine that the first task is to 
begin to compile evidence that a targetable receptor may be 
active and important. To rapidly identify promising candidate 
LRPs, Graeber and Eisenberg5 hypothesized that the correla-
tion between mRNA levels of a known LRP is a way to infer 
pairs with active autocrine signaling for a given disease. They 
used the hypothesis to rapidly screen about 200 cancer sam-
ples for candidate informative pairs using high-throughput 
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gene expression data. With the increasing volume of genomic 
studies, this technique has been repeated by Castellano and 
colleagues6 with increasing emphasis on finding an associa-
tion with survival times for advanced ovarian cancer.

Statistically, the standard approach to merging survival 
responses with two genes at a time is a differential correlation 
(DC) or differential co-expression analysis. These methods tie 
signaling to prognosis by stratifying patients into empirically 
defined survival groups and then testing whether correlation 
between the ligand and the receptor differs between the two. 
This is an inelegant solution from the perspective of continuous 
survival regression models because dichotomization ignores 
patients with intermediate survival times and because regres-
sion models can adjust for other factors. Instead, we might 
regress the ligand on the receptor (or receptor on ligand; it is 
unclear which is preferable) using a dummy variable or trans-
formation of survival time to account for prognosis. This is dif-
ficult because survival times are frequently censored. Further, 
the result can only confirm the effect of survival on correla-
tion and not estimate the more valuable effect of correlation 
on prognosis.

In our previous work,7 we noted that survival time 
regression model’s interactions were sensitive to DC-type 
interactions, but we did not investigate why this association 
exists. In this article, we attempt to address these inconsis-
tencies by conjecturing that there exists an underlying data-
generating process that links survival and correlation through 
an unobserved activation level. We are able to show that this 
assumption is consistent with the properties of data observed 
to date, and we consider the implications of this model for 
data analysis.

Methods
Activation signal hypothesis. We hypothesize that sig-

nal transduction can be described as a continuous level that 
generates the correlation between ligand and receptor. This 
activation level may not be directly observed, but its influence 
on survival (or another phenotype) may be seen. Let Z ∈ ℜ 
denote the level of signaling activation, and the influence of 
activation on a survival time Y be

	 log Y Z= + +β β σε0 1 	 (1)

where the standard normal error ε captures the influence of 
other factors on survival; β1 controls the importance of activa-
tion, and (β0, σ) are chosen to set the marginal distribution of 
Y. Supposing that both Z and ε are symmetric about zero, then 
exp(β0) is the median survival time and σ can be set by assum-
ing a clinically derived side condition like P(Y . t0) = p0 for 
some known time t0 and survival percent p0. Note that we will 
assume ε is normal for our simulations, but we will evaluate 
general semiparametric methods (namely, Cox proportional 
hazards (PH) regression) to establish the validity of the use 
of popular survival analysis methods for this model. Let X

l
 

and X
r
 denote the expression levels of the ligand and receptor 

genes, respectively, which are bivariate normal with correla-
tion dependent on the activation level:
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The activation-dependent correlation is p(Z) = α Ψ(Z) 
with Ψ(⋅) as the cumulative distribution function and the 
effect size |α| #1. The name and concept for the activation 
function come from the neural network literature where Ψ is 
interpreted as the firing rate of a neuron given input current Z. 
This is an appealing analogy for the ligand–receptor system.

Now, the inference problem is to detect the fact that 
these ligand and receptor are correlated and that this is some-
how related to survival. We will demonstrate the result that 
the interaction between the ligand and receptor expression 
levels can be detected in a regression model. This is surprising 
for three reasons: the degree of correlation is patient specific 
( ( )),σψ Z  we have not specified that log(Y) is some function of 
(X

l
, X

r
), and there is no correlation between Z and XL or X

r
.

Illustrations. Figure 1 comprises two simulated exam-
ples, motivated by the clinical prognosis for advanced ovar-
ian cancer, showing the relationship between the activation 
hypothesis and the analysis of the LRP. In each scenario, 
described below, we set β1 =  1, α =  0.8, β0 =  log18, and  
σ = 0.025, corresponding to a median progression-free survival 
(PFS) of 18 months and 12% survival at 60 months when Z is 
standard normal. We generate n = 1000 patients in each sce-
nario. In both scenarios, the function Ψ1 1 2( ) ( ( ) ) /Z z= +tanh  
translates activation to correlation of the LRP.

Scenario 1. Patient-specific activation levels. We generated 
standard normal patient-specific activation level Z, meaning 
that each patient has their own level of activation and that the 
values are spread on a continuum (they are simply active or 
not). Expression values (X

l
, X

r
) are generated as mean zero, 

bivariate normal random variates with the individual correla-
tion indicated by Ψ1(Z) (Fig. 1, left).

We note that the marginal correlation between the ligand 
and the receptor is r = 0.39, so we would infer that this is an 
active signaling pair. In a typical DC analysis, we might strat-
ify patients based on survival past the median of the observed 
survival times and compute the correlation in the short sur-
vival set (r = 0.15) and in the long survival set (r = 0.62). The 
differences are all strongly significant (P , 0.001), so we con-
clude that the activation of this LRP is associated with sur-
vival and that a DC analysis is a valid approach.

We performed a standard Cox PH regression that found no 
marginal association between PFS, and ˆ( . ,  . )LX Pβ = =0 03 0 46  
and ˆ( . ,  . )RX Pβ = − =0 04 0 30  jointly and univariately. Thus, it 
is likely that standard analyses will have overlooked this effect. 
Surprisingly, when we consider the statistical interaction 
between the ligand and the receptor, we find that it is a strong 
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prognostic factor ˆ( . ,  . e )Pβ = − = −0 19 7 4 09 . This result leads 
us to conjecture that the statistical interaction in a survival 
regression model can identify signaling LRPs.

Scenario 2. Extreme DC model. DC analysis implicitly 
assumes that patients can be classified into an active or inac-
tive LRP state. We consider an extreme scenario that strongly 
favors a DC-type analysis. Let inactive patients have level  
Z = ‑1/2 and active patients have level Z = 1/2; then, Ψ1(Z) 
takes two values, Ψ1(–1/2)  =  0.215 and Ψ1 (1/2)  =  0.585. 
This selection generates a clearly bimodal survival distribu-
tion (Fig. 1, right) where inactive patients have a mean sur-
vival of 11 months (exp[E(Y|Z = –1/2)] = 18exp(–1/2)) and 
the active patients have a mean survival of 30 months. This 
assumption tends to be unrealistic for cancer applications; 
the marginal distribution of ovarian cancer survival times is 
continuous and patient survival times is unimodal, and the 
decision to split patients is likely to fit poorly with patients 
near the threshold.

By design, this scenario generates significant DC (r = 0.20 
and r = 0.63) similar to scenario 1, so DC analysis is a valid 
approach for identifying this pair. Again, by Cox PH regres-
sion, we find that the ligand ˆ( . ,  . )Pβ = − =0 05 0 25  and receptor 

ˆ( . ,  . )Pβ = − =0 03 0 37  expressions are not associated with 
prognosis, but the interaction is ˆ( . ,  . e ).Pβ = − = −0 14 5 5 05

Therefore, we conclude that the latent activation model is 
a viable data-generating model for the LRPs and their effect 
on survival. It possesses properties consistent with analysis by 
DC and regression. A viable measure of association can be 
derived by studying the interaction term between the ligand 
and the receptor through a survival time regression.

Simulation Studies
Power to detect signaling. We consider the power of 

an activation regression-type model and a standard DC 
analysis to identify the presence of an active LRP. The DC 
algorithm is a single test statistic based on Fisher’s trans-
formation and standard normal theory (see the Appendix 
for details). We test both Cox PH regression and Weibull 
parametric regression (PR), expecting the latter to be com-
petitive with the parametric DC model. There are three 
parameters to vary: α the strength of correlation induced by 
activation, β the effect of activation on survival, and n the 
sample size. A total of 10,000 simulations were performed 
for each scenario. A sufficient number of simulations were 
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Figure 1. Simulated data illustrate survival times (top row) and correlation (bottom row), showing that the activation hypothesis generates DC in both a 
patient-specific (left) and a discrete (right) scenario.
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done to avoid needing standard errors. The results are shown 
in Figure 2.

As the sample size increases, the ordering and shape are 
as we would expect. Specifically, the PR performs better than 
semiparametric regression and both are more powerful than the 
DC method. As the sample size gets very large (n = 1000), the 
models perform about the same with powers near 1. In practice, 
such large sample sizes are not always available. Hence, a model 
should be chosen that performs the best for smaller sample sizes. 
We selected n = 100 as a realistic sample size for further studies.

For α = 1, α = 0.5, and α = 0, the survival effect was varied 
for the semiparametric model. We omitted the other models 
for clarity. As β grows from 0, it seems to reach an equilib-
rium power between 0.05 and 0.1 for each value of α. |β| = 0.1 
is very small for a one standard deviation change in x, so it 
seems that the value of β does not matter as much as α or n.  
Hence, the power of our models depends more on sample size 
and α than on β. The outperformance of the semiparametric 
and PR models over the DC model for the majority of α values 
and sample sizes supports the superiority of the activation 
regression model over other models.

Correlation has a strong impact on the power. The 
power of the DC model is not significant for small α values 
(‑0.5  ,  α  ,  0.5). α =  0 represents the null hypothesis. 
The tails of α matter for DC; it is only the superior model 
near ‑1 and 1. Loss of power for the semiparametric model is 
expected; however, it is important to note that it outperforms 
DC model at most levels. The PR model maintains the highest 
power for all values of α between ‑1 and 1. This demonstrates 
that DC is a flawed model.

Effect of censoring on power. We consider the power 
of each model as a function of increasing censoring rate. 
We analyze the effect of censoring on the three models at 
parameter values of α =  1.0, β =  0.8, and n =  100. These 
parameter values reflect values where α and β reach maxi-
mum power and a realistic effect size. In all, 10,000 simula-
tions are performed for each set of parameter values. Note 
that censored data are handled naturally by the survival 
analysis methods. DC analysis has no equivalent, so it must 
analyze complete observations, ie, patients for whom an 
event is observed. Therefore, we expect DC analysis to be 
highly sensitive to censoring.

−1.0 −0.5 0.0 0.5 1.0

Correlation strength (α)

P
o

w
er

Correlation strength varies, β = 0.1, n = 100

Parametric regression

Semiparametric regression

Differential correlation

Censoring rate

P
o

w
er

Censoring, α = 1, β = 0.1, n = 100

Parametric regression

Semiparametric regression

Differential correlation

Sample size (n)

P
o

w
er

Sample size varies,  α = 0.8, β = 0.1

Parametric regression

Semiparametric regression

Differential correlation

Survival effect (β)

P
o

w
er

Survival effect varies, n = 100

Semiparametric

Regression only

α = 1

α = 0.5

α = 0

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

0.010.0 0.1 0.2 0.3 0.4 0.5 0.02 0.05 0.10 0.20 0.50 1.00

10 20 50 100 200 500 1000

Figure 2. Power and sample size simulations demonstrate the sensitivity to α and n for DC, semiparametric activation regression, and parametric 
activation regression, and the sensitivity to β of the semiparametric activation regression under a patient-specific activation scenario. Power at different 
censoring rates is given for each model.
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Figure 3. Estimation of latent activation by multiple LRPs as a function of the number of active pairs (left) and as a function of noise variables added to the 
model (right).

Figure  2 (lower right) shows the power of each model 
as the censoring rate increases. PR consistently outperforms 
the DC and semiparametric regression models across the 
varying censoring rates. For censoring rates of about 0.3 and 
above, the semiparametric regression model outperforms the 
DC model. All three models decrease as the censoring rate 
increases; however, the DC model decreases at a greater rate 
than the semiparametric regression model and the PR model. 
The uncensored data have a power of 0.67, 0.55, and 0.73 for 
the DC, semiparametric regression, and PR models respec-
tively. The DC, semiparametric regression, and PR models 
have powers of 0.23, 0.31, and 0.48, respectively, at a censor-
ing rate of 0.5.

It is clear that DC is most affected by censoring. Results 
from before are neutral or favor the activation model in uncen-
sored data. Therefore, we expect censoring will magnify the 
superiority of activation regression models over DC models.

Correlation of activation of multiple pairs. Sup-
pose that the activation level Z corresponds to the activa-
tion of several LRPs simultaneously. This corresponds to 
a multivariate signaling phenotype where several pairs act 
together. In particular, consider independently drawn pairs 
k = 1, 2, …, K, where cor(XLk, Xrk) = α Ψ(Z) with a survival 
time generated by logY  =  β0  +  β1Z  +  σε. If we fit a linear 
model, log Y X Xk

K
k LK RK= + ∑ +=γ γ δ0 1 , using the interac-

tions as predictors, we conjecture that the linear estimate, 
ˆ ˆK

K k k LK RKX Xη γ== ∑ 1 , is correlated with the unobserved 
activation level Z. If so, ˆ

Kη  can serve as a surrogate measure 
of activation.

We evaluated the degree to which a multivariate model 
using these pairs is able to recover the unobserved activation 
level by simulation. Again, β0 = log(18), β1 = 1, and we draw  
n = 100 for 1000 simulations under the patient-specific sce-
nario. Figure 3 (left) plots the correlation between Z and ˆKη  for 
α = 0.4, selected to produce about 80% power (at n = 1000) to 
detect a single interaction. Because we expect any linear model 

to improve as we add predictors (as K increases), we compare 
this curve to one where α = 0.01 represents noise. There is a 
significant difference between the two curves, so we conclude 
that the activation level can be estimated given a sufficient 
number of active pairs.

It is unrealistic to assume that we know a priori which 
pairs are active (ie, which pairs follow the bivariate normal 
correlation model). Consider the K = 20, α = 0.4 case where 
the overall correlation between Z and ˆ

Kη  is close to r = –0.62. 
Holding the number of pairs in the model at 20, we varied the 
number of pairs that are truly active substituting noise vectors 
for the inactive pairs. Figure 3 (right) demonstrates that cor-
relation remains relatively unaffected for this model versus the 
models fit for the true number of active pairs.

Taken together, the result implies that a two-step process 
may be possible: first, we may quickly screen an unselected 
set of pairs to estimate the per-patient activation level and, 
second, verify the association of individual pairs with the esti-
mated activation level to identify the active set.

Data Analysis
Ovarian cancer is the leading source of death because of gyne-
cologic cancer.8 This is due in part to the fact that patients rap-
idly develop resistance to primary chemotherapies and remain 
in a phase of palliative care where alternative, targeted thera-
pies may have an effect.9 In particular, bevacizumab, an anti-
angiogenic therapy targeting vascular endothelial growth factor 
A (VEGFA), is developing as an option to augment primary 
therapy.10,11 Thus, we might consider what other LRPs may be 
associated with prognosis in ovarian cancer to find candidate 
targets for therapy.

In this analysis, we consider gene expression data from the 
Cancer Genome Atlas (TCGA) ovary project, which as been mea-
sured on Affymetrix U133A arrays (note that the TCGA study 
uses three different platforms, and we have selected the Affyme-
trix version for analysis as it is most complete and straightforward 
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to analyze by reproducible bioinformatic workflows). These data 
have been processed by the robust multi-array analysis (RMA)12, 
aggregated at the gene name level by choosing the brightest spot, 
and scaled and centered across 503 TCGA patients. In addition, 
we have a validation data set from an Australian observational 
study of ovarian cancer13 (GEO: GSE9899) using an equivalent 
Affymetrix array with which we can conduct an independent 
evaluation of our findings. Throughout, we consider PFS (the 
time from surgery to the progression or recurrence of disease or 
death, whichever occurs first) as the clinical outcome and employ 
the less-powerful, but more common semiparametric Cox PH 
regression model. A hybrid approach might be used (given 
below): selection of interesting pairs by the powerful DC model 
and follow-up by activation modeling.

We examined a known set of LRPs taken from the Data-
base of Ligand-Receptor Partners,5 where 162 ligands and 
131 receptors accounting for 419 interacting pairs were pres-
ent on the array. We added the KEGG pathways,14 hsa04060 
(cytokines/chemokines), hsa04512 (cell adhesion molecules), 
and hsa04514 (ECM interactions), to this set to update the 
database for recent discoveries. In total, there are 475 pairs 
(200 ligands, 166 receptors) for consideration after verifying 
the ligand/receptor functions (Supplementary Table 1).

A key difference between the regression and DC approaches 
is that we can incorporate multiple LRPs into a multivari-
ate model. We performed screening of all 475 pairs and found 
27 LRPs that are significantly associated with PFS (unadjusted 
screening P , 0.05) from this set. We considered model build-
ing. We built stepwise models using Akaike information criterion 
(AIC) and the Bayesian information criterion (BIC). The former 
selects 21 pairs in a multivariate Cox PH regression model and 
the latter 8 pairs. We also considered the unpenalized model 
with all 27 pairs, and the lasso-penalized solution selected 26 of 
27 pairs following five-fold cross-validation to select the tuning 
parameter. We omit discussion of the lasso solution as it is not 
appreciably different from the full model.

Of these three models (full fit, AIC, BIC), the BIC 
model with eight predictors fit to the TCGA data was able to 
produce predicted risk scores associated with prognosis in the 

Table 1. Multivariate model, BIC selection.

HR (95%CI) p-value #folds validated Relevance

PVRL3∼PVRL1 1.20 (1.10–1.30) 0.00084 4 Nectin family adhesion molecules

VEGFA∼NRP1 1.20 (1.10–1.40) 0.00110 4 Pro-angiogenic signaling target of bevacizumab

FGF1∼FGFR4 0.86 (0.77–0.96) 0.00940 2 Fibroblast growth factor family targeted therapy candidate17

TGFB1∼TGFBR3 0.85 (0.77–0.94) 0.00190 2 TGFβ signaling

BMP5∼BMPR1B 0.84 (0.73–0.97) 0.01700 3 TGFβ signaling

IL7∼IL7R 0.83 (0.74–0.93) 0.00140 4* T cell development

CCL4∼CCR8 0.78 (0.65–0.94) 0.00760 2* T cell migration

TNFSF14∼TNFRSF14 0.75 (0.63–0.89) 0.00110 5 TNF-receptor signaling

Notes: Discovery data set: likelihood ratio test P = 4.06e–12, n = 503, and number of events = 361. Independent data set: likelihood ratio test P = 0.0255, n = 238, 
and number of events = 184. *Selected as a predictor if trained on independent data.

independent cohort (HR = 1.3, 95%CI: 1.03–1.64, P = 0.028). 
These eight LRPs are PVRL3∼PVRL1, VEGFA∼NRP1, 
FGF1∼FGFR4, TGFB1∼TGFBR3, BMP5∼BMPR1B, 
IL7∼IL7R, CCL4∼CCR8, and TNFSF14∼TNFRSF14 
(Table 1). Each of these is significant in the fitted model (score 
test P , 0.02) with strong effects. Descriptions are taken from 
NCBI’s gene resource (http://www.ncbi.nlm.nih.gov/gene/). 
The reported P-value is the score test from the fitted multi-
variate BIC model. The overall significance is given below.

As we noted above, bevacizumab, which targets VEGFA, 
has recently shown promise in primary ovarian cancer ther-
apy.10 In addition, both VEGFA and TGFB1 were shown to 
induce immunosuppressive responses; targeting these factors 
may aid in preventing tumor progression.15 Zaid and colleagues 
demonstrated that overexpression of FGF1∼FGFR4 indicated 
poor prognostic results and inferred that targeting this LRP 
may lead to better survival outcomes.16

We considered a sensitivity analysis by conducting five-
fold cross-validation, repeating model selection in each fold and 
predicting on the withheld one-fifth of the data (approximately 
100 patients). The result is shown in Table 1 for BIC and the 
remainder in Supplementary Table 2. There we have tabulated 
the number of times the AIC, BIC or full-fit model selects each 
of the 27 pairs and the corresponding hazard ratio and signifi-
cance of the predictions in the withheld subset. The number of 
folds validated refers to the number of times an LRP was selected 
out of the five-fold cross-validation processes. In this sense, 
TNFSF14∼TNFRSF14 was a strong result, selected in every 
fold in each model. Similarly, IL7∼IL7R, VEGFA∼NRP1, and 
PVRL3∼PVRL1 were selected in all but one fold in every case. 
Note that all of these were present in the BIC model.

In the independent data set, only CCL4∼CCR8 and 
IL7∼IL7R are significant in this set of eight pairs. However, fit-
ting this two pair model into the TCGA cohort and testing in the 
independent cohort yields a significant association (HR = 3.14, 
95%CI: 1.56–6.32, P = 0.0014) as well as vice versa (HR = 2.38, 
95%CI: 1.57–4.69, P = 0.00038). In this sense, these two pairs 
are the strongest associations; they both reflect immune-related 
processes likely related to general chemotherapy response.18
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We now consider the estimated activation level fit using 
the TCGA data. In the independent data set, the predicted 
activation shows that the 27-pair model is correlated with the 
2-pair model (r  =  0.43, 95%CI: 0.33–0.54) as is the 8-pair 
BIC model (r = 0.55, 95%CI: 0.46–0.63). So as in the simula-
tions, little is lost by including extra predictors. The activation 
level is fairly prognostic when stratifying on the median level 
for the 27-pair (16 vs. 14 months PFS, P = 0.083) and strongly 
for the 8-pair model (19 vs. 13 months, P = 0.0043) and 2-pair 
model (19 vs. 13 months, P = 0.0075).

Discussion
In this article, we have developed a model that links corre-
lation between a signaling ligand and receptor pair to prog-
nosis. Because this association can be seen through statistical 
interactions, the analysis is amenable to multivariate regression 
and is therefore useful for practical genomic data analysis. The 
novelty of this activation model approach lies in the connec-
tion between correlation and survival. This connection may be 
patient specific – different patients can have different correla-
tion levels – and it does not rely on dichotomizing the popu-
lation wasting statistical power on estimating the correlation 
instead of modeling the association with survival. Further, we 
find the power of the semiparametric Cox PH regression com-
petitive with DC analysis, especially in the context of right-
censored data.

Because standard regression model building usually searches 
for main effects before interactions, it is likely that prior studies 
have overlooked useful LRP associations. We have shown that 
main effects can be insignificant versus the statistical interaction. 
Throughout the article, we have referred to the interaction term 
in the survival regression model. While the proposed model 
building and testing does not include the main effect terms, 
classically, these are included to account for rescaling the expres-
sion variables. In this situation, we note that the main effects are 
expected to be uncorrelated with survival by construction.

We have demonstrated the ability of multiple LRPs to 
estimate an underlying activation level, under the assumption 
that they are driven by a singular process of activation. In our 
data analysis, we have shown that this level is a useful tool for 
prognostic stratification and meaningful biological and trans-
lational hypothesis generation.

The activation model makes little assumption on the sur-
vival time distribution. While we employed log-normal sur-
vival times throughout this analysis, we have little reason to 
believe that the form of the hazard will dramatically affect the 
results for the semiparametric model. The PR may be viewed 
as an exercise in model misspecification.

We see this activation model as a tool that may be deployed 
along with other correlation-based bioinformatic techniques. 
Our data illustration highlights how multiple LRPs can be con-
sidered together. By focusing on LRPs that are highly likely to 
be targetable or to have an approved or pre-clinical compound, 
this type of analysis has a strong potential for clinical benefit.
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Appendix
Let {( )}Lk i

nk, , R kk =1 = 1,2, be a random sample of ligand 
and receptor expression from a bivariate normal distribu-
tion with mean µ, and variance Var Var  ( ) ( )L Rk k= = σ 2 
and covariance Cov ( )L R pkk k, = σ 2 . Denote the usual 
Pearson correlation as rk, k = 1, 2, where Fisher’s transform is 
F x x x( ) ( ) /( )= + −−2 1 11 In ( ). Then we have that

	
( ) ~ log k

k
k k

p
F r N

p n
  +
  − −  

11 1
2 1 3

, 	 (3)

Under H0: ρ1 = ρ2, it holds that

	
( ) ~ ( ) ~F r F r N

n n
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1 2
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so that
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[ ( ) ( )] ~ ( , )
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− −

= −
+ −

1 2
1 2

1 2

3 3
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6
	 (5)

can be controlled by Pr(|T| $ zα/2) = α, where zα/2 is the 
appropriate normal quantile.
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