Skip to main content
. 2014 Dec 30;26(12):4656–4679. doi: 10.1105/tpc.114.131417

Table 2. Performance of the Literature Reference Set, the Extended Reference Set, the Individual Reverse-Engineering Methods, and Their Ensemble Solutions on Correctly Predicting the NanoString nCounter Experimental Data.

Npred Nknown TP Precision Recall F
Literature reference set 7 289 6 0.857 0.021 0.041
Extended reference set 192 289 94 0.490 0.325 0.391
LeMoNe_qopt25R 155 289 78 0.503 0.270 0.351
LemoNe_qopt50R 136 289 60 0.441 0.208 0.282
ClrR 195 289 96 0.492 0.332 0.397
Union 172 289 84 0.488 0.291 0.364
Rank_rp 177 289 86 0.486 0.298 0.369
Rank_av 199 289 100 0.503 0.346 0.410
All_pred 249 289 125 0.502 0.433 0.465
Rank_av_2 271 289 141 0.520 0.488 0.504
ERF6 11 49 10 0.909 0.204 0.333
NAC13 30 85 27 0.900 0.318 0.470
NAC032 41 42 22 0.537 0.524 0.530
NAC053 32 57 13 0.406 0.228 0.292
RAP2.1 18 6 2 0.111 0.333 0.167
RAP2.6L 26 4 3 0.115 0.750 0.200
WRKY6 41 46 23 0.561 0.500 0.529
ERF6_2 13 49 11 0.846 0.224 0.355
NAC13_2 32 85 29 0.906 0.341 0.496
NAC032_2 61 42 35 0.574 0.833 0.680
NAC053_2 52 57 23 0.442 0.404 0.422
WRKY6_2 69 46 38 0.551 0.826 0.661

The table shows the literature reference set of 52,328 experimental protein-DNA and regulatory interactions, the extended reference set, the top 200,000 predictions of the individual reverse-engineering methods LeMoNe_qopt25R, LeMoNe_qopt50R, and ClrR, and their ensemble solutions by union (Union), mean reciprocal rank (Rank_rp), and average rank (Rank_av) aggregation, against the 289 NanoString nCounter experimental data. The “_2” also takes the predictions of the TF targets of the perturbed TFs into account (paths of length two). For the final abiotic stress gene regulatory network (Rank_av and Rank_av_2; underlined), each TF was also evaluated individually. All_pred points to the 785,913 predictions of all four individual inference methods. Npred = number of predictions made for TFs and target genes belonging to the nCounter experimental data; Nknown = number of experimental nCounter interactions; TP = number of true positives; Precision = TP/Npred; Recall = TP/Nknown; F = 2 × precision × recall/(precision + recall) = 2 × TP/(2 × TP + FP + FN).