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Aging is associated with alterations in glucose metabolism and sarcopenia that jointly contribute to a higher risk of 
developing type 2 diabetes. Because aging is considered as a state of low-grade inflammation, in this study we examined 
whether older, healthy (lean, community-dwelling) participants have altered signaling flux through toll-like receptor 4 
(TLR4), a key mediator of innate and adaptive immune responses. We also examined whether a 4-month aerobic exercise 
program would have an anti-inflammatory effect by reducing TLR4 expression and signaling. At baseline, muscle TLR4, 
nuclear factor κB p50 and nuclear factor κB p65 protein content, and c-Jun N-terminal kinase phosphorylation were sig-
nificantly elevated in older versus young participants. The plasma concentration of the TLR4 agonist lipopolysaccharide 
and its binding protein also were significantly elevated in older participants, indicative of metabolic endotoxemia, which 
is a recently described phenomenon of increased plasma endotoxin level in metabolic disease. These alterations in older 
participants were accompanied by decreased insulin sensitivity, quadriceps muscle volume, and muscle strength. The 
exercise training program increased insulin sensitivity, without affecting quadriceps muscle volume or strength. Muscle 
TLR4, nuclear factor κB, and c-Jun N-terminal kinase, and plasma lipopolysaccharide and lipopolysaccharide binding 
protein were not changed by exercise. In conclusion, insulin resistance and sarcopenia of aging are associated with 
increased TLR4 expression/signaling, which may be secondary to metabolic endotoxemia.
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Insulin resistance is associated with a clustering of 
metabolic disorders including type 2 diabetes mellitus 

(T2DM), sarcopenia, obesity, hypertension, and atheroscle-
rotic vascular disease. Aging is associated with low-grade 
systemic inflammation that may contribute to insulin resist-
ance (1–3). Skeletal muscle is an important target for the 
prevention and management of metabolic disorders because 
it is the predominant site of glucose uptake in the postpran-
dial state (4). However, as people age, there is a significant 
decline in muscle mass. Thus, developing strategies that 
prevent/reverse insulin resistance and sarcopenia in older 
participants would have a major impact on their health.

There is growing recognition that insulin resistance in 
muscle is, in part, a result of an inflammatory response 
mediated via toll-like receptor 4 (TLR4) (5,6). TLR4 is a 
member of the TLR family of pattern recognition recep-
tors that generate innate immune responses to pathogens by 
activating a cascade of proinflammatory events. Different 
ligands of TLR4 have been described, including lipopoly-
saccharide (LPS) (7,8) and saturated free fatty acids (FFA) 

(9). Following ligand binding, TLR4 and its coreceptors, 
CD14 and MD2, interact with adaptor proteins (Myd88) 
that facilitate downstream signaling through the IκB 
kinase–nuclear factor κB (NFκB) complex and the mito-
gen-activated kinase (MAPK) pathways. The activation of 
IκB kinase, MAPKs, extracellular signal-regulated kinase 
(ERK) (10), c-Jun N-terminal kinase (JNK) (11–13), and 
p38 (14) impair insulin receptor signaling.

Studies in rodents (15) and humans (16–18) have demon-
strated an association between advancing age and elevated 
NFκB activity/content in muscle. Increased JNK phospho-
rylation/activity also has been reported in aged rodents and 
human participants (19–21). Even though these inflammatory 
pathways have been associated with the loss of skeletal mus-
cle mass and function in frail elderly individuals (22), it is not 
clear whether increased signaling through the TLR4–NFκB–
MAPK network contributes to aging-related skeletal muscle 
insulin resistance in otherwise healthy older individuals.

Aerobic exercise is an effective intervention for the 
prevention and treatment of insulin resistance in older 
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individuals (23). Yet, the mechanisms by which physi-
cal activity improves glucose metabolism are not fully 
understood. Regular physical activity induces adaptive 
changes in skeletal muscle through alterations in meta-
bolic gene expression. Such changes include increases 
in mitochondria number and function, changes of muscle 
fiber type distribution, and increased muscle mass, which 
untimely helps to decrease insulin resistance and T2DM 
risk (23–26). Accumulating evidence suggests that regu-
lar exercise may provide additional health benefits against 
insulin resistance, acting as an anti-inflammatory therapy 
(27). Of particular importance, exercise training reduces 
signaling through the NFκB signaling pathway in obese 
rodents (28) and humans with T2DM (29,30). However, it 
is not known whether exercise training inhibits the TLR4–
NFκB–MAPK network in healthy older participants and 
whether this is associated with improvements in glucose 
metabolism.

The goal of this study was to evaluate whether increased 
signaling through the TLR4–NFκB–MAPK network occurs 
in association with impaired insulin signaling/sensitivity in 
muscle of older individuals. We also examined whether an 
exercise training program designed to enhance insulin sen-
sitivity could reverse abnormalities in the TLR4–NFκB–
MAPK pathway in older participants. We hypothesized that 
muscle of older individuals would have increased signaling 
through TLR4–NFκB–MAPK, and that reduced signal-
ing through this inflammatory network is a mechanism by 
which exercise training improves insulin sensitivity in these 
participants.

Methods

Participants
Thirteen young (6 men/7 women) and 12 older (8 men/4 

women) healthy, lean, nonsmoking, community-dwelling 
participants, without a family history of diabetes melli-
tus (first-degree relatives), were studied. Each participant 
underwent a medical history, physical examination, screen-
ing laboratory tests, and a 75 g oral glucose tolerance test. 
Participants were sedentary (≤1 exercise session per week) 
and their body weight was stable (±1 kg) for 3 months or 
more prior to enrollment. The study was approved by the 
Institutional Review Board of The University of Texas 
Health Science Center at San Antonio, and all participants 
gave written voluntary consent.

Oral Glucose Tolerance Test
After an overnight fast, participants ingested a 75 g glu-

cose solution. Plasma glucose, insulin, and FFA concentra-
tions were measured at baseline and every 15 minutes for 2 
hours. The HOMA-IR and Matsuda indexes were calculated 

as described previously (31,32). The glucose and FFA area 
under the curves were calculated using the trapezoidal rule.

Dual X-Ray Absorptiometry
Dual x-ray absorptiometry (Hologic, Bedford, MA) was 

used to measure fat and fat-free mass in young and older 
participants.

Magnetic Resonance Imaging
The volume of the quadriceps muscle was measured 

with a 3T magnetic resonance imaging scanner (Siemens 
TIM Trio, Siemens Medical, Erlangen, Germany) in the 
leg of young and older (pre- and postexercise) partici-
pants. Leg muscle volume measurements were acquired by 
body phased array and spine phased array coils with flash 
sequences. A  series of continuous muscle measurements 
along the thigh (45 slices with 5.5-mm slice thickness and 
1.56 × 1.56 mm in plane resolution) were made. All mag-
netic resonance imaging data were analyzed using Mango 
software (http://ric.uthscsa.edu/mango/).

Muscle Biopsy and Insulin Clamp
After an overnight fast, participants underwent a vastus 

lateralis muscle biopsy using a modified Bersgtrom tech-
nique (30). The muscle was debrided of adipose and con-
nective tissue and immediately (within 5–7 seconds after 
the biopsy) frozen in liquid nitrogen and stored at −80°C. 
Thirty minutes after the muscle biopsy, a 120-minute eug-
lycemic, hyperinsulinemic (40 mU/m2.min) insulin clamp 
was started. At the end of the clamp, a second muscle 
biopsy was performed in the contralateral leg. Insulin-
stimulated glucose metabolism (M) was determined based 
on the average glucose infusion rate and the plasma glucose 
concentrations during the last 30 minutes of the clamp (33) 
and adjusted to plasma insulin concentrations (M/I).

Exercise Training Protocol
Within 1 week after the first muscle biopsy, 11 older par-

ticipants started a 16-week aerobic exercise training pro-
gram (34) on a stationary bicycle under supervision. For 
the first 4 weeks, participants exercised for three sessions 
per week at 65% VO

2max
 for 20 min/session. During weeks 

5–8, the intensity, duration, and number of sessions were 
gradually increased so that during weeks 9–16 participants 
exercised four sessions per week for 45 min/session at 80% 
VO

2max
. VO

2peak
 was tested every 4 weeks to adjust exercise 

intensity. Participants maintained their usual dietary intake 
throughout the 16-week training period and were asked to 
increase their caloric intake to avoid weight loss, if needed. 
After an overnight fast, and 48–72 h after the last exercise 
session, a second biopsy and insulin clamp were performed.

http://ric.uthscsa.edu/mango/
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Laboratory Analyses
Plasma insulin concentration was measured by radio-

immunoassay (Diagnostic Products, Los Angeles, CA), 
plasma glucose was measured using the glucose oxidase 
method (Beckman glucose analyzer, Fullerton, CA), and 
hemoglobin A1c was measured using a DCA 2000 analyzer 
(Bayer Corporation, Tarrytown, NY). Plasma FFA concen-
tration was determined by an enzymatic colorimetric method 
(Wako Chemicals, Nuess, Germany). Plasma interleukin-6 
and tumor necrosis factor-α concentrations were meas-
ured using an enzyme-linked immunosorbent assay(R&D 
Systems Inc., Minneapolis, MN). Plasma LPS concentra-
tion was determined using a Limulus Amoebocyte Lysate 
assay kit (Lonza, Walkersville, MD). Plasma lipopolysac-
charide binding protein (LBP) concentration was measured 
using an enzyme-linked immunosorbent assay kit from Cell 
Sciences (Canton, MA). All materials were endotoxin-free.

Exercise Testing
VO

2max
 was determined using a cycle ergometer and a 

Metabolic Measurement System (Sensormedics, Savi Park, 
CA) as described (35,36). Briefly, participants warmed-up 
and performed exercise in a ramped fashion increasing at a 
rate of 8–10 W/min to exhaustion and until at least two of 
the following criteria for a valid test were obtained: a leve-
ling of VO

2
, respiratory exchange ratio >1.1, and a maximal 

heart rate within 15 beats of age-predicted maximal heart 
rate.

Muscle Strength Assessment
Peak force generation was assessed with a manual mus-

cle testing system (Model 01163, Lafayette Instruments, 
IN) (37). Peak force for knee extension was tested at a knee 
angle of 25°. Participants were positioned sitting upright, 
with no back support and with the hips in 90° flexion. The 
patient stabilized the trunk by grasping the table. The thigh 
of the patient was stabilized by the examiner’s hand. The 
test was performed using the “make technique” where 
the participants perform a maximal isometric contraction, 
whereas the examiner holds the dynamometer in a fixed 
position. The patient was encouraged by means of stand-
ardized, verbal instructions during the tests. After technique 
familiarization, participants performed four consecutive 
repetitions, and the rest interval between the test repetitions 
was approximately 30 seconds. The three highest peak force 
values were averaged. All measurements were performed 
by the same examiner.

Quantitative Reverse Transcription–PCR
Total RNA was isolated from muscle tissue using 

TRIZOL reagent (Sigma, St. Louis, MO). One-step quan-
titative reverse transcription–PCR was carried on an ABI-
Prism 7900HT System (Applied Biosystems, Foster City, 

CA). Each sample was run in duplicate and the messenger 
RNA expression of the genes of interest was normalized to 
that of 18S ribosomal RNA, using the following assay-on-
demand primers/probes, TLR4: Hs00152939_m1 and 18S: 
Hs99999901_s1.

Western Blot Analysis
Western blotting was performed as described previously 

(24). Primary antibodies against the following proteins were 
used: TLR4 and NFκB p65 (Santa Cruz Biotechnology, 
Santa Cruz, CA); NFκB p50, JNK, phosphor-JNK, ERK, 
phosphor-ERK, p38, phosphor-p38, AKT, phosphor-Akt, 
AS160, phosphor-Akt substrate, GSK3α/β, and phosphor- 
GSK3α/β (all from Cell Signaling Technology, Beverly, 
MA); phosphor IRS1 (pTyr612; Sigma–Aldrich Corp, St. 
Louis, MO); and IRS1 (Invitrogen, Grand Island, NY). 
Equal sample loading was confirmed by Ponceau red stain-
ing. Bands were quantitated with ImageQuant software 
(Sunnyvale, CA).

Statistical Analysis
All data are expressed as means ± SE. Differences 

between groups were analyzed using unpaired t test. The 
effects of exercise within each group were analyzed using 
paired t test. Pearson correlation was utilized to determine 
relationship between variables. Differences with p < .05 
were considered statistically significant.

Results

Participants’ Characteristics
Body mass index was similar in young and older par-

ticipants (Table  1). Older participants had elevated fast-
ing plasma glucose, blood hemoglobin A1c, and plasma 
interleukin-6 concentrations. Consistent with a very sed-
entary lifestyle, both groups had poor cardiorespiratory 
fitness levels, and the VO

2max
 was significantly reduced 

in older participants by approximately 40%. Older par-
ticipants were more insulin resistant, as evidenced by 
a reduced Matsuda index (56%; Figure  1A), M/I (31%; 
Figure 1B), and elevated HOMA-IR (46%; Table 1; p < 
.05 for all variables). The FFA area under the curve dur-
ing the oral glucose tolerance test tended to be elevated 
in older participants (24%, p = .05; Table 1). Quadriceps 
muscle volume and muscle strength were reduced in older 
participants by 20% (p < .01; Figure 1D) and 16%, respec-
tively (Figure 1F).

Metabolic Effects of Exercise
Older participants underwent a supervised aerobic exer-

cise training program. Exercise increased VO
2 max

 by 16% (p 
< .05) and insulin sensitivity (M/I) by approcimately 21% 
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(p < .05; Figure 1C). Body mass index, fat-free mass, fat 
mass, quadriceps muscle volume, muscle strength, hemo-
globin A1c, plasma concentrations of glucose, FFA, tumor 
necrosis factor-α, and interleukin-6 were unaffected by 
aerobic exercise.

Inflammatory Signaling in Muscle
Baseline TLR4 protein content and gene expression 

were significantly elevated in older participants by 2.1- 
and 3.8-fold, respectively (Figure  2A and C). Exercise 
training had no effect on TLR4 protein content and gene 
expression (Figure 2B and D). Compared with young par-
ticipants, older participants had increased NFκB p65 (1.6-
fold; p < .05) and NFκB p50 (1.5-fold, p < .05) protein 
content (Figure 3A and C). Exercise training had no effect 
on NFκB p65 or NFκB p50 protein (Figure 3B and D). 
Compared with young participants, JNK phosphorylation 
was significantly elevated in older participants (2.4-fold; 
p < .05; Figure  4A). In contrast, the phosphorylation of 
ERK and p38 was not different between the two groups 
(Figure 4C and E). Exercise training had no effect on JNK, 
ERK, or p38 phosphorylation (Figure 4B, D, and F).

Plasma LPS and LBP
To identify factors that could be responsible for the 

proinflammatory state present in older participants, we 
measured plasma LPS and LBP concentrations in both 
young and older participants. Older participants had 
higher LPS (1.8-fold; p < .05) and LBP (1.9-fold; p < 
.05; Figure 5A and C) plasma level, and these were not 
affected by exercise (Figure 5B and D). Both plasma LPS 
(r = 0.470, p = .03) and LBP (r = 0.637, p = .003) con-
centrations positively correlated with age. A positive cor-
relation between blood HbA1C concentration and LPS 
(r = 0.616, p = .01) and LBP (r = 0.562, p = .01) also 
was observed.

Insulin Signaling
We measured insulin-stimulated IRS1, Akt, GSK3, and 

AS160 phosphorylation to determine whether upregulation 
of the TLR4 signaling pathway is associated with impaired 
insulin action. The phosphorylation state of IRS1 pTyr612, 
GSK3, and AS160 was similar between young and older 
participants (Figure  6). In contrast, Akt phosphorylation 
was approximately 50% lower in muscle of older individu-
als (p < .05; Figure 6C). Exercise training had no effect on 
the phosphorylation state of IRS1, AKT, GSK3, or AS160 
(Figure 6B, D, F, and H).

Discussion
Chronic systemic inflammation is a common feature 

in the normal aging process and also is involved in the 
pathogenesis of several age-related diseases (38). Prior 
studies have reported increased inflammatory signaling 
through NFκB (18,39) and MAPKs (19) in muscle of 
older individuals. This phenomenon has been described 
in the context of muscle mass loss (40) and weakness in 
frail elderly individuals (41,42). Here, we were able to 
examine whether there is an association between TLR4-
mediated inflammation and aging per se (in the absence 
of frailty) because participants were free of chronic 
age-related diseases and physical disabilities. We dem-
onstrate that human aging is associated with increased 
TLR4 expression and downstream (NFκB and MAPK) 
signaling.

Here we demonstrate that human aging is associated with 
an increase in circulating plasma LPS concentration. In line 
with this finding, the acute phase reactant LBP was elevated 
in the older group. LPS induces hepatic LBP synthesis, 
and serum LBP level is a reliable integrated measure of 
serum LPS concentration (43,44). These data suggest that 
increased circulating LPS could play a causal role in the 
proinflammatory state present in older individuals.

Table 1.  Baseline Characteristics

Young NGT (n = 13) Older NGT (n = 12) p Value

Age (y) 25.5 ± 1.0 73.8 ± 2.1 .00006
Gender (male/female) 6/7 8/4 .32
Body mass index (kg/m2) 23.5 ± 0.7 24.1 ± 1.0 .60
OGTT fasting glucose (mg/dL) 77.6 ± 3.6 88.4 ± 2.0 .01
OGTT fasting insulin (mU/mL) 4.4 ± 0.7 6.9 ± 1.1 .06
OGTT fasting free fatty acids (mmol/L) 0.41 ± 0.05 0.53 ± 0.05 .40

OGTT free fatty acids AUC (μmol/L/(120 min)) 28.2 ± 2.17 35.2 ± 2.6 .05

HbA1C (%) 5.0 ± 0.1 5.5 ± 0.1 .0005
Plasma interleukin-6 (pg/mL) 1.24 ± 0.2 2.1 ± 0.2 .03

Plasma tumor necrosis factor-α (pg/mL) 1.14 ± 0.2 1.7 ± 0.3 .20

HOMA-IR 0.97 ± 0.2 1.80 ± 0.3 .02
VO

2 max
 (mL/kg.min) 27.6 ± 2.4 16.5 ± 0.7 .003

Fat mass % 24.0 ± 2.5 28.1 ± 1.9 .22
Fat-free mass % 71.9 ± 2.5 68.6 ± 1.8 .29

Note: AUC = area under the curve; NGT= normal glucose tolerant; OGTT = oral glucose tolerance test.
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Figure 1.  Metabolic characteristics and quadriceps muscle volume. Matsuda index was calculated at baseline in young versus older participants (A), and M/I (B) 
was calculated in young and older participants and (C) in older participants before and after exercise. Quadriceps muscle volume was measured at baseline in (D) 
young versus older participants and (E) in older participants before and after exercise. Muscle strength was measured at baseline in (F) young versus older partici-
pants and (G) in older participants before and after exercise. Data are means ± SE; n = 11–13 per group. *p < .05.
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Our laboratory (8) and others (45,46) have demonstrated 
elevated plasma LPS concentration in middle-aged, obese 
nondiabetic, and T2DM participants. This phenomenon of 
increased circulating LPS concentration in metabolic dis-
ease was termed “metabolic endotoxemia” by Cani and 
coworkers (7). The basis for the elevation in circulating LPS 
in obese nondiabetic and T2DM participants is not clear; 
hypothesized mechanisms include (i) changes in the com-
position of the microbiome, which favor LPS production 
(47); (ii) LPS transfer through chylomicrons (47,48); and 
(iii) lipid- and/or microbial-induced damage of the intesti-
nal epithelial barrier (ie, increased permeability). Studies in 
rodents (49) and humans (50,51) have shown alterations in 
intestinal microbiota composition with age. Age-associated 
remodeling of the intestinal epithelial barrier has also been 
demonstrated in nonhuman primates (52). These findings 

are consistent with the metabolic endotoxemia phenome-
non observed in this study. Future research will be needed 
to test whether human aging is associated with alterations 
in intestinal microbiome composition and intestinal barrier 
integrity/function.

There is evidence suggesting that NFκB may play a 
role in the pathophysiology of several age-related diseases 
(38). In old rodents, increased NFκB abundance and activ-
ity have been shown in numerous tissues including skeletal 
muscle, liver, kidney, cardiac muscle, and gastric mucosa 
(17,38,53–55). In older human participants, elevated 
protein abundance of NFκB has been reported in vascu-
lar endothelial cells (56) and skeletal muscle (15,16). In 
line with these findings, NFκB p65 protein was elevated 
in skeletal muscle of older participants studied here. It is 
noteworthy that a recent study reported similar NFκB p65 
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abundance in older and young human participants (57). 
The reason for these discrepant study outcomes is not clear 
but may be explained by differences in participant cohorts 
(ie, fitness level and mean age of the older and young 
groups) and different timing of the muscle biopsies. Also, 
we were unable to measure NFκB p50-p65 DNA binding 
because, for several participants, there was not sufficient 

tissue to perform this assay. It will be important to measure 
NFκB p50-p50 DNA binding in future studies with larger 
populations.

Similar to NFκB, activation of MAPKs has been associ-
ated with aging-related inflammation in several tissues from 
different species (58,59). Few studies have investigated the 
independent effect of age on MAPK activation in human 

Older preexercise Older postexercise

Older preexercise Older postexercise

Figure 3.  Protein content of nuclear factor κB (NFκB) p50 and NFκB p65 in human skeletal muscle. NFκB p65 (A and B) and NFκB p50 (C and D) protein 
content was measured at baseline in (A and C) young versus older participants and (B and D) in older participants before and after exercise. Data are means ± SE; 
n = 11–13 per group. *p < .05 versus young group.



	 Ghosh et al.	 239

muscle. Williamson and coworkers (19) demonstrated 
increased phosphorylation of JNK, p38, and ERK in muscle 
of frail, elderly individuals. In this study, JNK phosphoryla-
tion was increased in the older participants. This suggests 

that increased JNK phosphorylation may be an early event 
in the aging process contributing to reduced insulin sensi-
tivity and muscle mass/volume in otherwise healthy older 
individuals.
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In this study, elevated TLR4 expression and signal-
ing was associated with reduced insulin signaling and 
peripheral (muscle) glucose disposal in older partici-
pants. Previously, we demonstrated increased TLR4 gene 
expression and signaling in muscle of middle-aged indi-
viduals with obesity and T2DM (6,29). Elevation in JNK 
phosphorylation also has been shown in insulin resistance 
participants (12–14,60). Therefore, flux through TLR4 
might play a role in the alterations in glucose metabo-
lism that occur as people age. In vitro studies have shown 
that phosphorylation of IκB kinase (61) and JNK (13,62) 
promotes insulin resistance by increasing serine phos-
phorylation of IRS1. Serine phosphorylation on IRS1 
impairs its phosphorylation on tyrosine residues and 
downstream activation of Akt (63,64). In this study, 
increased TLR4 expression and signaling were associ-
ated with impaired insulin-stimulated Akt phosphoryl-
ation. Notably, IRS1 phosphorylation on tyrosine 612 
was not affected in older participants, suggesting that 
the TLR4–NFκB–MAPK signaling network may act on 
a different IRS1 phosphorylation site or downstream 
of IRS1 to reduce insulin signaling. It is also possible 
that, under the experimental conditions studied, sub-
tle alterations in IRS1 function may not be detected. 
Dissociations in the activation of proximal and more 
distal steps within the insulin pathway have been noted 
previously (65).

Elevated plasma LPS concentration was observed in 
older participants, which presumably is the cause of the 
increases in TLR4 expression and signaling. However, 
there are other factors, not directly evaluated in this study 
that can also stimulate TLR4 and downstream signal-
ing pathways. For example, lipids can activate NFκB and 
JNK (6,66), and older participants have increased levels 
of intramyocellular lipids (67,68). Unfortunately, we did 
not have sufficient muscle tissue left for measurements of 
intramyocellular lipid content. Reactive oxygen species 
also can activate the NFκB and MAPK pathways (69,70) 
although previously we did not observe increased mito-
chondrial reactive oxygen species production in muscle 
from older participants (24). Elevated plasma FFA level, 
due to reduced fat oxidation and increased lipolysis, is a 
common feature associated with human aging (68,71,72). 
We (6,66) and others (9,73) have demonstrated that FFA 
can activate TLR4 receptors, consequently activating 
inflammation pathways and impair insulin action in mus-
cle cells (6,66). In this study, fasting plasma FFA were not 
significantly different between the young and older partici-
pants. However, older participants had an increase in FFA 
area under the curves during the oral glucose tolerance 
test, which nearly reached statistical significance (p = .05). 
This finding indicates insulin resistance at the level of the 
adipose tissue resulting in increased lipolysis and suggests 
that an elevation in circulating FFA may contribute to the 
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proinflammatory state (ie, increased TLR4 expression and 
signaling) observed in aging.

Rodent studies have demonstrated that stimulation of 
TLR4 with LPS reduces muscle mass and impairs mus-
cle function (74). Constitutive activation of IκB kinase 
β and NFκB also induces muscle wasting in mice (75). 
In line with these findings, the older participants stud-
ied here had increased plasma LPS level, together with 
decreased quadriceps muscle volume and strength, in 
comparison with young participants. Although our find-
ings do not prove cause and effect, they provide addi-
tional evidence that circulating LPS and subsequent 
increased flux through TLR4 could play a role in aging-
related sarcopenia. Studies in aged rodents with genetic 
blockade of TLR4 signaling will be useful to evaluate the 
role of TLR4 and metabolic endotoxemia on sarcopenia 
of aging.

Previously, we showed that an 8-week aerobic exercise 
program increased the protein content of the NFκB inhibi-
tory proteins, IκBα and IκBβ, in muscle from middle-aged 
participants with T2DM (30). Lambert and coworkers (23) 
reported that 12 weeks of combined (aerobic and resist-
ance) exercise reduced muscle TLR4 messenger RNA and 
plasma cytokine levels in frail obese elderly participants. 

Based upon these findings, we anticipated that exercise 
would have an anti-inflammatory effect, manifested by 
a reduction in TLR4 expression and signaling (NFκB, 
MAPK), that may help to explain the insulin-sensitizing 
effect of exercise. Contrary to our hypothesis, 16 weeks of 
aerobic exercise training program had no effect on muscle 
TLR4 expression/signaling or circulating LPS/LBP levels. 
Although the basis for these discrepant findings is not clear, 
it is possible that a protective adaption (downregulation) 
in TLR4 after exercise may occur only under situations of 
pronounced inflammation and insulin resistance, such as 
those present in participants with obese, T2DM, and severe 
muscle wasting. Future studies with larger cohorts likely 
will be needed to determine whether a more prolonged or 
versatile (also incorporating resistance training) exercise 
regime is sufficient to reverse the inflammatory profile (ele-
vated LPS levels and TLR4 signaling) observed in older 
individuals.

In summary, human aging is associated with metabolic 
endotoxemia and elevated signaling through the TLR4–
NFκB–MAPK network in muscle that may play a role in 
aging-mediated insulin resistance and muscle loss. Future 
studies with larger populations are needed to establish the 
relationship between human aging phenotypes, metabolic 
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Figure 6.  (Continued)
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endotoxemia, microbiome composition, and environmental 
factors such as dietary habits.
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