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Abstract In this study, the in vitro effects of paclitaxel (PTX) and Cremophor-EL (CrEL) on blood

viscosity and oxidative stress markers were investigated. Whole-blood samples were collected from

healthy volunteers and co-incubated with PTX, CrEL or their combination then compared with

control blood samples. After a 24 h incubation time, the whole-blood viscosity (WBV), erythrocyte

sedimentation rate (ESR), levels of whole-blood malondialdehyde (MDA), protein carbonyl con-

tent (PCC) and reduced glutathione (GSH) were determined. Moreover, plasma nitrite and plasma

sialic acid (SA) values were measured. The present results revealed that the incubation of blood

samples with PTX, CrEL or PTX plus CrEL significantly increased the values of WBV, ESR,

MDA and PCC compared to control samples. In contrast, a significant decrease in levels of

GSH, SA and nitrite was observed after incubation of blood samples with tested agents compared

to control. The effects of tested agents on the measured parameters were more pronounced in the

case of blood samples treated with PTX plus CrEL. The present study demonstrates that PTX-

induced oxidative stress is associated with an increase of WBV.
ª 2014 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

Blood is a non-Newtonian fluid considered as a suspension or

an emulsion, therefore, it has special rheological behavior.
Erythrocytes aggregability and deformability are important
regulators of blood rheology (Baskurt and Meiselman, 2003).

Erythrocyte deformability is the determinant of blood viscosity
at high shear rates, while at low shear, the viscosity reflects
erythrocytes aggregability (Simmonds et al., 2013). Addition-
ally, blood rheological parameters are affected by blood
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coagulation, paraproteinemia, lipid profile and complete blood
count indices (vonTempelhoff et al., 2003). Blood biorheology
was deteriorated by oxidative stress, inflammation, diabetes,

obesity, aging, smoking and cancer (Hitsumoto, 2012). The
alterations in blood rheological variables reduced blood flow
and decreased tissue oxygenation. Therefore, monitoring of

blood rheology is useful during chemotherapy
(vonTempelhoff et al., 2003). As well, measurement of
blood rheological parameters is beneficial in assessing the

response to therapy and drug compliance (Awodu et al.,
2007), however, up till now, there are not enough data about
this issue.

Increasing oxidative products of lipids, malondialdehyde

(MDA), proteins, carbonyl content (PCC), as well as decreas-
ing of glutathione (GSH) were associated with increasing
blood viscosity (Li et al., 2010; Richards and Nwose, 2010).

Sialic acid (SA) is an essential constituent of many glycopro-
teins and glycolipids which have structural and regulatory
roles in immunity, homoeostasis, inflammation and antioxi-

dant activity (Byrne et al., 2007; Iijima et al., 2004;
Ogasawara et al., 2007). Moreover, SA is responsible for eryth-
rocytes zeta potential, morphology, deformability, aggregabil-

ity and acts as a senescent marker (Huang et al., 2011; Lutz
and Bogdanova, 2013; Mehdi et al., 2012). Exposure to oxida-
tive stress resulted in desialylation and alteration of SA metab-
olism (Pawluczyk et al., 2014). The decrease in erythrocytes SA

content may influence the rheological properties of blood
(Hadengue et al., 1998).

Nitric oxide (NO) is an important signal molecule, in circu-

lation, it is synthesized mainly by vascular endothelial cells and
erythrocytes. NO plays an important role in the modulation of
the rheological behavior of blood (Yerer et al., 2010; Baskurt

et al., 2011). The reduction of NO influences erythrocyte
deformability and subsequently impairs rheological properties
(Suhr et al., 2009). Furthermore, nitrosative damage to the

erythrocyte membrane leads to impairment of blood biorhe-
ological properties (Yerer et al., 2010). Despite that measure-
ment of whole blood viscosity (WBV) may assist in earlier
detection of asymptomatic oxidative stress (Richards

and Nwose, 2010), the mechanisms by which oxidative
stress induce WBV changes are not yet completely
understood.

Paclitaxel (PTX) is an effective chemotherapeutic agent
that is widely used for the treatment of breast carcinomas.
The primary targets of PTX are components of the cytoskele-

ton, PTX acts to promote the stabilization of the microtubules
(Hadzic et al., 2010). PTX induces cytotoxic effect by increased
production of ROS and reactive nitrogen species (Alexandre
et al., 2007). Cremophor EL (CrEL) is a synthetic, nonionic

surfactant that has the ability to stabilize emulsions. CrEL is
used as vehicle in commercial taxane formulations; it can cause
adverse effects on blood rheology (Mark et al., 2001). How-

ever, not enough data are available about the effect of CrEL
on blood rheology.

The precise mechanisms by which PTX and CrEL induced

hemorheological alterations are still unclear. In this study, we
hypothesized that PTX may influence blood rheology through
an oxidative stress-mediated mechanism. Herein, the associa-

tion between WBV and oxidative stress markers was investi-
gated in vitro, in terms of MDA, PCC, GSH, SA and nitrite
with PTX and/or CrEL treated blood samples.
2. Materials and methods

2.1. Materials

PTX was obtained from David Bull Laboratories (Victoria,
Australia). Tert-butyl hydroperoxide (t-BHP), tetraethoxypro-

pane, GSH and thiobarbituric acid (TBA) were obtained from
Sigma Chemical Co. (St. Louis, MO, USA). All other chemi-
cals were of analytical grade. The equipment used in this study

included the following: a Spectro UV–Vis Split Beam PC spec-
trophotometer (Model UVS-2800; Labomed, Inc.), a SW22
shaking water bath (Julabo), a CT5 centrifuge and a LH 780
Hematology Analyzer (Beckman Coulter).

2.2. Subjects

Blood was collected in heparinized Vacuette tubes from adult

volunteers (46–52 years old). The volunteers had no chronic or
acute illnesses and had not taken any drugs, or dietary supple-
ments in the previous four weeks. The protocol for this study

conformed to the guidelines of our Institutional Ethics
Committee.

2.3. Methods

2.3.1. Experimental design

Blood samples were divided into five groups, each with 6 sam-

ples as follows:

1- Group 1: whole blood samples without any treatments,

control group.
2- Group 2: whole blood was incubated with 10 lM t-BHP,

t-BHP group. In this group, t-BHP was acting as a ref-

erence oxidative stress inducer (Pandey and Rizvi, 2010).
3- Group 3: whole blood was incubated with 100 lM PTX

(Lang et al., 2006), PTX group.
4- Group 4: whole blood was incubated with 5% CrEL

(Mark et al., 2001), CrEL group.
5- Group 5: whole blood was incubated with PTX and

CrEL, PTX plus CrEL group.

Stock solutions of tBHP and PTX were prepared by dis-
solving a specific amount in 1% dimethylsulfoxide. The final

concentration of dimethylsulfoxide was 0.1% in working solu-
tions and 0.1% dimethylsulfoxide is used as a vehicle control.

All samples were incubated at 37 �C for 24 h with moderate

shaking. After the incubation period, the samples were divided
into 3 parts. The first part was used for the determination of
WBV, mean cell volume (MCV) and erythrocytes distribution
width (RDW), erythrocyte count and ESR. The second aliquot

was hemolyzed with distilled water and centrifuged at
6000 rpm for 10 min. The supernatant was collected to deter-
mine the levels of GSH, MDA and PCC. The last part was cen-

trifuged at 1500 rpm for the separation of plasma to determine
SA and nitrite levels as an index for NO production.

2.3.2. Determination of GSH content

The concentration of GSH was determined in the whole-blood
samples according to the method of Beutler et al. (1963). The
first part of whole blood was hemolyzed with cold water and
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the proteins were precipitated by the addition of 30% TCA.
Aliquots (50 lL) of the hemolyzed sample and 50 lL of
10 mM DTNB were mixed in a tube containing 0.8 mL of

200 mM phosphate buffer (pH 8.0). After 3 min, the absor-
bance was measured at 412 nm. Reduced GSH was used as
standard.

2.3.3. Determination of plasma SA levels

The plasma SA level was determined according to the method
of Spyridaki and Siskos (1996). 100 lL of 0.04 M periodic acid

was added to a glass tube containing 500 lL of diluted (20
times) sample solution. The mixture was mixed thoroughly
and allowed to stand in an ice bath for 30 min. Thereafter,

1.25 mL of resorcinol solution was mixed and heated at
98 �C for 5 min. Tubes were cooled in an ice bath for approx-
imately 2 min, and 3.25 mL of n-butanol was added. Solutions

were mixed vigorously and the tubes were placed in a water
bath at 37 �C for 3 min for the color to stabilize. Immediately
after removing the solutions from the water bath their absor-
bance was measured at 625 nm against a reagent blank. The

unknown concentrations of SA in samples were calculated
from a calibration graph and expressed as mM.

2.3.4. Determination of plasma nitrite levels

The plasma nitrite levels were measured as an index of NO
production. For total nitrite detection, 300 lL of plasma was
deproteinized by adding 600 lL of 75 mM zinc sulfate solu-

tion. The mixture was stirred and centrifuged at 1000 rpm
for 5 min at ambient temperature and then 600 lL of 55 mM
NaOH was added. Total nitrite was quantitated by Griess reac-

tion after incubation of plasma samples with copperized
cadmium granules for 90 min to convert nitrate to nitrite in
glisin-NaOH buffer of pH 9.7. Griess reagent (1 mL 0.5%

sulfanilamide and 0.05% N-naphthylethylenediamine hydro-
chloride) was then added to 1 mL of each specimen. Absorbance
was monitored at 545 nm after 30 min incubation in the dark,
the nitrite levels were expressed as lM (Namıduru et al., 2011).

2.3.5. Determination of MDA

MDA was determined by spectrophotometric measurement as

an index for lipid peroxidation (Mihara and Uchiyama, 1978).
A mixture of 200 lL of 8% sodium dodecyl sulfate, 200 lL of
0.9% TBA and 1.5 mL of 20% acetic acid was added to 200 lL
of the hemolysate and 1.9 mL of distilled water was used to

bring the volume up to 4 mL. After boiling for 1 h, the mixture
was cooled, and 5 mL of a solution of n-butanol and pyridine
(15:1 v/v) was added. The mixture was centrifuged at 5000 rpm

for 15 min, and the absorbance was measured at 532 nm.
MDA levels were calculated using tetraethoxypropane as
standard.

2.3.6. Determination of PCC

PCC was quantified based on the reaction of protein carbonyl
with 2,4-dinitrophenylhydrazine (Levine et al., 1990). The

blood samples were hemolyzed, and proteins were precipitated
by the addition of 10% trichloroacetic acid (TCA). The precip-
itate was resuspended in 1.0 mL of 2 M HCl for blank control

or 2 M HCl containing 2% of 2,4-dinitrophenylhydrazine for
test samples. After incubation for 1 h at 37 �C, protein samples
were washed with alcohol and ethyl acetate and reprecipitated
by the addition of 10% TCA. The precipitated protein samples
were dissolved in 6 M guanidine hydrochloride, and the absor-
bance was measured at 370 nm. The molar extinction coeffi-

cient of 22 · 103 M�1 cm�1 was used to calculate the PCC
level.

2.3.7. Determination of total protein

Total protein content in the hemolysates was assayed accord-
ing to the method of Lowry et al. (1951). Briefly, 0.5 mL of
the hemolysate was precipitated with 0.5 mL of 10% TCA

and centrifuged for 10 min, and the precipitate was dissolved
in 1.0 mL of 0.1 N sodium hydroxide. From this solution,
0.1 mL was removed and brought to 1.0 mL with distilled

water. Then, 4.5 mL of alkaline copper reagent was added,
and the sample was incubated at room temperature for
10 min. After the incubation, 0.5 mL of Folin’s reagent was

added, and 20 min later, the developed blue color was mea-
sured at 620 nm. The total protein concentration was calcu-
lated using bovine serum albumin as a standard.

2.3.8. Determination of hemorheological parameters

Erythrocytes count, MCV and RDW were measured using
Coulter�AcÆTdiff� hematology analyzer. The WBV was mea-

sured at shearing rates of 94.5 s�1 and 0.945 s�1 in a Viscom-
eter (Model DV-II+; Brookfield, Middleboro, MA, USA) at
37 �C. The erythrocyte sedimentation rate (ESR) was mea-
sured using the Wintrobe tube method (Wintrobe and

Landsberg, 1936).

2.3.9. Statistical analysis

Data were expressed as mean ± SD of each group. Data were

evaluated by a one-way ANOVA followed by the Tukey–Kra-
mer test for multiple comparisons. Comparison test was per-
formed as appropriate. A probability value of <0.05 was

used as the criterion for significance.

3. Results and discussion

The flow properties of blood are among the main determinants
of proper tissue perfusion and oxygenation. Changes in blood
biorheology play substantial roles in disease processes. There-

fore, knowledge of these properties is vital to the understand-
ing of hemorheology. In the present results whole blood GSH
content was decreased in all treated groups relative to control

samples. Similarly, Pandey and Rizvi (2010) observed that the
exposure of whole blood to t-BHP as oxidative stress inducer
decreased the GSH level. Also, it has been demonstrated that
PTX treatment causes decreasing of antioxidant status

(Alexandre et al., 2007; Panis et al., 2012; Hadzic et al.,
2010). Likewise, Richards and Nwose (2010) demonstrated
that oxidative stress caused a decline of GSH content with

increased blood viscosity.
Erythrocytes are coated with a variety of highly glycosyl-

ated proteins with SA residues, which are mainly responsible

for the negative surface charge of erythrocytes. There is about
2.4 · 107 SA residue per human erythrocyte. The negative sur-
face charge prevents erythrocytes from coming into contact

and aggregating (Fan et al., 2012). The SA content of circulat-
ing erythrocytes decreases with the aging of erythrocytes. This
increase the friction of erythrocytes among themselves, with
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Figure 1 Erythrocytes sedimentation rate of blood samples

incubated with t-BHP, PTX, CrEL or PTX plus Cr-EL at 37 �C
for 24 h. a: Indicates significant increase from control. b: Indicates

significant increase from PTX-exposed aliquots.
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endothelial cells and rise propensity to oxidative damage to the
erythrocyte membrane (Fan et al., 2012). The reduction of SA
level is implicated in erythrocytes aggregation (Simmonds

et al., 2013). ROS -induces structural alteration of SA residues
on the cell surface (Eguchi et al., 2005).

In the current results, the levels of SA were significantly

decreased by exposure of blood samples to the tested agents.
However, this decrease was more pronounced in the case of
PTX and CrEL combination. A similar observation was

reported by Goswami and Koner (2002) who found that SA
levels were decreased by exposure to oxidative stress. The
ROS detach of SA (desialylation) and decrease of SA levels
(Goswami and Koner, 2002). Moreover, the glycosidic linkage

of SA is a potential target for ROS. Therefore, ROS enhance
the cleavage of the glycosidic linkage liberating SA residue
from cell surface (Pawluczyk et al., 2014). SA has an important

role in decreasing H2O2 concentrations (Iijima et al., 2004).
Herein, SA may be consumed in the scavenging of H2O2

induced by PTX and/or CrEL exposure.

NO plays an important role in blood biorheological prop-
erties. A decrease of NO leads to an impairment of blood bio-
rheology (Kuwai and Hayashi, 2006; Yerer et al., 2010).

Moreover, NO counteracts the oxidative stress by blocking
peroxidation of lipids (Plekhova and Somova, 2012). In the
present study, nitrite levels were measured as an index for
NO production. Exposure of blood samples to tested agents

produced a significant decrease in plasma nitrite levels com-
pared to control samples. This effect was more noticeable in
the case of t-BHP and PTX plus CrEL. These results are in

agreement with several studies reported that oxidative stress
leads to impairment of NO production (Yerer et al., 2010;
Baskurt et al., 2011). Similarly, it has been demonstrated that,

PTX adversely affects blood cells adhesion and aggregation
through a decrease in NO production (Serizawa et al., 2012;
Miljkovic et al., 2004).

The decrease of antioxidant parameters with the increase of
lipid and protein oxidation is associated with increasing blood
viscosity (Li et al., 2010; Siciliano et al., 2001). In the current
study, a significant increase in levels of MDA and PCC was

observed after incubation of blood samples with the tested
agents. These results are consistent with former studies, indi-
cating that PTX can increase the production of ROS (Harisa

et al., 2013; Hadzic et al., 2010). Also, similar observations
were reported by Luqman and Rizvi (2006), who demonstrated
Table 1 Levels of MDA, PCC and GSH in whole blood as well as v

with t-BHP, PTX, CrEL or PTX plus CrEL.

Groups

Control t-BHP

Parameters

GSH (lM) 964 ± 93.5 448 ± 57.5a

SA (mM) 2.34 ± 0.34 0.55 ± 0.08a

Nitrite (lM) 66.8 ± 12.6 31.5 ± 9.63a

MDA (lM) 17.5 ± 2.27 33.1 ± 2.32c

PC (nM/mg Pro) 3.30 ± 4.55 6.80 ± 1.03c

a Indicates significant decrease from control.
b Indicates significant decrease from PTX-exposed aliquots.
c Indicates significant increase from control.
d Indicates significant increase from PTX-exposed aliquots.
that exposure of whole blood to chemicals causes a significant
increase in MDA and PCC levels. It has been demonstrated
that, increases in lipid peroxidation and protein oxidation were

associated with an increase of viscosity (Li et al., 2010;
Richards and Nwose, 2010). Table 1 showed the effect of t-
BHP, PTX, CrEL or PTX plus CrEL on oxidative stress mark-
ers (MDA, PCC and GSH) in whole blood as well as SA and

nitrite in plasma after incubation at 37 �C for 24 h with t-BHP,
PTX, CrEL or PTX plus CrEL.

ROS causes direct structural modification of proteins with

subsequent formation of reactive carbonyl groups. Also, pro-
teins are indirectly modified with reactive carbonyl formed
by carbohydrates autoxidation (Aydemir et al., 2008). These

modifications result in abnormal protein–protein interactions
(Traverso et al., 2004) and lipids–proteins interactions
(Aydemir et al., 2008). Similarly, Cicha et al. (1999), demon-
strated that oxidative cleavage of protein contributes to alter-

ations of blood viscosity. Furthermore, increase in lipid
peroxidation rigidifies erythrocytes membrane and induces
the cross-linking of hemoglobin with membrane skeletal pro-

teins (Cicha et al., 1999). PTX-induced oxidative damage to
blood constituents, hyperstabilizes microtubules and inhibits
cytoskeletal restructuring (Hadzic et al., 2010), which affects

aggregability and deformability of erythrocytes leading to an
increase of WBV.

Erythrocytes aggregation is a physical factor affecting the

erythrocyte sedimentation rate (Simmonds et al., 2013). Addi-
tionally, WBV was significantly correlated with the erythrocyte
alues of plasma SA and nitrite after incubation at 37 �C for 24 h

PTX Cr-EL PTX + Cr-EL

641 ± 67.9a 619 ± 63.8a 455 ± 64.7a,b

1.54 ± 0.37a 1.43 ± 0.35a 0.62 ± 0.16a,b

46.2 ± 6.87a 44.5 ± 7.49a 25.5 ± 3.89a,b

29.3 ± 3.64c 30.9 ± 2.81c 35.2 ± 3.72c,d

5.42 ± 0.29c 5.05 ± 0.69c 6.47 ± 1.07c,d



Table 2 Hematological parameters of control erythrocytes as well as erythrocytes incubated with t-BHP, PTX, CrEL or PTX plus

CrEL for 24 h at 37 �C.

Groups

Control t-BHP PTX CrEL PTX–CrEL

Parameters

RBCs · 106/lL 4.93 ± 0.04 3.71 ± 0.67a 3.77 ± 0.06a 3.34 ± 0.71a 3.24 ± 0.37b

Hb (g/dl) 14.6 ± 0.86 11.6 ± 1.77a 12.4 ± 0.22a 9.85 ± 1.76a 9.40 ± 0.55b

Hct (%) 45.3 ± 1.22 34.0 ± 5.11a 38.8 ± 1.09a 32.1 ± 5.11a 28.6 ± 0.92b

MCV (fl) 91.8 ± 2.46 99.7 ± 3.07a 102.1 ± 2.61a 107.7 ± 3.07a 108.7 ± 2.56b

MCH (pg) 28.2 ± 2.06 24.4 ± 0.55 26.8 ± 0.46 23.4 ± 0.55 22.8 ± 1.51

MCHC (g/dl) 31.3 ± 1.59 28.2 ± 0.77 29.3 ± 0.60 27. 1 ± 0.77 26.8 ± 1.05

RDW (%) 14.9 ± 2.05 16.4 ± 2.24 15.7 ± 1.86 15.9 ± 2.24 18.8 ± 2.42

a Indicated when significant changes seen from control and/or PTX-exposed samples, respectively, at p< 0.05.
b Indicated when significant changes seen from control and/or PTX-exposed samples, respectively, at p< 0.05.
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Figure 2 Viscosity of whole blood at high shear rate (94.5 s�1)

after incubation with t-BHP, PTX, CrEL or PTX plus CrEL at

37 �C for 24 h. a: Indicates significant increase from control. b:

Indicate significant increase from PTX-exposed aliquots.
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Figure 3 Viscosity of whole blood at a low shear rate (0.945 s�1)

after incubation with t-BHP, PTX, CrEL or PTX plus CrEL for

24 h at 37 �C. a: Indicates significant increase from control. b:

Indicates significant increase from PTX-exposed aliquots.
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sedimentation rate (Tamer et al., 2002). Erythrocyte sedimen-
tation rate test was done to assess erythrocytes aggregation.

Herein, erythrocyte sedimentation rate was significantly
increased by t-BHP, PTX, CrEL or PTX plus CrEL incubation
compared to control cells, as shown in Fig. 1. These results are

in agreement with earlier studies which reported that, the
erythrocyte sedimentation rate increases in oxidative stress
conditions (Maiti et al., 2007; Feijóo et al., 2010).

The present results showed that, MCV and RDW were
markedly higher in blood samples incubated with the tested
agents as shown in Table 2. These data are similar to those
of previous studies demonstrating that MCV significantly

increases upon exposure to oxidative stress and anticancer
treatment (Kim et al., 2008; Arslan et al., 2011). These
effects are attributed to an increase in erythrocytes aggrega-

tion that reduces the number and increases the size of
erythrocytes.

Increase in RDW and MCV is generally caused by either

liver disease or hemolytic anemia. However, the present volun-
teers did not suffer from any diseases; thus, the increase in
RDW and MCV is attributed to the effects of the tested agents.
In the present investigation, increase in MCV and RDW are

additional factors for the increase of WBV. Gluhcheva et al.
(2011) reported that blood viscosity was increased by increas-
ing MCV and RDW.

The current study showed that, at high and low shear rates,
there is a significant increase in WBV by t-BHP, PTX or CrEL
incubation. However, effect of PTX plus CrEL on WBV was

more pronounced than other treated blood samples. Figs. 2
and 3., showed WBV at different shearing rates. These findings
are consistent with the observations of previous studies by

Mark et al. (2001) and Cicha et al. (1999), who demonstrated
that blood viscosity was increased after incubation with chem-
icals. CrEL acts as a solubilizer and may increase the tendency
of PTX to interact with the lipid bilayer of erythrocyte mem-

branes (Mark et al., 2001).Therefore, CrEL enhances PTX
induced oxidative stress and erythrocyte damage (Panis
et al., 2012). Also, it has been reported that oxidative stress

increases blood viscosity (Hitsumoto, 2012). However, PTX
accelerated erythrocytes aging by an oxidative stress-depen-
dent mechanism (Harisa, 2013). It has been reported that,

WBV was increased by aging (Simmonds et al., 2013).
4. Conclusion

In conclusion, this study demonstrates that PTX induces oxi-

dative stress evidence by a decrease of GSH, nitrite and SA lev-
els. On the contrary, PTX increases the levels of MDA and
PCC. The induction of oxidative stress by PTX was more

noticeable in the presence of CrEL. PTX treatment elicits del-
eterious effect of WBV. Therefore, monitoring of WBV and
reducing oxidative stress should be considered during chemo-

therapy, particularly with PTX. A relatively small sample size
was the limitation of this study, large-scale prospective studies
are needed to address this issue.
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