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Significantly improved crop varieties are urgently needed to feed the rapidly growing human population under changing
climates. While genome sequence information and excellent genomic tools are in place for major crop species, the
systematic quantification of phenotypic traits or components thereof in a high-throughput fashion remains an enormous
challenge. In order to help bridge the genotype to phenotype gap, we developed a comprehensive framework for high-
throughput phenotype data analysis in plants, which enables the extraction of an extensive list of phenotypic traits from
nondestructive plant imaging over time. As a proof of concept, we investigated the phenotypic components of the drought
responses of 18 different barley (Hordeum vulgare) cultivars during vegetative growth. We analyzed dynamic properties of
trait expression over growth time based on 54 representative phenotypic features. The data are highly valuable to understand
plant development and to further quantify growth and crop performance features. We tested various growth models to predict
plant biomass accumulation and identified several relevant parameters that support biological interpretation of plant growth
and stress tolerance. These image-based traits and model-derived parameters are promising for subsequent genetic
mapping to uncover the genetic basis of complex agronomic traits. Taken together, we anticipate that the analytical
framework and analysis results presented here will be useful to advance our views of phenotypic trait components underlying
plant development and their responses to environmental cues.

INTRODUCTION

A central goal of biology today is to map genotype to phenotype.
High-throughput genotyping platforms support the discovery and
analysis of genome-wide genetic markers (genotypes) in pop-
ulations in a routine manner (Davey et al., 2011; Edwards et al.,
2013). However, our capabilities for systematic assessment and
quantification of plant phenotypes have not kept pace (Houle
et al., 2010; Furbank and Tester, 2011). Commonly used con-
ventional phenotyping procedures are labor-intensive, time-
consuming, lower throughput, costly, and frequently destructive
to plants (e.g., fresh or dry weight determination), whereas mea-
surements are often taken at certain times or at particular de-
velopmental stages, a scenario known as the “phenotyping
bottleneck” (Furbank and Tester, 2011).

Recently, the introduction of techniques for high-throughput
phenotyping has boosted the area of plant phenomics, where
new technologies such as noninvasive imaging, spectroscopy,
robotics, and high-performance computing are combined to
capture multiple phenotypic values at high resolution, high pre-
cision, and in high throughput. This will ultimately enable plant
scientists and breeders to conduct numerous phenotypic ex-
periments in an automated format for large plant populations
under different environments to monitor nondestructively the
performance of plants over time (Eberius and Lima-Guerra,
2009). Various automated or semiautomated high-throughput
plant phenotyping platforms have been developed recently and
are applied to investigate plant performance under different
environments (Granier et al., 2006; Walter et al., 2007; Biskup
et al., 2009; Jansen et al., 2009; Arvidsson et al., 2011; Golzarian
et al., 2011; Nagel et al., 2012). The huge amounts of image data
routinely accumulated in these platforms need to be efficiently
managed, processed, and finally mined and analyzed. Thus, we
are now facing the “big data problems” (Schadt et al., 2010)
brought about by such real-time imaging technologies in the
phenomics era. Although several analytical tools (Bylesjö et al.,
2008; Weight et al., 2008; Wang et al., 2009; Hartmann et al.,
2011; Green et al., 2012; Karaletsos et al., 2012) provide general
image-processing solutions for extracting a wide range of plant
morphological measurements (such as plant height, length and
width, shape, projected area, and digital volume) and colorimetric
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analysis, they are individually designed to address specific ques-
tions (Sozzani and Benfey, 2011). The trait information gained
from these tools is still very limited. Furthermore, the phenotypic
components underlying dynamic processes in plants such as
growth, development, or responses to environmental challenges
and their properties remain unexplored. For these reasons, there
is increasing demand for software tools that are capable of effi-
ciently analyzing large image data sets and subsequent statistical
methods to investigate comprehensively collected phenotypic
data.

Automated noninvasive precise high-throughput phenotyping
is especially interesting in the context of dissecting the complex
genetic architecture of biomass development and of drought
stress tolerance. Impact of drought depends heavily on timing
and intensity of the dry period and on environmental conditions
(Calderini et al., 2001; Araus et al., 2002) hampering heritability
as a prerequisite for genetic mapping of quantitative trait loci
(QTL) (Ribaut et al., 1997; Painawadee et al., 2009; Sellammal
et al., 2014). Drought tolerance has been investigated in various
QTL studies since the start of the molecular marker age (Lilley
et al., 1996; Xiong et al., 2006; Szira et al., 2008; Nezhad et al.,
2012). Adequate controlled phenotyping and daily phenotypic
observation of drought stress development has a huge potential
to boost the understanding of the genetics of drought tolerance.

Here, we present a powerful solution that was developed
alongside currently available high-throughput image data pro-
cessing pipelines, such as our Integrated Analysis Platform (IAP)
(Klukas et al., 2014). We implemented various algorithms for ef-
ficient analysis and interpretation of huge and high-dimensional
phenotypic data sets to support understanding plant growth and
performance. We applied our pipeline to a core set of 18 different
barley (Hordeum vulgare) cultivars, which were daily imaged

under well-watered and drought stress conditions. We extracted
and quantified a list of representative phenotypic traits from the
digital imaging data. We used linear mixed models to dissect
variance components of phenotypic traits and showed that the
traits revealed variable genotypic and environmental effects
and their interactions over time. Key parameters such as trait
heritability and genetic trait correlations were assessed, indi-
cating image-derived traits are valuable in genetic association
studies. Finally, we used several linear and nonlinear functions
to model biomass accumulation for both control and stressed
plants that allow biological interpretation of parameters. Model-
derived parameters revealed several important aspects regarding
plant development and provide a solid basis for subsequent QTL
analysis aimed at understanding the genetic control of plant
growth.

RESULTS

Extraction of Phenotypic Traits from High-Throughput
Image Data

We applied our methodology to a compendium of ;50,400
images (;100 GB of data) collected for 18 barley genotypes
from four agronomic groups (Table 1), with six (for double
haploid [DH] lines) or nine (for non-DH lines) replicated plants per
genotype per treatment. Over a course of 7 weeks, plants were
monitored in a noninvasive way under control and drought
stress conditions using an automated plant transport and im-
aging system (Figures 1 and 2; see Methods). Three types of
image data, near-infrared (NIR), visible (color), and fluorescence
(FLUO) images, were acquired daily from different views (top

Table 1. Overview of 18 Barley Genotypes Used in This Study

Agronomic Group Genotypea Release Breeder Pedigree

DH BarkeDH 1996 Breun Libelle x Alexis
DH MorexDH 1978 MN AES Cree x Bonanza
1 Ackermanns Bavaria 1910 Ackermann Selection from Bavarian landrace
1 Heils Franken 1895 Heil Selection from Franconian landrace
1 Isaria 1924 Ackermann Danubia x Bavaria
1 Pflugs Intensiv 1921 Pflug Selection from Bavarian landrace
2 Apex 1983 Lochow Aramir x (Ceb.6721 x Julia x Volla x L100)
2 Perun 1988 Hrubcice/NKGNord HE 1728 x Karat
2 Sissy 1990 Streng (Frankengold x Mona) x Trumpf
2 Trumpf (Triumpf) 1973 Hadmersleben Diamant x 14029/64/6 ((Alsa x S3170/Abyss) x

11719/59) x Union
3 Barke 1996 Breun Libelle x Alexis
3 Beatrix 2004 Nordsaat Viskosa x Pasadena
3 Djamila 2003 Nordsaat (Annabell x Si 4) x Thuringia
3 Eunova 2000 Probstdorf H 53 D x CF 79
3 Streif 2007 Saatzucht Streng GmbH & Co. KG Pasadena x Aspen
3 Ursa 2001 Nordsaat (Thuringia x Hanka) x Annabell
3 Victoriana 2007 Probstdorfer Saatzucht (LP 1008.5.98 x LP 5191) x Saloon
3 Wiebke 2000 Nordsaat Unknown

The double haploid population parents are indicated with “DH.” Cultivar Morex is a six-rowed, spring barley from the US. All other cultivars are two-
rowed spring barleys released in Germany. Genotypes are grouped according to the year of release (except for DH lines).
aBold indicates the short name used in all the figures.
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view and side views from different angles) in the phenotyping
system. For example, color imaging can be used to assess
growth status and biomass accumulation of plants as well as
their nutritional or health status, while NIR imaging provides
a measure related to plant water content and FLUO imaging
detects signals of chlorophyll and other fluorophores (Berger
et al., 2010). Data retrieved from the imaging platform were or-
ganized into our IAP system (Klukas et al., 2014) and processed
through an analysis pipeline specifically adjusted for mid-sized
important crop species such as barley, resulting in values of
nearly 400 phenotypic traits extracted from images of each in-
dividual plant (Figures 2A and 2C).

These phenotypic measurements can be classified broadly
into four categories: plant geometric traits (measuring shape
descriptors of plants), color-related properties, NIR signals, and
FLUO-based traits (Figure 2C). Quantitative traits were first
evaluated based on their reproducibility among replicated plants
(see Methods; Supplemental Figures 1A and 1B) against random
plant pairs to avoid introducing low quality or weak phenotypic

traits into the analysis. A total of 173 (44.6%) traits showed high
reproducibility among replicate samples after removing outliers
(Pearson correlation coefficient r > 0.8 and one-sided Welch’s
t test P < 0.001; Figure 2A). We found that 87.0% of traits that
showed genotypic effects or 93.1% of traits that showed
treatment effects (adjusted P < 0.01; see below) passed this
filtering (Supplemental Figure 2), indicating that we still covered
most of the informative traits though the stringent applied cri-
teria. Clustering analysis of these highly reproducible traits
showed that large sets of traits were excessively correlated with
each other (Supplemental Figure 3), indicating that these traits
might be highly redundant descriptors of plant properties within
our investigated cultivar set. To get an optimal set of phenotypic
traits for a statistical model, we applied the indicator of variance
inflation factors (O’Brien, 2007) (variance inflation factor > 5) to
remove redundant and noninformative features (see Methods).
After manual checking, we selected 54 (31.2%) traits from
the entire set of reproducible measures and used them in the
remaining analysis (Figure 2A; Supplemental Figure 1C and

Figure 1. Experimental Design.

(A) The growth stages of spring barley.
(B) High-throughput phenotyping of barley plants in a LemnaTec system (http://www.lemnatec.com/).
(C) Plants were monitored in a noninvasive way under control and drought stress conditions. Drought stress (in dash box) was treated at the stage of
“stem extension” as indicated in (A).
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Figure 2. Pipeline for Analysis of High-Throughput Phenotyping Data in Barley.

(A) The workflow used for barley phenotyping data analysis. High-throughput imaging data from the LemnaTec system were imported and processed
using the barley analysis pipeline in the IAP system. The extracted phenotypic traits were further processed and evaluated (see Methods).
(B) Input (left) and result (right) images in the analysis pipeline. Shown are images from 44-d-old plants (the last day of stress phase) captured by VIS,
FLUO, and NIR cameras from the side view.
(C) Classification of phenotypic traits. Traits are classified into four categories: color-related, NIR-related, FLUO-related, and geometric features, based
on images obtained from three types of cameras and two views.
(D) Phenotypic traits revealing the stress symptom. Left: An example shows a NIR-related trait over time. Right: heat map shows NIR intensity
difference, measured by the ratio value between control and stress plants. Blue indicates low difference, whereas red indicates high difference. Note
that plants from different genotypes show different patterns, indicating their different stress tolerance.
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Supplemental Table 1). However, we note that this barley col-
lection is relatively small, and some of the excluded phenotypic
traits might be considered when applying the model to larger
plant populations.

Image-Derived Parameters Reflect Drought
Stress Responses

Many of the phenotypic changes (such as changes of biomass)
were readily detectable upon stress treatment, whereas others
(such as dynamics of water content) were less obvious or too
subtle to be discerned by eye (Figure 2B; Supplemental Figure
4). Previous studies have suggested that plant water stress
might be monitored effectively using NIR imaging (Knipling,
1970; Tucker, 1980; Berger et al., 2010; Munns et al., 2010). We
showed that the highly reproducible NIR intensity trait is an ef-
fective feature for monitoring plant responses to drought (Figure
2D; Supplemental Figure 1C). Plants showed a rapid decrease of
the NIR signal after about 6 d of drought stress. Restoration of
the NIR signal was seen after rewatering. The NIR-based in-
dicator also provides a measure of the different abilities to re-
cover among different genotypes (Figure 2D).

To explore more comprehensively the ability of these traits to
reflect the responses to the external treatment, we adopted
a support vector machine (SVM)-based approach (Loo et al.,
2007; Iyer-Pascuzzi et al., 2010), in which “optimal” hyperplanes
separate treated and untreated samples (Supplemental Figure
5A). We found that accuracy in distinguishing between stressed
and control plants reached over 90% after 1 week of drought stress
and nearly 100% separability after 10 d of stress (Supplemental
Figure 5B). Besides, the “phenotypic direction” (the normal vector
of the hyperplane in SVM) of greatest separation between the
two groups of plants revealed three grouped patterns over time,
corresponding to the three different treatment periods: growth
before onset of drought treatment, during drought stress, and
in the recovery phases (Supplemental Figure 5C). These results
suggest that the treatment effects of these traits changed dy-
namically according to the external treatment and growth stage
(see below).

Plant Phenomic Map and Phenotypic Similarity

To gain a global plant phenotypic map across the entire cultivar
set, clustering approaches were performed on the comprehen-
sive phenome-wide data (Figures 3A and 3B). This map provides
important information regarding plant phenotypic similarity or
dissimilarity and supports further evaluation of the defined traits.
From a cluster analysis with complete linkage applied to the
normalized data set, we found that stressed plants were clearly
distinguished from control plants irrespective of genotype, but
plants of the same genotype or among agronomic groups tended
to be grouped together (Figure 3A, upper panel), supporting the
idea that similar genotypes lead to similar phenotypes. For the
54 investigated traits, correlation coefficients of trait profiles
between pairs of genotypes of the same agronomic groups were
significantly higher than pairs of different groups (P < 2.23 10216,
one-sided Mann-Whitney U-test; Figure 3A, lower panel). Similar
results were observed in a large genome-wide association study

mapping population, in which 34 traits were investigated across
413 diverse rice (Oryza sativa) accessions in the field (Zhao et al.,
2011). To fine visualize phenotypic similarity revealed by genotype
similarity, we performed a self-organizing map (Kohonen, 1990)
clustering analysis on the data set (Figure 3B). The self-organizing
map plot showed that plants from the same genotype were con-
centrated at certain locations in the map, and stressed plants were
clearly separated from the control plants.
We next deduced a neighbor-joining tree (termed “phenotypic

similarity tree”) based on the 54 informative traits to reveal the
phenotypic similarity of plants of different origins (see Methods).
We constructed the phenotypic similarity trees for plants culti-
vated under control and stress conditions, respectively (Figure
3C). We observed that members of the same agronomic groups
belonged to closed branches of the tree (Figure 3C, left), re-
flecting the domestication and breeding history of these culti-
vars. The phenotypic similarity tree reshaped following the
drought stress, although the relative relationship of most culti-
vars within the same groups was unchanged (Figure 3C, right).
Consistent with this observation, the phenotypic distance ma-
trices of these two trees are positively associated (Pearson’s
coefficient r = 0.71 and P < 0.001, Mantel test; Figure 3D).
However, we observed that barley cultivars such as Apex, Djamilia,
and Heils Franken showed least robustness in maintaining their
phenotypic relationship when they were exposed to drought
stress (Figures 3C and 3D), suggesting that the phenotypic
plasticity of these cultivars in response to stress treatment is
different.

Phenotypic Profile Reflects Global Population Structure

To further explore the phenotypic relationships of these plants,
we performed principal component analyses (PCA) to capture
global phenotypic variation in the whole population and to ex-
tract specific phenotypic traits relevant for the discrimination of
agronomic groups (Figure 4; Supplemental Figure 6). The top six
principal components (PCs) explain at least 60% of the total
phenotypic variation (Figure 4A). Notably, the accumulative
variance explained by these PCs increases with plant growth,
having a slight peak at the end of stress phase, accounting for
83.3% of total variation. The increasing accumulative variance
over time was observed for control and stressed plants, re-
spectively (Supplemental Figures 7A and 7B), indicating that
plants showed more phenotypic differences at the later growth
stage.
At the end of the stress period, the first PC (PC1) explains

more than half (52.9%) of the phenotypic variation, which per-
fectly separated stressed plants from control plants (Figure 4B).
Accordingly, geometric and NIR intensity traits are the main
factors in the trait space separating these two groups of plants.
Meanwhile, PC1 gradually increases along the stress phase,
while it decreases when plants recovered with watering, sug-
gesting that more phenotypic variance can be observed be-
tween control and stressed plants under more serious stress.
Other PCs with smaller proportions of explained variance gen-
erally distinguish plants of different agronomic groups from each
other. For example, PC2 was mainly driven by the phenotypic
difference in groups 2 (released before 1990) and 3 (released
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Figure 3. Phenotypic Similarity Revealed by Genotype Similarity.

(A) and (B) Clustering analysis of phenomic profiling data. HCA (A) and a six-by-six self-organizing map (SOM) (B) were used to reveal the phenotypic
similarity of all the investigated barley plants based on the highly reproducible traits. In (A), colored bars along the top of the heat map reflect the
sampled agronomic group assignment (groups 1 to 3 and DH) as labeled. Colored bars along the left indicated the corresponding genotypes of
individuals as listed in the key. The lower panel shows the median correlation values among individual plants from the same agronomic groups and
different groups. In (B), plants with similar genotypes or treatments tend to be at nearby map locations. Control and stress plants are colored and

Quantifying Plant Growth and Performance 4641



after 1990) (Figure 4B), corresponding to the main PCs as ob-
served in control (Supplemental Figure 7C) and stressed plants
(Supplemental Figure 7D). Interestingly, more diversity in color-
related traits was observed in plants of agronomic group 2, likely
revealing the human selection of breeding of these cultivars. The
third principal component (PC3) mainly distinguishes plants of
agronomic group 1 from the DH group (Figure 4B; Supplemental
Figures 7C and 7D). However, the different patterns in the PCA
from control and stress plants (Supplemental Figures 7A and 7B)
can be explained in part by complex genotype-treatment inter-
actions. Overall, the observations that the first PC separates
control and stress plants and that the other PCs separate ag-
ronomic and genotype groups are in agreement with the results
of the clustering analysis, which showed that plants had larger
phenotypic dissimilarity between treatments than between ge-
notype groups (Figure 3A), further indicating that the environ-
ment (drought stress treatment) shows dramatic effects on plant
growth and development.

Dynamic Genotypic and Environmental Effects on
Phenotypic Variation

We used a linear mixed model to decompose phenotypic vari-
ance (P) into different causal agents: genetic (G) and environ-
mental (E) sources, and their interaction effects (G3E). The
mixed-effects model was fitted using a restricted maximum
likelihood approach, and the statistical significance of variance
components was estimated by the log-likelihood ratio test (log-
LR test; see Methods). We found temporal dynamics of geno-
typic and environmental influences on overall trait development
(Figures 5A and 5B). In the early growth phase, phenotypic
variance was mostly the result of unknown environmental ef-
fects (residual effects). As plants grew, genotypic factors became
more important. The increasing genetic effect on phenotypic
variance was observed up to about 6 d after the onset of stress
treatment, after which the environmental factors (e.g., drought
stress) became progressively more important, while the genetic
effect became relatively less important. Although less obvious,
the opposite pattern was seen in the recovery phase (Figure 5A),
likely due to the decline in phenotypic differences between con-
trol and stressed plants. The decline in error variance and in-
crease in environmental variance are reflected by a dynamic
change of the total experimental coefficient of variation (CV)
over time based on the investigation of geometric traits (Figure
5B). The total experimental CV increased as the drought stress
became more severe and declined during the recovery phase.

However, the genetic CV across the cultivars was relatively con-
stant upon drought treatment. The genetic CV in stressed plants
became less than that in control plants after the onset of treat-
ment (Figure 5B), indicating that plants showed more phenotyp-
ical diversity under normal growth conditions than in stressed
conditions. Genetic CV peaked at the beginning of plant growth,
revealing heterogeneity of plant growth at the initial growth
stage. We also observed a moderate level of G3E interaction
effects (with the proportion of explained phenotypic variance
ranging from 2.6 to ;15.4%; Figure 5A), indicating that there
are genetic differences in the response to drought among dif-
ferent cultivars. We found that the G3E effects progressively
increased with plant development, independent from external
environment changes.
To gain a deeper insight into traits that could shed light on the

genotype and treatment effects as well as their interaction, we
calculated the likelihood estimation (the LOD score; Joosen
et al., 2013) from the linear mixed models to determine whether
the G, E, and G3E effects have statistical significance on phe-
notypic variance for each trait. We observed that the G effect
showed dynamic behavior during plant growth (Figure 5C). In
general, color and FLUO-related traits revealed strong G effects
with high LOD scores over time. In contrast, geometric and NIR-
related traits displayed strong G effects mostly in the middle
stage of plant development. However, most of the phenotypic
traits exhibited the E effects with significant LOD scores at the
late period of drought stress or/and after the stress (Figure 5C).
For example, traits such as fluorescence intensity, NIR intensity,
area, and volume were strongly affected by the E effects,
agreeing with the known observations of decreased photosyn-
thetic activity (Baker, 2008; Woo et al., 2008; Jansen et al.,
2009), leaf water content (Seelig et al., 2008, 2009) and biomass
accumulation (Rajendran et al., 2009; Berger et al., 2010) for
plants under drought. In general, geometric traits, such as leaf
length, plant height, and projected area, showed strong and
durable E effects, while only earlier E effects were seen for color-
related traits. Nearly all traits were observed to have significant
G3E effects (P < 0.001, log-LR test) at the recovery stage
(Figure 5C), indicating that the impact of genetic factors for most
traits is highly influenced by drought stress.

Change of Heritability and Trait-Trait Genetic and
Phenotypic Correlations over Growth Time

Heritability of a trait and genetic correlations among traits are
two key parameters that are used in plant breeding for making

Figure 3. (continued).

indicated in blank and filled points, respectively. The numbers in the key show the number of plants from the same genotypes belonging to the control
or stress group.
(C) Phenotypic similarity trees showing the phenotypic relationship of plants from agronomic groups 1 to 3 under control (left; blank shapes) and stress
(right; filled shapes) conditions. The trees were constructed from overall phenotypic distance matrices (see Methods).
(D) Scatterplot indicating the degree of correlation of phenotypic distance between genotypes under both control (x axis) and stress conditions (y axis).
Mantel test was performed to examine whether the phenotypic distances in the two conditions correlate with each other. P value was calculated with
Monte-Carlo simulation (with 10,000 permutations). Genotype pairs that are far away from the regressed line (red) are labeled and colored (orange, small
distances in control and large distances in stress; blue, otherwise).
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decisions concerning the design and selection of breeding
schemes (Holland et al., 2003; Chen and Lübberstedt, 2010). It
has been speculated that the dynamic change of heritability over
time for a population is a consequence of changes in the
magnitude of G and E effects (Visscher et al., 2008). However,
most estimates of heritability are based on very few measures

taken within specific growth stages (El-Lithy et al., 2004; Van
Poecke et al., 2007; Busemeyer et al., 2013). Recently, Zhang
et al. (2012) used a high-throughput phenotyping approach to
document dynamic patterns of heritability of growth-related
traits over growth time in Arabidopsis thaliana. Here, we first
investigated the change of broad-sense heritability (H2) (Nyquist,

Figure 4. Phenotypic Profile Reflects Global Population Structures in the Temporal Scale.

(A) Projections of top six PCs based on PCA of phenotypic variance over time. The percentage of total explained variance is shown. The stress period is
indicated by the dashed box.
(B) Scatterplots showing the PCA results on DAS 44 (explained the largest variance). The first six PCs display 83.3% of the total phenotypic variance.
The component scores (shown in points) are colored and shaped according to the agronomic groups (as legend listed in the box). The component
loading vectors (represented in lines) of each variable (traits as colored according to their categories) were superimposed proportionally to their
contribution. See also Supplemental Figures 6 and 7.
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Figure 5. Dissection of the Sources of Phenotypic Variance.

(A) Dissecting the phenotypic variance over time by linear mixed models. For phenotypic data before stress treatment, s2
G3E is confounded with s2

e.
Filled circles represent average variance of each component computed over all traits, and solid lines represent a smoothing spline fit to the supplied

4644 The Plant Cell



1991) over barley growth time and with treatment. Consistent
with the results of Zhang et al. (2012), the investigated traits
showed dynamic changes in heritability during the entire plant
growth stage (Figure 6A, left), as exemplified in the growth-
related trait digital volume (Figure 6A, bottom right). Traits from
different categories showed distinct patterns of heritability over
time. We found that heritability of E-sensitive traits, such as
height, projected area, digital volume, leaf length, and leaf
numbers, decreased during drought stress, in agreement with
previous findings that quantitative traits reflecting the perfor-
mance of crops under drought conditions tend to have low to
modest heritability (Tuberosa, 2012). Furthermore, we found
that geometric traits showed significantly higher heritability than
physiological traits such as FLUO- and NIR-related traits (P <
2.2 3 10216, Welch’s t test; Figure 6A, top right), indicating that
variation in morphological traits during plant growth is governed
in large part by genetic factors, rather than environmental
factors.

Next, we calculated trait-trait genetic (rg) and phenotypic
correlations (rp) during plant growth. The genetic correlations
were calculated from a bivariate model (see Methods) that al-
lows testing of the genetic overlap between different traits, while
the phenotypic correlations measure the observed phenotypic
similarity of different traits. We used a correlation network to
visualize the structure of genetic and phenotypic correlations at
the harvesting period (58/59 d after sowing [DAS]), where the
manual measurements (such as fresh weight [FW], dry weight
[DW], and tiller number [TN]) were included as well (Figure 6B).
As expected, these two correlation matrices correlated well with
each other (r = 0.73 and P < 0.001, Mantel test; Figure 6C). Traits
of the same category showed strong and positive genetic and
phenotypic correlations. However, color-related traits were ei-
ther not correlated or negatively correlated with other traits
(Figure 6B), indicating that the variation in these traits has an
independent genetic basis from other traits. FW and DW
showed the highest correlation with the predicted volume trait,
both genetically and phenotypically (rg ¼ 0:94 and rp ¼ 0:97 for
FW; rg ¼ 0:79 and rp ¼ 0:95 for DW), suggesting that the volume
trait is a good image-derived estimate of plant biomass. In-
triguingly, TN and plant compactness detected from top-view
images showed significant genetic and phenotypic correlations
(rg ¼ 0:77 and rp ¼ 0:52), suggesting pleiotropy between barley
TN and compactness. Finally, we computed genetic and phe-
notypic correlations over time (Figure 6C). The correlation pat-
tern dynamically changed according to the intensity of the

external stress, with decreasing correlation during the drought
period and the lowest correlation (r = 0.31) at the end of stress
period. This observation indicates that the extent of genetic
influence on most traits was low when plants faced serious
stress, thus supporting the hypothesis that plants exhibit
extensive phenotypic plasticity in response to environmental
stress (Sultan, 2000).

Modeling Plant Growth

The complexity of plant growth has been long recognized
(Gompertz, 1825; Blackman, 1919; Erickson, 1976; Hunt, 1982;
Karkach, 2006). Many mechanistic growth models have been
established to model the laws of plant growth (Karkach, 2006;
Thornley and France, 2007; Paine et al., 2012), which aim to
provide the simplest description that accurately captures the
growth dynamics of individuals. It is well known that plant
growth follows a sigmoidal growth curve (Hunt, 1982; Vanclay,
1994; Damgaard and Weiner, 2008). Several sigmoidal growth
models, such as the logistic and Gompertz models (Karadavut
et al., 2008, 2010), with biologically interpretable parameters
have been proposed to probe the growth of individual plants.
These advances in plant growth modeling have allowed
a deeper understanding of relationships between plants and
their abiotic environment (Paine et al., 2012). In this study, we
used time-lapse phenotypic data to model and predict plant
growth under control and stress conditions. Of all the pheno-
typic traits investigated, the digital volume, which combined
information from both side and top views of cameras, had the
best correlation with manual measurements of biomass, such as
fresh and dry weights (Supplemental Figure 8). We thus used the
image-based calculated value of the digital volume to model
plant growth and considered it as a proxy measure of plant
aboveground biomass.
It has been shown that the growth of Arabidopsis plants fol-

lows the logistic model (Paul-Victor et al., 2010; Züst et al., 2011;
Tessmer et al., 2013), while the growth of maize (Zea mays)
kernels prefers to fit the Gompertz model (Meade et al., 2013).
However, the pattern of barley growth is poorly investigated. In
order to determine a suitable growth curve of biomass ac-
cumulation for barley plants under control conditions, we
compared five different mechanistic models, including linear,
exponential, monomolecular, logistic, and Gompertz curves (see
Methods; Supplemental Table 2). The results indicated that the
logistic model y ¼ Ky0ðy0 þ ðK2 y0Þe2 rtÞ has performed better

Figure 5. (continued).

data. Error bars represent the SE with 95% confidence intervals. The numbers of traits with significance at P < 0.001 are indicated above the bars. The
stress period is indicated in dashed box.
(B) The total experimental CV (colored in gray) and genetic CV across lines (green for control, orange for stressed, and blue for the whole set of plants)
over time. Data points denote the average CV value over all geometric traits. Solid lines denote the loess smoothing curves and shadow represents the
estimated SE.
(C) Statistical significance of genotype effect (left), treatment effect (middle), and their interaction effect (right), as detected by linear mixed models. The
shading plot indicates the significance level (Bonferroni corrected P values) in terms of LOD scores (-log probability or log of the odds score). Traits are
sorted according to their overall effect patterns. Trait identifiers are listed on the right, which are given according to Figure 6A. G, genotype;
E, environment (treatment).
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Figure 6. Trait Heritability and Trait-Trait Genetic and Phenotypic Correlations.

(A) Heat map showing broad-sense heritability (H2) of the investigated phenotypic traits over time (left), as exemplified by the digital volume (bottom
right). Box plot (top right) shows the average heritability of phenotypic traits from the four categories (right). Error bars, SE with 95% confidence intervals.
(B) Network visualizing significant phenotypic (rp; left) and genetic (rg; right) correlations among the 54 image-derived traits and three manual mea-
surements (brown nodes). For visualization purpose, only significant correlations are shown (P < 0.01 for rg and rp, and rp > 0.5). Trait identifiers are given
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than the other models to simulate biomass accumulation over
time (Figure 7A; Supplemental Figure 9). We found that the lo-
gistic model had comparable predictability of the real biomass
(FW and DW) to image-based data (the digital volume). For ex-
ample, the predicted maximum growth capacity showed about
the same (or even higher) correlation with FW than observed
biomass (r = 0.895 versus 0.892; Figure 7B).

Estimating plant growth rate as a free parameter from the
logistic model seems biologically reasonable since there is no
general accepted approach that measures the plant growth rate
over time. The model can also be used to determine the time
point (inflection point) at which individuals exhibit their maximum
growth rate (RIP; Supplemental Table 3). The mean values of RIP

within genotypes ranged from 3.05 3 105 px3/day (Eunova) to
5.863 105 px3/day (Heils Franken). The inflection point splits the
growth curve into two stages with opposite growth dynamics,
initially exponential growth and gradually reduced relative growth
rate as plants reach their asymptotic maximum growth capacity
(the final biomass) (Zeide, 1993). Notably, we observed that the
maximum growth rate is highly correlated with the FW (r = 0.88;
Figure 7B), indicating its significant impact on crop biomass yield.
However, the exact inflection time point has less impact on the
biomass accumulation (r = 0.55).

Modeling plant growth under stress conditions is more com-
plex. According to our observations of plant growth patterns, it
can be divided into two parts describing the stress period (bell-
shaped growth curve) and the recovery phase (linear regrowth
model) (see Methods; Supplemental Table 2). The bell-shaped
model y ¼ Aebt2 at2

fit well for stressed plants that underwent
wilting with a concomitant decrease in digital volume (Figure 7C;
Supplemental Figure 9; median R2 = 0.99), revealing a time point
(tmax ¼ b

2a) when plants showed the maximum digital volume.
However, the volume at tmax was not a good indicator of final
biomass (r = 0.27). Plants showed rapid growth after rewatering
in a relatively short recovery phase, which could be quantified
with a simple linear model (median R2 = 0.96). The regrowth rate
(Rrec) was determined from the model to show the speed of
recovery in different individuals (Supplemental Table 4), with
mean values over genotypes ranging from 9.57 3 104 px3/day
(MorexDH) to 2.57 3 105 px3/day (Isaria). Interestingly, the re-
covery growth rate was strongly correlated with FW (r = 0.81;
Figure 7D).

Since RIP (denoting the maximum growth rate for plants under
control conditions) and Rrec (indicating the maximum growth rate
for plants in recovery phase) are strongly correlated with final
biomass of control and stressed plants, respectively, we defined
their ratio for each genotype as “stress elasticity” as:

«stress ¼ Rrec

RIP

Ɛstress showed high correlation (r > 0.5) with several drought
tolerance indexes of different genotypes, such as yield stability
index (Bouslama and Schapaugh, 1984) and stress susceptibil-
ity index (Fischer and Maurer, 1978) (Figure 7E; Supplemental
Figure 10). We found that cultivars MorexDH, Perun, and
Victoriana showed the lowest tolerance to drought stress, while
Ursa, Isaria, and Pflugs Intensiv showed the highest tolerance.

DISCUSSION

High-throughput, automated digital imaging is a powerful tool to
help alleviate the phenotyping bottleneck in plants (Furbank and
Tester, 2011), as demonstrated by recent studies of plant/root
growth and development using a variety of high-throughput
phenotyping systems (Zhang et al., 2012; Moore et al., 2013;
Meijón et al., 2014; Slovak et al., 2014; Yang et al., 2014). In the
emerging era of plant phenomics, we urgently need automated,
rapid, and robust analytical methods for large-scale processing
of image data and extraction of extended features, as well as
appropriate analysis frameworks for data interpretation (Fiorani
and Schurr, 2013). We developed a general framework to meet
these requirements, both in terms of image processing and
postprocessing of phenotypic data. As proof of concept, we vali-
dated our methodology using phenotypic data of barley cultivars
collected in an automated plant transport and imaging platform.
This framework is readily extensible to the analysis of other plant
species (such as Arabidopsis, maize, and wheat [Triticum aestivum])
and other sensors (such as visible, NIR, and FLUO cameras).
Plants reveal complex phenotypic traits that are expected to

be extremely highly dimensional (Houle et al., 2010; Dhondt
et al., 2013). Increasing the number of phenotypic measure-
ments by image feature extraction is an important goal in phe-
nomics. As reported here, our pipeline is capable of parallel
processing of image data from multiple sensors and supports
the extraction of a large number of relevant traits (Klukas et al.,
2014). The number of traits, including image-based features and
model-derived parameters, extracted from our pipeline greatly
exceeds existing pipelines (Wang et al., 2009; Hartmann et al.,
2011; De Vylder et al., 2012; Green et al., 2012; Paproki et al.,
2012; Zhang et al., 2012; Camargo et al., 2014). We applied
sophisticated methods to select a list of representative traits
that are powerful in revealing descriptive phenotypic patterns of
plants. We observed that (1) there are clearly different patterns
of phenotypic profiles for plants from different treatments (Figure
3A), individual genotypes (Figure 3B), and from different agro-
nomic groups (Figure 4; Supplemental Figure 7); and (2) most of
the traits reflected variable treatment effects (Figure 5) and even
individual traits revealed genotypic differences in the response
to drought and in the recovery process (Figure 2D).

Figure 6. (continued).

as in (A) and colored according to their classification as indicated. Positive correlations are shown by solid lines in red, and negative correlations are
shown by dashed lines in blue.
(C) Pearson’s correlation of rg and rp over time. The test of relationship between matrices of rg and rp was performed using Mantel’s test, as exemplifying
on the right panel.
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Figure 7. Modeling of Plant Growth Based on Digital Biomass.

4648 The Plant Cell



Furthermore, the dynamic patterns of various phenotypic
traits provided a snapshot of the complex dynamic process of
plant growth (Figure 6), implying dynamic genetic control un-
derlying phenotypic plasticity of plant development. The time-
lapse phenotypic data provide a solid basis for functional
mapping of dynamic QTLs underlying trait formation by in-
corporating development features (estimated from mathematical
models) of trait formation into the statistical framework for QTL
mapping (Wu and Lin, 2006). Indeed, our pipeline is flexible
enough to use in large panels of mapping populations and is
easy to integrate into existing pipelines (as developed in R) for
association mapping (Aulchenko et al., 2007; Kang et al., 2008;
Lipka et al., 2012). For example, a set of mathematical param-
eters of the growth models that define the shape of plant growth
for different genotypes, such as inflection time points, the
maximum growth rate, and the maximum growth capacity from
the logistic growth curve (Figure 7A), can readily be used in
dynamic QTL mapping approaches (Wu and Lin, 2006).

Dissecting phenotypic components of complex agronomic
traits such as those associated with plant growth, yield, and
stress tolerance can be achieved by model-assisted methods
(called “the dissection approach”), in which complex pheno-
types are dissected into more simple and heritable traits (Tardieu
and Tuberosa, 2010). Such attempts have been made previously
to dissect the sensitivity of flowering time to environmental
conditions (Reymond et al., 2003; Yin et al., 2005a, 2005b). In
this study, we identified several new traits, such as maximum
growth rate (RIP, repeatability w2 = 0.96, calculated based on
log-transformed values) and stress elasticity («stress, w2 = 0.88),
which showed very high repeatability and are explicitly related to
plant growth and drought tolerance, thereby permitting identifi-
cation of stable QTLs controlling their expression. Notably, such
traits in the dissection approach typically are not measurable via
traditional phenotyping approaches. As a further step toward
biological insights from such image-derived parameters, we
calculated genetic correlations between traits, such as might be
considered for selection of desired phenotypic trait combina-
tions in breeding programs (Chen and Lübberstedt, 2010;
Stackpole et al., 2011; Porth et al., 2013). The identification of

a concerted negative genetic correlation of an indicator of water
content/drought tolerance (NIR signal; Figure 2D) with plant
height (Figure 6B) appears to be highly advantageous for
breeding strategies: Breeding for higher drought tolerance could
simultaneously select lower plant height and vice versa. From
a practical perspective, genetically correlated traits can be
considered as proxies of the target trait in association genetic
analyses, when measurements of the target trait are more time
and/or labor intensive. In this case, the image-derived parame-
ters plant volume and compactness are potential proxies for
biomass and tiller numbers, respectively (Figure 6B).
Altogether, the analysis framework presented here will help to

bridge the gap between plant phenomics and genomics, aiming
at a methodology to efficiently unravel genes controlling com-
plex traits.

METHODS

Plant Materials and Growth Conditions

We applied our methodology on a barley (Hordeum vulgare) panel and
produced a phenotypic map for barley plants from 18 genotypes (Table 1)
under control and drought stress conditions over time. We used a
LemnaTec HTS-Scanalyzer 3D platform to screen 16 German two-rowed
spring barley cultivars and two parents of a DH-mapping population
(cv Morex and cv Barke) for vegetative drought tolerance. The 16 geno-
types can be divided into three agronomic groups according to their
breeding history: group 1 (released before 1950), group 2 (released be-
tween 1950 and 1990), and group 3 (released after 1990). The parental
cultivars are considered as an independent group (DH group). Nine plants
per genotype and treatment for the 16 German cultivars and 6 plants for
the DH parents were investigated during one experiment from May to
July 2011. Plants grew under controlled greenhouse conditions and
were phenotyped on a daily basis over the entire experimental phase
using the fully automated system consisting of conveyer belts, a weighing
and watering station, and three imaging sensors. The growth conditions
in the greenhouse were set to 18°C during the day and 16°C at night. The
daylight period lasted ;13 h starting from 7 AM. Drought stress was
applied 4 weeks after sowing by withholding water. Control plants re-
mained well watered at a field capacity of 90%. After a stress period of
18 d, plants were rewatered to 90% field capacity and kept well watered

Figure 7. (continued).

(A) Plant growth prediction based on fitting of the digital volume using five different mechanistic models. The quality of fit (R2) of each model is given.
The best-fitted model-logistic model can be considered as the growth curve of barley plants. Several logistic-model derived parameters such as the
“inflection point” (IP; a time point with the maximum growth rate) and “maximum biomass” (the maximum growth capacity) are indicated. Dots represent
data points derived from images and curves represent the least-squares fit to the observed data. Shown is the result of fitting for a Victoriana plant. See
also Supplemental Data Set 2.
(B) Pairwise comparison of model-derived parameters, image-derived data, and manually determined FW or DW for control plants. Each point in the dot
plots (bottom-left quadrants) represents one plant from a specific genotype as colored and labeled at the bottom. Pearson’s correlation coefficients are
indicated in top-right quadrants.
(C) Curve fitting of digital volume in drought stress conditions. Plant growth before rewatering is modeled by one quadratic function and three different
bell-shaped functions. Growth in recovery phase is modeled by a linear function. Three vertical lines from left to right: the first inflection point, the time of
maximum biomass, and the second inflection point estimated from the best-fitted model (bell-shaped model 3). See also Supplemental Data Set 3.
(D) Pairwise comparison of model-derived parameters, image-derived data, and manual measurements for stressed plants.
(E) Comparison of plant growth between control and stress conditions. RIP represents the growth rate (px3/day) at the inflection point of control plants.
Rrec denotes the recovered growth rate (px3/day) in recovery phase of stress plants. estress, referred to “stress elasticity” calculated as the ratio of Rrec

and RIP. Two drought tolerance indexes, yield stability index (YSI) (Bouslama and Schapaugh, 1984) and stress susceptibility index (SSI) (Fischer and
Maurer, 1978), are provided for comparison.

Quantifying Plant Growth and Performance 4649

http://www.plantcell.org/cgi/content/full/tpc.114.129601/DC1
http://www.plantcell.org/cgi/content/full/tpc.114.129601/DC1


again for another 2 weeks. For each plant, top and side cameras were
used to capture images daily at three different wavelength bands: visible
light, FLUO, and NIR (Figures 2B and 2C). In this manner, thousands of
images were acquired for each genotype and treatment during the whole
phenotyping period.

Image Analysis

We used the barley analysis pipeline implemented in IAP software (v0.94)
(Klukas et al., 2014) to perform the image processing operations (Figure
2A). Briefly, image data sets and the corresponding metadata were au-
tomatically loaded into the IAP system from the LemnaTec database
using the built-in IAP functionality. The structured image data analysis
was performed using the barley analysis pipeline with optimized pa-
rameters. Image processing included four main steps: (1) preprocessing,
to prepare the images for segmentation; (2) segmentation, to divide the
image into different parts which have different meanings (for example,
foreground, the plant part; background, imaging chamber and machin-
ery); (3) feature extraction, to classify the segmentation result and produce
a trait list; and (4) postprocessing, to summarize calculated results for
each plant. The analysis was performed in a grid-computing mode to
speed up image processing. Analyzed results were exported in csv file
format via IAP functionalities, which can be used for further data in-
spection (Supplemental Data Set 1). The resulting spreadsheet includes
columns for different phenotypic traits and rows for data from different
time points. The corresponding metadata are included in the result table
as well. Depending on the computing resource available, IAP can process
large-scale image data in a reasonable time ranging from a few hours to
a few days (Klukas et al., 2014). An image data set of the size used in this
study can be processed within 3 d on a local PC with 6 GB of system
memory using four central processing unit cores.

Each plant was characterized by a set of 388 phenotypic traits, also
referred to as features, which were grouped into four categories: 60
geometric features, 100 FLUO-related features, 182 color-related fea-
tures, and 46 NIR-related features. These traits were defined by con-
sidering image information from different cameras (visible light, fluorescence,
and near infrared) and imaging views (side and top views). See the IAP online
documentation (http://iap.ipk-gatersleben.de/documentation.pdf) for details
about the trait definition.

Feature Preprocessing

The preprocessing of phenotypic data involves outlier detection and trait
reproducibility assessment. Defects may be introduced during the im-
aging period or in the image processing steps. We first adopted Grubbs’
test (Grubbs, 1950) to detect outliers based on the assumption of normal
distribution of phenotypic data points for repeated measures on repli-
cated plants of a single genotype for each trait. Grubbs’ test can be used
to detect if a particular sample contains one outlier (P < 0.01) at a time. The
outlier was expunged from the data set and the test was iterated until no
outliers were detected.

Next, we reasoned that phenotypic information should be robust and
informative enough (rather than noise) to infer differences in genotype or
treatment in terms of higher reproducibility over replicated plants in
comparison to random samples of plants. We evaluated the reproduc-
ibility of phenotypic traits by the Pearson correlation coefficient. The
correlation coefficient values were computed over each pair of replicated
plants (from the same genotype) for each treatment. For comparison, we
calculated correlation values over two sets of plants (with the same size)
from two randomly selected genotypes. The traits were considered as
highly reproducible if (1) themedian correlation coefficient over genotypes
was larger than 0.8, and (2) the coefficients were significantly higher in
replicates than in random plant pairs (Welch’s t test P < 0.001). The above
criteria should be satisfied in at least one treatment condition. Therefore,

we reduced the original 388 traits to 217 highly reproducible ones. After
removing redundancy, we obtained 173 high-quality traits (Figure 2A),
which were used for further analyses.

Plants with empty values were discarded for analysis. We obtained
a phenotypic matrix whose rows represented phenotyped plants over
time and whose columns indicated highly reproducible traits. The phe-
notypic profile was further normalized (if necessary) to zero mean and unit
variance, computed for all phenotyped plants over time.

Feature Selection

The resulting data sets may contain many redundant features (phenotypic
traits) which are correlated with each other. To reduce the excessive
correlation among explanatory variables, the so-called “multicollinearity,”
we implemented a method to select an optimal set of explanatory vari-
ables for a statistical model. This process is accomplished with stepwise
variable selection using variance inflation factors (VIFs), which is defined as

VIFi ¼ 1

12R2
i

where the VIF for variable Xi is obtained using the coefficient of de-
termination (R2) of the regression of that variable against all other ex-
planatory variables. Specifically, a VIF value is first calculated for each
variable using the full set of explanatory variables, and the variable with
the highest value is removed. Next, all VIF values with the new set of
variables are recalculated, and the variable with the next highest value is
removed, and so on. The above procedure is repeated until all values are
below the desired threshold. As a general rule, we considered VIF > 5 as
a cutoff value for the high multicollinearity problem. We used the VIF
function in the “fmsb” R package to calculate VIF.

Hierarchical Cluster Analysis and PCA

Hierarchical cluster analysis (HCA) and PCA were performed to visualize
the data globally. HCA builds a hierarchy from individuals by progressively
merging clusters, while PCA is a technique used to reduce dimensionality
of the data by finding linear combinations (dimensions; in this case, the
number of traits) of the original data.

To identify plants from the same genotype or agronomic groups with
similar phenotypic composition, we performed HCA with the normalized
databased on the list of highly reproducible traits. All analyses were
conducted with the complete linkage hierarchical clustering method and
Euclidean distances andwere visualized as a heatmapwith a dendrogram
using the “heatmap.2” function of the corresponding R package.

PCA was performed to characterize each plant based on phenotypic
composition and to indicate the affiliationswithin the phenotypic diversity of
four agronomic groups. PCA was performed using Bayesian principal
component analysis (the “bpca” function) as implemented in the R package
pcaMethods (Stacklies et al., 2007). The first six principal components (PCs
1 to 6) and the corresponding component loading vectors (PCs 1 to 6) were
visualized and summarized in scatterplots, in which principal components
are coded in color and in shape according to genotypes of origin (control
plants in blank points and stressed plants in filled points) and component
loadings (indicated in lines) are colored according to phenotypic classifi-
cation. PCA was performed for control, stress, and the total list of plants,
respectively (Figure 5; Supplemental Figures 6 and 7).

Phenotypic Similarity Tree and Mantel Test

As phenotypic traits are derived from heritable characters, the influence of
environmental factors and their interactions, it is possible to measure the
phenotypic relationship of different genotypes based on the available
traits. A “phenotypic similarity tree” was constructed to show the phe-
notypic relationship from a global perspective. Phenotypic similarity trees
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can be used to quantitatively describe the relationship of genotypes and
phenotypes and to compare the differences of phenotypes under different
conditions (Zhao et al., 2011). Genotypes from the DH groups were
excluded from the phenotypic similarity tree analysis.

First, a phenotypic profile for each genotype was calculated as the
average value from replicated plants. Next, a phenotypic distance (based
on the Euclidean measure) matrix of pairwise comparisons between
genotypes was estimated based on the normalized phenotypic profile.
The above analysis was performed for control and stressed plants, re-
spectively. For stressed plants, only data after DAS 34 were taken into
consideration because from that time point stressed plants showed
differences in their phenotypes from control plants (see the below SVM
method). Finally, the phenotypic similarity trees were generated based on
the distance matrices using the function “plot.phylo” implemented in the
R package ape (Paradis et al., 2004).

We performed a Mantel test (Mantel, 1967) to examine the extent of
correlation of the phenotypic distances between the control and stress
plant sets. A positive correlation would be expected in the case that plants
maintain their phenotypic similarity in different environments. We used the
phenotypic distance matrixes from above to conduct the analysis. The
Mantel test was computed using the function “mantel” in the corre-
sponding R package with 10,000 permutations (Monte-Carlo simulation)
and selecting Pearson’s correlation method.

Plant Classification Using SVM

Based on their phenotypic traits (features), plants from the same genotype
were classified into control and stress groups (Supplemental Figure 5A),
using the pairwise classification strategy of the SVM algorithm as pro-
vided by the libsvm library (Chang and Lin, 2011) via the R package e1071.
The SVM classifier was used to find “optimal” hyperplanes separating two
groups of plants in the multidimensional feature space. Using a linear
kernel, the SVM parameters were optimized through 2-fold cross-validation
to maximize the accuracy rate for classification and to minimize the mean
squared error for regression. Specifically, we trained a classifier on
a randomly chosen subset of half of the images (approximately nine
images) from one specific genotype or treatment from one specific day
(the training set) and then used the classifier to validate the other half of
the images (the validation set).

ANOVA and Trait Heritability Estimation

The observed variance in a particular phenotypic variable (trait) can be
partitioned into components attributable to different sources of variation,
for example, the variation of genotype (G), environment (E), and their
interaction (G3E). The ANOVA was performed using linear mixed model
(LMM) for each phenotype trait measured in each day, as defined:

y ¼ Xbþ Zmþ «

where y denotes a vector of individual plant observationsof a given trait;X and
Z are incidencematrices associating observations with fixed effects (in vector
b) and random effects (in vector m), respectively; « is the vector of random
residuals assuming « e Nð0;   Is2

«Þ (I is the identity matrix). Variance compo-
nents for each trait, such as genotypic effect g e Nð0;   Is2

GÞ, environment
effect e e Nð0;   Is2

EÞ , and their interaction effect ge e Nð0;   Is2
GEÞ, were esti-

mated in the LMM using residual maximum likelihood, as implemented in
ASReml-R v.3.0 (Gilmour et al., 2009). The statistical significance of variance
componentswas estimated by the log-LR test. The statistic for the log-LR test
(denoted by D) is twice the difference in the log-likelihoods of two models:

D ¼ 2ðlogðLaltÞ2 logðLnullÞÞ
where logðLaltÞ is log-likelihood of the alternative model (with more pa-
rameters) and logðLnullÞ is log-likelihood of the null model, and both log-
likelihoods can be calculated from the ASReml mixed model. Under the

null hypothesis of zero correlation, the test statistic was assumed to be
x2 distributed with degrees of freedom equal the difference in number of co-
variance parameters estimated in the alternative versus nullmodels. ResultingP
values from LMMwere corrected for multiple comparisons with the Benjamini-
Hochberg false discovery rate method (Benjamini and Hochberg, 1995). We
further calculated the LOD (log of odds) scores as the -log probability (corrected
P value) (Joosen et al., 2013). Hierarchical clusteringwasapplied to thematrix of
LOD scores consisting traits as rows and imaging days as columns.

As a relative indicator of dispersion, we calculated the coefficient of
genetic variance (CVg) as the ratio of the SD (square root of the among-
genotype variance) to the mean of the corresponding trait value across all
genotypes. This analysis was performed for control plants, stress plants,
and the whole set of plants, respectively (based on the mean value of
control and stress plants). Similarly, the total experimental CV (CVe)
was calculated as the sum of the square root of the experimental
variance, including controlled (i.e., treatment effect) and uncontrolled
variation, to the mean of trait value for one specific genotype. Since CV
is only reasonable to be calculated for data measured on a ratio scale
(rather an interval scale), only geometric traits were considered in this
calculation.

Heritability and Repeatability

The broad-sense heritability (H2) of a trait is the proportion of the total
(phenotypic) variance (s2

P) that is explained by the total genotypic variance
(s2

G) (Nyquist, 1991), which was calculated as follows:

H2 ¼ s2
G

s2
G þ s2

GE

�
2þ s2

e

�
2r

where r is the average number of replications.

Repeatability (w2) is the proportion of phenotypic variance attributable
to differences in repeated measures of the same genotype (in terms of
replicated plants). Repeatability was calculated as w2 ¼ s2

G=ðs2
G þ s2

e=rÞ,
where r is the number of replicated plants. Genotypic variance s2

G was
estimated by residual maximum likelihood assuming that GieNð0;   s2

GÞ.

Estimation of Genetic and Phenotypic Correlations

A bivariate LMM was used to estimate genetic correlations between each
pair to traits (the proportion of variance that two traits share due to genetic

causes) in each day. Assuming Yi¼
�
Y1
i

Y2
i

�
as the response vector for the

subject i with Yk
i the vector of measurement of the trait k (k ¼ 1;   2), the

bivariate model is defined as follows:

Yi ¼ Xibþ Zimi þ «i with
�
mi;Nð0;  GÞ
«i;Nð0;   RÞ

where the genetic covariate matrix G ¼
"

s2
g1 covg1g2

covg1g2 s2
g2

#
and the

covariance matrix of measurement errors R ¼
�

s2
«1 cov«1«2

cov«1«2 s2
«2

�
. With

the assumption that mi and «i are mutually independent, it is apparent that
VarðYiÞ ¼ ZiGiZT

i þ R. The genetic correlation between pairs of traits was

estimated as rg ¼ covg1g2ffiffiffiffiffiffiffiffiffiffiffi
s2

g1
s2

g2

p . The significance of the genetic correlation was

estimated using the log-LR test by comparing the likelihood of the model
allowing genetic covariance between the two traits to vary and the
likelihood of the model with the genetic covariance fixed to zero. The
above analyses were performed in ASReml-R v.3.0 (Gilmour et al., 2009).

Phenotypic correlations rp among different traits were calculated by
Pearson correlation. The significance of the correlations was tested using
the “cor.test” function in R.
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To test the relationship between matrices of genetic and phenotypic
correlations, a Mantel test (Mantel, 1967) was performed for the correlations in
eachday. Thegenetic andphenotypic correlationswere visualized in networks.
For visualization purpose, only significant correlations were shown (P < 0.01).

Plant Growth Modeling

Of the investigated traits, digital volume showed the best correlation with
manually measured FW and DW (Supplemental Figure 8) and thus was
considered to represent the digital biomass of plants.Wemodeled the plant
growth using digital biomass for control and stressed plants, respectively.

Growth in control conditionswasmodeledwith five differentmechanistic
models: linear, exponential, monomolecular, logistic, andGompertzmodels
(Supplemental Table 2 and Supplemental Data Set 2). To fit these models
using the linear regression function “lm” in R, the nonlinear relationship of
the models were first transformed into linearized forms. We fitted these
linearizedmodels using the digital volume of each control plantwith the data
from DAS 12 to DAS 58. The fitting quality of models was assessed and
compared based on their R2 and P values. Of the five models, the logistic
model fitted best, with the largestR2 (Supplemental Figure 9). Several useful
parameters (derived traits; Supplemental Table 3) can be derived from the
logistic model: (1) the intrinsic growth rate (R), which measures the speed of
growth; (2) the inflection point (IP), which represents the time point when
plant reaches the maximal speed of growth; and (3) the maximum final
vegetative biomass (Kmax), which was estimated for each plant on the basis
that the model could fit the data with the largest R2. To this end, Kmax was
initially assigned to the digital biomass at DAS 58 and the correspondingR2

is calculated. The process was iterated with 1% increment of Kmax at each
step, and the iteration was stopped when there was no increment of R2.

Modeling of growth in stress conditions is divided into two parts: (1)
growth before and during the stress phase (DAS 22 to 44) and (2) regrowth
during recovery phase (DAS 45 to 58). In the first phase, three different
bell-shaped curves and a quadratic curve were fitted to the data, while in
the recovery phase a simple linear model was used to characterize re-
growth (Supplemental Table 2 and Supplemental Data Set 3). The bell-
shaped models were first linearized and then fitted using the linear
regression function. The bell-shaped model y ¼ Aebt2 at2

fitted best and
was used for parameter extraction. Parameters estimated from this bell-
shaped model included: time point of maximum biomass (tmax ¼ b

2a) and
biomass at tmax (Supplemental Table 3). After stress, the linear model
revealed the speed of regrowth (Rrec).

Data and Software Availability

The image processing pipeline, the IAP software, is available at http://iap.
ipk-gatersleben.de/. Postprocessing of image data was conducted using
custom software written in R programing language (http://www.r-project.
org/; release 2.15.2). The image data set, analyzed results, and corre-
sponding R code are available at http://iap.ipk-gatersleben.de/modeling.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure 1. Reproducibility of Phenotypic Traits.

Supplemental Figure 2. Assessment of Trait Reproducibility Analysis.

Supplemental Figure 3. Trait Similarity.

Supplemental Figure 4. Phenotypic Traits Revealing the Stress
Symptom; Related to Figure 2D.

Supplemental Figure 5. Classification of Plants Based on the SVM
Methodology.

Supplemental Figure 6. PCA Performed over Time; Related to
Figure 4B.

Supplemental Figure 7. PCA Performed on Control and Stressed
Plants, Respectively; Related to Figure 4.

Supplemental Figure 8. Correlation Analysis of Manual Measure-
ments with Phenotypic Traits.

Supplemental Figure 9. Evaluation of the Performance of Growth
Curves.

Supplemental Figure 10. Comparison of stress elasticity and several
drought tolerance indexes.

Supplemental Table 1. The 54 Investigated Phenotypic Traits in This
Study.

Supplemental Table 2. Mechanistic Models Used for Modeling
Biomass Accumulation in This Study.

Supplemental Table 3. Growth Modeling of Control Plants.

Supplemental Table 4. Growth Modeling of Stressed Plants.

The following materials have been deposited in the DRYAD repository
under accession number http://dx.doi.org/10.5061/dryad.n3215.

Supplemental Data Set 1. Image-Derived Data Set Used in This Study.

Supplemental Data Set 2. Growth Modeling of Control Plants.

Supplemental Data Set 3. Growth Modeling of Stressed Plants.
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