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Abstract

Humans and other animals can attend to one of multiple sounds, and follow it selectively over 

time. The neural underpinnings of this perceptual feat remain mysterious. Some studies have 

concluded that sounds are heard as separate streams when they activate well-separated populations 

of central auditory neurons, and that this process is largely pre-attentive. Here, we propose instead 

that stream formation depends primarily on temporal coherence between responses that encode 
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various features of a sound source. Furthermore, we postulate that only when attention is directed 

toward a particular feature (e.g., pitch or location) do all other temporally coherent features of that 

source (e.g., timbre and location) become bound together as a stream that is segregated from the 

incoherent features of other sources. Experimental neurophysiological evidence in support of this 

hypothesis will be presented. The focus, however, will be on a computational realization of this 

idea and a discussion of the insights learned from simulations to disentangle complex sound 

sources such as speech and music. The model consists of a representational stage of early and 

cortical auditory processing that creates a multidimensional depiction of various sound attributes 

such as pitch, location, and spectral resolution. The following stage computes a coherence matrix 

that summarizes the pair-wise correlations between all channels making up the cortical 

representation. Finally, the perceived segregated streams are extracted by decomposing the 

coherence matrix into its uncorrelated components. Questions raised by the model are discussed, 

especially on the role of attention in streaming and the search for further neural correlates of 

streaming percepts.

1 Introduction

Listening in a complex acoustic environment fundamentally involves the ability to parse out 

and attend to one sound stream as the foreground source against the remaining background. 

In this view, streaming is an active listening process that engages attention and induces 

adaptive neural mechanisms that reshape the perceptual scene, presumably by enhancing 

responses to the target while suppressing responses to the background.

It is often conceptually useful to think of auditory streams as sequences of events or 

“tokens” that constitute the primitives of hearing, analogous to an alphabet. A token, such as 

a tone, a vowel, or a syllable, may have many concurrent perceptual attributes that arise very 

quickly through mechanical and hardwired neural mechanisms. Examples include a vowel’s 

pitch, harmonic fusion, location, loudness, and the timbre of its spectral envelope. To 

segregate a sequence of tokens (be they phonemes or tones), it is necessary to satisfy a key 

condition – that the tokens be perceptually distinct from those associated with competing 

sequences, e.g., the pitches of two talkers or of two alternating tone sequences must be 

sufficiently different. This well-known principle of steaming has often been referred to as 

the “channeling hypothesis” implying that streams form when they activate distinct neuronal 

populations or processing channels (Bregman 1990; Hartmann and Johnson 1991). This 

requirement, however, is insufficient to explain stream formation, as we discuss next.

2 Feature Binding and Temporal Coherence

Forming a stream also requires binding of the parallel perceptual attributes of its tokens, to 

the exclusion of those belonging to competing streams. The simplest principle that explains 

how this phenomenon comes about is temporal coherence (Shamma et al. 2011). It asserts 

that any sequences of attributes that are temporally correlated will bind and form a stream 

segregated from uncorrelated tokens of perceptually different attributes. A simple example 

is the alternating two-tone sequences that stream apart when their pitches are sufficiently 

different (Bregman 1990). When the tones are made fully correlated (synchronous 
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sequences), the streaming fails because the two pitch percepts bind together forming a 

repeating complex perceived as one stream (Elhilali et al. 2009).

We postulate that temporal coherence is the organizing principle necessary to make the 

correct perceptual assignments as to which tokens form a stream. More specifically, 

correlated tokens form a single stream regardless of the diversity of their associated 

percepts, e.g., whether they are simple synchronized tones of different pitches, or the far 

more complex voices of a choir of soprano and bass pitches all singing in unison. The 

importance of temporal coherence in streams is a natural consequence of the fact that 

environmental sources normally produce sounds with temporally coherent attributes. For 

instance, a speech signal typically fluctuates in amplitude at temporal rates of a few Hertz. 

Consequently, the salience of all instantaneous estimates of its attributes would fluctuate 

similarly, be it the salience of its pitch, its location, or its spectral envelope. This temporal 

pattern is unlikely to be correlated with that of another signal emanating from an 

independent source, and hence the lack of temporal coherence is the simplest direct cue to 

the segregation of the two signals. When multiple “physical sources” become correlated as 

in the example of the choir, or when an orchestra plays the same melody, the entire group is 

treated perceptually as one source (Shamma et al. 2011).

In this chapter, we brie fly review a mathematical model of this idea (Elhilali et al. 2009; Ma 

2011) and discuss its biological realization and results of physiological experiments to test 

its predictions. We also discuss some of the psychoacoustic implications of this model and 

relate it to earlier formulations of the streaming process based on the Kalman prediction 

(Elhilali and Shamma 2008).

3 The Temporal Coherence Model

The proposed computational scheme emphasizes two distinct stages in stream formation 

(Fig. 59.1): (1) extracting auditory features and representing them in a multidimensional 

space mimicking early cortical processing and (2) organizing the features into streams 

according to their temporal coherence. Many feature axes are potentially relevant including 

the tonotopic frequency axis, pitch, spectral scales (or bandwidths), location, and loudness. 

All these features are usually computed very rapidly (<50 ms). Tokens that evoke 

sufficiently distinct (nonoverlapping) features in a model of cortical responses are deemed 

perceptually distinguishable and hence potentially form distinct streams if they are 

temporally anti-correlated or uncorrelated over relatively long time periods (>100 ms), 

consistent with known dynamics of the cortex and stream buildup.

Figure 59.1 illustrates these processing stages. Inputs are first transformed into auditory 

spectrograms (Lyon and Shamma 1997) followed by a multiresolution analysis analogous to 

that thought to occur in the primary auditory cortex (Chi et al. 2006). For the purposes of 

this model, this transformation is implemented in two steps: (1) a multiscale (spectral) 

analysis that maps incoming spectrograms into multiscale (bandwidth) representations, 

followed by (2) temporal rate analysis in which the temporal modulations of the (fine to 

coarse) multiscale spectrograms are analyzed by a filter bank tuned to rates from 2 to 16 Hz. 

In addition, other features such as pitch and location are estimated from the input 
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spectrograms and the resulting tracks are later analyzed through the same rate analysis as for 

other channels, as illustrated in Fig. 59.1.

Subsequent to the feature and rate analysis, a pair-wise correlation matrix is computed 

among all scale-frequency-pitch-location channels, which is then used to group the channels 

into two sets representing the foreground and background streams. The responses are 

maximally correlated within each stream and least correlated across the two streams. One 

such factorization procedure is illustrated for the simple two-tone alternating (ALT) and 

synchronized (SYNC) sequences shown in Fig. 59.2. The correlation matrix cross-channel 

entries induced by these two sequences are quite different, being strongly positive (negative) 

for the SYNC (ALT) tones. A principal component analysis would then yield an eigenvector 

that can function as a “mask” to segregate the anti-correlated channels of the ALT stimulus, 

while grouping them together for the SYNC sequence, in agreement with their usual percept.

4 Attention and Binding

It remains uncertain if the representation of streams in the brain requires attention or is 

simply modulated by it (Carlyon et al. 2001; Sussman et al. 2007). But it is intuitively clear 

that attending selectively to a specific feature such as the pitch of a voice (symbolized by the 

yellow-shaded pitch region in Fig. 59.1) results in binding the pitch with all other voice 

attributes in the foreground stream while relegating the rest of the concurrent sounds to the 

background. To explain how this process may occur, we consider the simpler two-tone 

stimulus in Fig. 59.2. When attention is directed to a particular channel (e.g., yellow arrow 

to tone B), the entries in the correlation matrix along the row of the selected channel can 

readily point to all the other channels that are highly correlated and hence may bind with it. 

Basically, this row is an approximation of the eigenvector of the correlation matrix and can 

be used as “mask” to assign the channels to the different streams (rightmost panel). Note 

that in such a model, the attentional focus is essential to bring out the stream, and without it 

the correlation matrix remains unused. This idea is implemented to segregate the two-talker 

mixture in Fig. 59.1. Specifically, the female speech could be readily extracted by simply 

focusing on the rows of the correlation matrix corresponding to the female pitch (shaded 

yellow in Fig. 59.1) and then using the correlation values as a mask to weight all correlated 

channels from the mixture.

5 Biological Realizations and Evidence for Temporal Coherence

The temporal coherence model suggests that streaming is a dynamic process in which 

responses of the attended stream become enhanced relative to the background. This requires 

computing a correlation matrix whose entries change rapidly according to the ongoing 

correlational structure of the stimulus. A simple biologically plausible neural 

implementation of these computations is depicted in Fig. 59.2, where an ordered array of 

feature channels (e.g., the tonotopic axis) project to a layer of neurons. Each pair of neurons 

is reciprocally connected with a sign and strength which is continuously updated to reflect 

the ongoing correlation between their inputs (“Hebb’s rule”). If the inputs are anti-

correlated, the connectivity is mutually inhibitory (top panels, Fig. 59.2); if highly 

correlated, it is mutually excitatory (bottom panels, Fig. 59.2).

Shamma et al. Page 4

Adv Exp Med Biol. Author manuscript; available in PMC 2015 January 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



When neuronal connections change, they effectively alter the response selectivity of the 

neurons or their receptive field properties. It has been shown that engagement in an auditory 

task with attention to the stimulus is essential for such rapid changes to occur (Fritz et al. 

2007). Therefore, in the context of the coherence model, we postulate that the mutual 

connectivity would not adapt to reflect the correlation matrix in a passively listening animal. 

Once the animal attends to the stimuli, connectivity begins to form, partly influenced by the 

focus of the attention. Thus, if attention is global, then connectivity adapts to reflect the 

mutual correlations among all units. If attention, however, is directed to a particular neuron, 

then only the mutual connections to this neuron are adapted, thus gating the input of the 

neuronal layer by allowing through only those that are positively correlated to it while 

suppressing others.

6 Physiological Correlates of Streams in Behaving Ferrets

To explore these hypotheses, recordings were made in the auditory cortex of ferrets trained 

to attend globally to ALT or SYNC two-tone sequences and to detect a transition to a 

random cloud of tones by licking a waterspout for reward, as illustrated in Fig. 59.3. The 

structure of the experimental trials is depicted in the top panels of Fig. 59.3. Responses were 

measured throughout the tone sequences to examine changes after trial onset as well as in 

the period histograms. Responses to the final random tone cloud were used to estimate the 

spectrotemporal receptive fields (STRFs) (deCharms et al. 1998). The type of sequence 

(ALT or SYNC) and its frequency combinations were randomly interleaved throughout a 

block of trials. Figure 59.3 (middle and bottom panels) displays results of recordings from 

96 cells that were tuned at the frequency of the B tones, with A tone frequencies up to two 

octaves above and below that of the B tone.

The average responses to the tone sequences changed dramatically when the passive animal 

began to attend globally to the stimuli. In both SYNC and ALT conditions, average 

responses adapted rapidly to a steady state by about the third burst period (left - middle 

panel; Fig. 59.3). SYNC responses were significantly enhanced compared to their passive 

level, whereas ALT responses were suppressed. The changes in period histograms between 

the active and passive states for the SYNC and ALT stimuli are compared in Fig. 59.3 (right 

- middle panel). The SYNC response increases significantly during behavior; by contrast, 

the ALT response displays a strong but slightly delayed suppression soon after each tone’s 

onset response.

Finally, the bottom panels contrast the STRFs measured after the end of the SYNC and ALT 

sequences during the passive and active states. When the animal was passive (Fig. 59.3: left 

- bottom panel), the average STRFs were similar. During behavior, however, there was a 

strong suppression of the STRFs following the ALT sequences. The average STRF was 

slightly enhanced after the SYNC sequence. These STRF changes persist but gradually 

weaken over the next few seconds.
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7 Discussion

The physiological results are consistent with the postulates of the temporal coherence model. 

During SYNC sequences, responses become enhanced possibly reflecting mutually positive 

interactions. The opposite occurs during ALT sequences, where neurons decrease their 

overall responsiveness and compete as expected from mutually inhibitory interactions. 

Furthermore, we postulate that if attention had been directed to one of the ALT competing 

tones, it would have enhanced (to the perceptual foreground) the attended responses at the 

expense of the competing tone, consistent with previously published experimental results 

(Yin et al. 2006).

Finally, the temporal coherence model bears a close relationship to the Kalman predictive 

clustering-based algorithm described in Elhilali and Shamma (2008). This is because the 

principal eigenvector of the correlation matrix acts as a reduced feature “template” (or 

“mask” in Fig. 59.2) which combines and extracts the input feature vectors that match it. In 

the Kalman prediction model, the same matching operation is performed, but the “template” 

is computed by a classic on-line gradual clustering of the input patterns. Under certain 

conditions (e.g., input pattern normalization), the two types of algorithms are equivalent and 

yield similar clusters (Duda and Hart 1973).
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Fig. 59.1. 
Temporal coherence model. The mixture (sum of one male and one female sentences) is 

transformed into an auditory spectrogram. Various features are extracted from the 

spectrogram including a multiscale analysis that results in a repeated representation of the 

spectrogram at various resolutions; pitch values and salience are represented as a pitch-

gram; location signals are extracted from the interaural differences. All responses are then 

analyzed by temporal modulation band-pass filters tuned in the range from 2 to 16 Hz. A 

pair-wise correlation matrix of all channels is then computed. When attention is applied to a 

particular feature (e.g., female pitch channels), all features correlated with this pitch track 

become bound with other correlated feature channels (indicated by the dashed straight lines 

running through the various representations) to segregate a foreground stream (female in this 

example) from the remaining background streams

Shamma et al. Page 8

Adv Exp Med Biol. Author manuscript; available in PMC 2015 January 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 59.2. 
Streaming of two-tone sequences. Alternating tone sequences are perceived as two streams 

when tones are far apart (large ΔF) and rates are relatively fast (small ΔT). Synchronous 

sequences are perceived as a single stream regardless of their frequency separation. The 

correlation matrices induced by these two sequences are different: pair-wise correlations 

between the two tones (A, B) are negative for the alternating sequence and positive for the 

synchronous tones. Neural implementation of this correlation computation can be 

accomplished by a layer of neurons that adapts rapidly to become mutually inhibited when 

responses are anti-correlated (alternating tones) and mutually excitatory when they are 

coherent (synchronous tones). When selective attention (yellow arrow) is directed to one 

tone (B in this example), the “row” of pair-wise correlations at B (along the yellow dashed 

line) can be used as a mask that indicates the channels that are correlated with the B stream. 

For the alternating sequence, tone A is negatively correlated with B, and hence, the mask is 

negative at A and eliminates this tone from the attended stream. In the synchronous case, the 

two tones are correlated, and hence, the mask groups both tones into the attended stream

Shamma et al. Page 9

Adv Exp Med Biol. Author manuscript; available in PMC 2015 January 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 59.3. 
Behavioral neurophysiology. (Top Panels) Structure of experimental trials. Ferrets listened 

to ALT or SYNC tone sequences presented for 1–3 s followed by a cloud of random tones 

(red) used to measure the STRF of the recorded neuron. (Middle Panels) Responses change 

when animals begin to listen attentively and globally to all tone sequences, i.e., not 

selectively to one tone. The responses become enhanced for the SYNC sequences (red) and 

attenuated for the ALT sequences (blue). Response changes (left panel) start immediately 

after onset of the trial but reach a plateau after three to four tone bursts (~0.5 s). Period 
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histograms of responses to the tones (red and blue bars in right panel) reveal that SYNC 

tone responses (red) become significantly enhanced, while those of ALT tones become 

suppressed (blue). (Bottom Panels) STRFs measured at the end of tone sequences during the 

passive state show very little differences (left panel). During active attentive listening, 

STRFs become depressed after ALT compared to SYNC tone sequences (right panel)
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