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INTRODUCTION

Pompe disease (GSD II) is an autosomal recessive disorder caused by deficiency of the 

lysosomal enzyme acid-α-glucosidase (GAA, EC 3.2.1.20), leading to generalized 

accumulation of lysosomal glycogen especially in the heart, skeletal and smooth muscle, and 

the nervous system. Pompe disease was first described in a 7 month-old girl with severe 

muscle weakness who also had hypertrophic cardiomyopathy and generalized glycogen 

accumulation in various tissues throughout the body.1 Bischoff and Putschar also 

independently described the disease in the same year.2,3 Hers identified alpha-glucosidase 

deficiency and localized the GAA enzyme activity to the lysosomes of liver, heart and 

muscle tissues of five infants with classic Pompe disease and was the first to recognize 

impaired autophagy.4 Pompe disease is generally classified based on the age of onset as 

infantile (IOPD) when it presents during the first year of life, and late onset (LOPD) when it 

presents afterwards. Childhood, juvenile and adult-onset Pompe disease are examples of the 

late onset form. IOPD associated with cardiomyopathy is referred to as classic Pompe 

disease and in the absence of cardiomyopathy as non-classic Pompe disease.5,6,7 Similar to 

other lysosomal storage disorders, Pompe disease clinically presents as a continuum in its 

age of onset and multisystem involvement. The role of autophagy in the pathogenesis of 

Pompe disease, especially the late onset form, has increasingly become evident and may be 

clinically relevant. Autophagy (self-eating) is a highly complex, ubiquitously expressed, and 

evolutionarily conserved lysosomal degradative process, which is controlled by a multi-gene 

network (http://autophagy.lu/index.html). Its main function is to recycle obsolete cellular 

constituents and eliminate damaged organelles and protein aggregates. It involves dynamic 

membrane rearrangement for sequestration of cytoplasm and its delivery into the vacuole/

lysosome. Basal autophagy plays a role in cellular development and differentiation,8 innate 

and adaptive immunity9 and is induced in response to various stress conditions, such as 

nutrient limitation, heat, and oxidative stress. Ammonia derived from the deamination of 

glutamine via glutaminolysis supports basal autophagy and protects cells from tumor 

necrosis factor alpha (TNFα)–induced cell death.10 As a result basic metabolites are released 

into the cytoplasm for new synthesis or as sources for energy. Autophagy is also implicated 

in a wide range of disorders such as neurodegeneration, cancer and ageing and now various 

lysosomal storage diseases especially Pompe disease.11-14

Clinically, infants with classic Pompe disease typically present during the first few weeks of 

life with hypotonia, progressive weakness, macroglossia, hepatomegaly and hypertrophic 

cardiomyopathy. With this typical clinical presentation, diagnosis is usually straightforward. 

The natural history of IOPD is that most of these infants die by their first birthday. On the 
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other hand, the diagnosis of Pompe disease in older children and adults can be more 

challenging as these patients generally present with slowly progressive limb girdle type 

weakness and respiratory insufficiency without significant cardiomyopathy.5-7,15 Cardiac 

involvement in late-onset Pompe disease manifests as Wolff-Parkinson-White syndrome, 

left ventricular hypertrophy and dilatation of the ascending aorta. Rigid spine syndrome (a 

progressive limitation of the neck and trunk), scoliosis, and low body weight had also been 

reported in a subset of patients with LOPD with onset in adolescence and resulting in 

postural anomalies.16 The diagnosis of Pompe disease is usually made based on typical 

clinical presentation followed by the demonstration of deficiency of GAA enzyme activity 

in muscle, skin fibroblasts or more recently dried blood spots (DBS) as well as GAA 

mutation analysis.5,6 Diagnosis of Pompe disease through newborn screening is also now 

possible. Pompe disease is still considered to be a rare inborn error of metabolism with an 

estimated frequency of about 1/40,000 and a higher incidence in certain populations such as 

African Americans (1/14,000), Northern Europeans of Dutch origin and South East Asians. 

However, early results of newborn screening pilot studies from Taiwan and USA indicated a 

higher incidence. Interest in Pompe disease has grown significantly since the FDA approval 

of the first specific enzyme replacement therapy (ERT) with recombinant human acid α-

glucosidase (alglucosidase alfa) for this metabolic myopathy in 2006. Glycosylated 

alglucosidase alfa is targeted to the lysosomes through uptake via the mannose-6-phosphate 

receptors. Clinical experience with alglucosidase alfa showed more dramatic improvement 

of cardiac pathology compared to skeletal myopathy and especially in children more than 

adults. Abnormal autophagy in Pompe disease results in abnormal recycling of the cation 

independent mannose-6-phosphate receptors (CI-M6PR), which may explain the less 

satisfactory clinical response of skeletal muscles.17,18 Therefore, correction of abnormal 

autophagy in individuals with Pompe disease may improve therapeutic response to ERT.

In this report, we describe our experience with 12 patients with classic infantile (1 child), 

non-classic infantile (2 siblings), juvenile (1) and adult onset (8) Pompe disease one of 

whom had a first trimester miscarriage while receiving ERT. We also report 4 potentially 

pathogenic, novel GAA gene variants in this group and review the recent advances in the 

pathogenesis, diagnosis and treatment of individuals with Pompe disease.

Genetic Etiology and Prevalence

Pompe disease is also considered a polyglucosan vacuolar myopathy which results from 

absence or partial deficiency of the lysosomal acid α-glucosidase (GAA) activity due to 

recessive mutations in the autosomal GAA gene. GAA (NM_000152.3) is approximately 

18.3 kb long and contains 20 exons (Fig.1). Its cDNA has 2859 nucleotides of coding 

sequence which encode the immature 952 amino acid enzyme. GAA is synthesized as a 

membrane bound, catalytically inactive precursor which is sequestered in the endoplasmic 

reticulum. It undergoes sugar chain modification in the Golgi complex, followed by 

transport into the (minor) secretory pathway, or into lysosomes where it is trimmed in a 

stepwise process at both the amino- and carboxyl-termini.19,20 Phosphorylation of mannose 

residues ensures efficient transport of the enzyme to the lysosomes via the mannose 6-

phosphate receptor. GAA catalyzes the hydrolysis of α1→ 4 glucosidic linkages in glycogen 

at acid pH. Specificity for the natural substrate (glycogen) is gained during its maturation. 
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The activity of mature (76/70-kDa) GAA for its natural (glycogen) substrate is considerably 

more robust than its activity towards the artificial substrate (4-methylumbelliferyl-α-D-

glucopyranoside4; 4-MU), which is frequently used in in-vitro assays.20 However, 4-MU is 

also a substrate for several other enzymes including “leukocyte” neutral isoenzymes, 

glucosidase II (GANAB) and neutral α-glucosidase C (GANC), and maltase glucoamylase 

(MGAM). Muscle tissue and cultured fibroblasts do not contain MGAM allowing 

measurement of GAA (as the activity ratio of neutral to acid glucosidase, GANAB + 

GANC/GAA) without interference. Because MGAM is expressed in neutrophils, not in 

lymphocytes, the same activity ratio determined in purified lymphocytes has also been used 

for the diagnosis of GSD II which is not possible in dried blood spots (DBS). Using maltose 

or acarbose as an inhibitor of MGAM activity, the measurement of GAA activity in DBS 

samples with minimal interference by other α-glucosidases was accomplished which now 

serves as the basis for newborn screening and the non-invasive diagnosis for Pompe 

disease.21-23 As a result, multiplex newborn screening for Pompe disease and other 

lysosomal storage disorders using fluorometric, digital microfluidic and tandem mass 

spectrometry based GAA enzyme activity assays had been developed.24-27 In addition to 

qualitative and quantitative assessments of the disease burden, and clinical measures of the 

impact of Pompe disease on various affected systems, urinary glucose tetrasaccharide 

(Glc4), a biomarker of glycogen storage with 94% sensitivity and 84% specificity for Pompe 

disease, is frequently used in monitoring the response of patients to enzyme replacement 

therapy and as an adjunct to acid α-glucosidase activity measurements.28 Also, in addition 

to the traditional 1-dimensional thin layer chromatography (TLC) for urine oligosaccharide 

analysis, a new MALDI–time-of-flight/time-of-flight (MALDI-TOF/TOF) mass 

spectrometry based assay of urinary free oligosaccharides useful for the diagnosis of Pompe 

disease and other lysosomal storage diseases is now available.29

Infants with Pompe disease are considered as cross reactive immunologic material (CRIM) 

positive if they have residual GAA enzyme activity and CRIM negative if no residual GAA 

activity is detected. Based on pooled clinical studies data, 28% of Pompe disease cases are 

infantile-onset, of which about 85% are classic infantile-onset and three quarters of those are 

CRIM+(http://www.hrsa.gov/advisorycommittees/mchbadvisory/heritabledisorders/

nominatecondition/reviews/pompereport2013.pdf). CRIM status is usually determined by 

Western blot analysis in cultured skin fibroblasts, a process that can take a few weeks, and 

more recently via a blood-based CRIM assay that can yield results within 48 to 72 hours.30 

Recombinant human acid α-glucosidase (rhGAA) was first produced in dihydrofolate 

reductase deficient Chinese hamster ovary (CHO) cells, was targeted to heart muscle and 

corrected glycogen accumulation in fibroblasts from patients with Pompe disease.31 Prior to 

the initiation of enzyme replacement therapy, rapid determination of CRIM status in patients 

with infantile onset Pompe disease who at risk of developing neutralizing antibodies against 

rhGAA is extremely important.

Many normal allelic variants exist in GAA and are responsible for the three known 

alloenzymes (GAA1, GAA2, and GAA4). More than 450 mutations in GAA have been 

reported in individuals with Pompe disease. Nonsense mutations, large and small gene 

rearrangements, and splicing defects have been observed with any mutations being 
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potentially specific to families, geographic regions, or ethnicities (http://

www.pompecenter.nl/). Combinations of mutations that result in complete absence of GAA 

enzyme activity are seen more commonly in individuals with infantile-onset disease, 

whereas those combinations that allow partial enzyme activity typically have a later-onset 

presentation.32 GAA mutations result in mRNA instability and/or severely truncated acid 

alpha-glucosidase or an enzyme with markedly decreased activity. By means of homology 

modeling, and using the crystal structure of the N-terminal subunit of human intestinal 

maltase-glucoamylase as a template, analysis of the three-dimensional models of human 

GAA encompassing 27 relevant amino acid substitutions causing a processing or transport 

defect responsible for Pompe disease showed that they were widely spread over all of the 

five domains of GAA from the core to the surface of the enzyme and the predicted structural 

changes varied from large to very small.33

The c.1726 G>A (p.G576S) variant in cis with c.2065 G>A (p.E689K), also known as the c.

[1726A; 2065A] pseudodeficiency allele, causes low GAA activity in normal individuals 

and is relatively common in Asian populations.34,35 About 3.9% of apparently healthy 

Japanese were reported to be homozygous for this pseudodeficiency allele which may 

complicate newborn screening (NBS) and result in a high false positive rate in such 

populations.36 In their newborn screening pilot program in Taiwan, Labrousse et al. 

identified 36 babies (0.027% screened) who had no pathogenic GAA mutation but were 

homozygous for the c.[1726A;2065A] pseudodeficiency allele.37 In the United States, the 

prevalence of Pompe disease is approximately 1 in 28,000 with the prevalence of 

pseudodeficiency being less than 1% as confirmed by genetic analysis of healthy individuals 

with low GAA enzyme activity level.88

Clinical Presentation

Diagnosis of Pompe disease can be made clinically based on a typical clinical presentation 

as in infantile cases or suspected in a young child or adult with limb weakness, difficulty 

walking or limb girdle dystrophy. In combination with the clinical diagnosis, a histological 

diagnosis can be confirmed in a muscle biopsy which shows typical intra-myofibrillar 

cytoplasmic membrane bound glycogen, periodic acid–Schiff–positive vacuolar myopathic 

abnormalities and acid phosphatase positive vacuoles (Fig.2).38-42 Low GAA activity in 

muscle, skin fibroblasts and more recently dried blood spots confirms the diagnosis even in 

the absence of diagnostic histological findings which are not regularly detected in patients 

with LOPD. Patients presenting with either a limb-girdle syndrome or dyspnea secondary to 

diaphragm weakness should undergo further testing. A blood-based GAA enzyme activity 

assay is the recommended tool to screen for GAA enzyme deficiency, confirmed by a 

second test: either a second GAA enzyme activity assay in another tissue (such as 

lymphocytes, fibroblasts or muscle) or GAA gene sequencing.43 Deficient GAA enzyme 

activity leads to generalized tissue lysosomal glycogen accumulation especially in skeletal, 

cardiac, and smooth muscles.44,45 Typically, affected newborns present with hypotonia, 

upper and low limb weakness, macroglossia, hepatomegaly, failure to thrive, progressive 

hypertrophic cardiomyopathy and cardio-respiratory insufficiency leading (if untreated) to 

early death. Generalized glycogen storage had been identified in autopsy material from fetal 

tissues and adults with IOPD and LOPD respectively.46-54 On the other hand, older children 
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and adults usually present with slowly progressive limb girdle weakness, respiratory 

deterioration, rigid spine syndrome, scoliosis and low body mass.53,56 A growing number of 

large series of patients with LOPD had been described in the literature and were reviewed 

recently.57-64 As a result, the clinical presentation in LOPD has been expanded to include: 

ptosis, bulbar palsy and urinary incontinence. Taken together, the pathologic accumulation 

of glycogen in several tissues identified on autopsy examination and clinical experience with 

patients with Pompe disease revealed the following clinical correlations: diaphragm and 

intercostal muscles - respiratory failure, proximal skeletal muscle - progressive limb-girdle 

myopathy, genioglossus - tongue weakness, extraocular muscles - unilateral or bilateral 

ptosis, smooth muscle - abdominal pain/nausea/vomiting/diarrhea/urinary incontinence, and 

cerebral vasculature - cerebral aneurysm.65,66 However, the following associations do not 

seem to have clinical correlates: broadened cerebral gyri, increased number of cerebral and 

cerebellar astrocytes, lipofuscin deposits in neurons and astrocytes of the spinal cord and 

cerebellum, fibrillary gliosis and anterior horn cell degeneration, and glycogen vacuoles in 

the Schwann cells surrounding myelinated and unmyelinated axons of peripheral nerves.

Pathogenesis of Pompe disease

In Pompe disease, it is well established that the initial insult is due to the accumulation of 

the intra-lysosomal glycogen. However, recent studies showed that multiple other cellular 

abnormalities occur and that the pathophysiology of Pompe disease is far more complex 

than appreciated previously. In particular, the central role of autophagy is becoming more 

important now.67-78 Hers was the first to describe the histological features of autophagy 

which were then explicitly demonstrated using light and electron microscopic examination 

of skeletal muscle and confirmed by Engle and Dale.4,77,78 Large pools of autophagic debris 

in skeletal muscle cells especially in type II fibers, were seen in both mouse Gaa knockout 

model and patients with Pompe disease.70-73 MAP1LC3, often referred to as LC3, and its 

membrane bound isoform (LC3-II) is commonly used as a specific marker of 

autophagosomes.76 Skin fibroblasts from patients with Pompe disease had been shown to 

have abnormal morphology with abnormal mannose-6-phosphate receptor trafficking which 

secondarily impaired rhGAA uptake in these cells. By electron microscopy, various features 

of enhanced autophagy such as the accumulation of multi-vesicular bodies, expansion of 

Golgi apparatus, abnormal intracellular distribution of CI-MPR and reduced availability of 

the receptor at the plasma membrane were identified. These abnormalities resulted in less 

efficient rhGAA uptake, processing and correction.71 Accumulation of autophagosomes is a 

key pathological finding in skeletal muscle fibers and skin fibroblasts from patients with 

Pompe disease and is implicated in the poor response to ERT.79 Mutant GAA initiates 

autophagy via the induction of endoplasmic reticulum (ER) stress as well as Akt inactivation 

(ER stress-independent) using mTOR suppression. Treatment with insulin which activates 

Akt signaling restored phosphorylation of both Akt and p70S6 kinase and suppressed 

autophagy in patient fibroblasts. Also, combination therapy using rhGAA and insulin 

enhanced correct co-localization of the enzyme with lysosomes.80 On the other hand, 

suppression of autophagy in the whole organism by knocking out critical autophagic genes 

(Atgs), such as Atg5 or Atg7 is lethal.74,75
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Metabolic abnormalities in tissues and body fluids of GAA2/2 mice and humans 

respectively had also been identified. Abnormal glycogen metabolism (suppressed 

phosphorylase activity, elevated glycogen synthase, glycogenin, hexokinase activities, and 

glucose-6-phosphate) in the heart, skeletal muscles and liver from GAA2/2 mice was 

demonstrated.81,82 The effect of GAA deficiency in muscles of patients with Pompe disease 

extends to various vesicle systems linked to lysosomes including the early endosomes 

(rab5), recycling endosomes (transferrin receptor) and trans-Golgi network as they all 

showed increased immunoreactivity.83 Expression of the insulin responsive glucose 

transporter 4 was also markedly increased and partially co-localised with all vesicular 

markers, a phenomenon which may contribute to its abnormal homeostasis. In addition, 

abnormal energy metabolism, diminished plasma methylation capacity, elevated IGFBP1 

and IGFBP-3 levels were found in patients with LOPD.84 Low carbohydrate and high 

protein-calorie diet was beneficial.

Newborn Screening for Pompe disease

Over several decades and since the inception of the universal newborn screening programs 

for inborn errors of metabolism, the number of disorders and the laboratory assays used to 

detect them continued to be limited. However, the introduction of tandem mass spectrometry 

in the late 1990’s resulted in a significant and rapid expansion of the number of such 

disorders some of which may not fulfill the classical inclusion criteria of Wilson and 

Junger.85 Once again, tandem mass spectrometry based GAA enzyme activity assays had 

been shown recently to be potentially useful in newborn screening for Pompe disease and 

other lysosomal storage diseases using DBS [Table 5]. Newborn screening efforts for Pompe 

disease started in Taiwan since 2005. Recently, the United States Secretary’s Discretionary 

Advisory Committee for Heritable Disorders in Newborns and Children recommended 

universal newborn screening for Pompe disease, an effort which started in some states based 

newborn screening laboratories. Few other newborn screening pilots were conducted in 

other countries around the world [Table 5].86-97 It is unclear how asymptomatic cases 

destined to have LOPD but detected on newborn screening should be followed and 

managed.64 While newborn screening for lysosomal storage diseases including Pompe 

disease is gaining acceptance, some investigators and ethicists recommended that screening 

for these conditions should only be performed in the research context with institutional 

review board approval and parental permission.98

THE UNIVERSITY OF KANSAS MEDICAL CENTER CASE SERIES

We performed a retrospective review of all patients diagnosed with infantile (IOPD) and late 

onset Pompe disease (LOPD) at the University of Kansas Medical Center between 2000 and 

2013 (Tables 1-4). Muscle biopsies, GAA mutation analysis and GAA enzyme activity of 

muscle, skin fibroblasts, amniocytes and dried blood spots (DBS) were performed at various 

medical centers and reference clinical laboratories using standard techniques. Medline 

database was searched for reports of large series of patients with IOPD and LOPD, autopsies 

performed on patients with IOPD and LOPD and abortuses/abortions as well as those reports 

which describe new diagnostic techniques related to Pompe disease.
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We identified 3 patients with infantile (1 classical and 2 siblings with non-classical), and 9 

patients with late onset (1 patient with juvenile and 8 with adult) Pompe disease. 

Male:female ratio was 1.4:1 and the average age of onset was 17.7 years (0-39). In this 

group, all 3 patients with infantile Pompe disease (cases 1, 2, 3) had varying degrees of 

hypertrophic cardiomyopathy which was most severe in patient 3. Unlike patients 1 and 2 

(Fig.3A, B), patient 3 (Fig.3C) appears to have classical Pompe disease with severe 

hypotonia and minimal strength in the upper and lower limbs. Overall, the presenting 

symptom was limb girdle weakness in 43% while 25% presented with shortness of breath 

and 17% had myalgia. Delay from first symptom to diagnosis was 6 years (1-22). In LOPD 

cases, shortness of breath affected 3/7 cases, presenting within 1-2 years of the first 

symptoms. Besides limb weakness, scapular winging was evident on presentation in 8% and 

4/7 (57%) had Trendelenburg gait. Low back pain was reported in 1 LOPD patient (12) in 

whom back surgery was done. MRI examination showed lower limb muscle fatty infiltration 

and edema (patient 4) and dilated cerebral -circle of Willis- vessels (patient 8). 

Echocardiography revealed septal hypertrophy in two patients, left ventricular hypertrophy 

(LVH) in one patient and hypertrophic cardiomyopathy (HCM) in the child with classical 

IOPD. Urinary tetrasaccharide (Hex4) level was elevated in two patients (3, 8) and normal 

in three other patients with LOPD (4,7,9). Creatine kinase level ranged from 59 to 1,684 

IU/L (mean 878) and electromyography showed evidence of myotonia in one out of four 

studied patients, with fibrillation and myopathic motor unit action potential (MUAP) present 

in this and another patient (6 and 7). The other 2 cases were either normal (episodic severe 

myalgia) or revealed myopathic MUAPs. DBS-GAA enzyme activity was less than 40 % of 

the lower normal limit (10 pmol/punch/hour) in 7/9 patients and in the other 2 was in the 

borderline range of 40 to 50% of normal lower limit.

Most patients (8/12) had muscle biopsy as their first test followed by DBS-GAA activity 

level as a confirmatory test. Out of three IOPD cases, two underwent muscle biopsy; Case 2 

showed vacuoles and microaggregates of glycogen on PAS confirmed to consist of abundant 

membrane bound glycogen on ultrastructural analysis (and markedly reduced muscle GAA 

enzyme activity) and Case 3 had vacuoles in 50% of muscle fibers and accumulation of 

glycogen in less vacuolated fibers that was also seen in smooth muscle fibers of erector pili 

muscles on skin biopsy. Altogether all 9 LOPD cases underwent muscle biopsy except for 

Case 5, 7/8 muscle biopsies were suspicious for Pompe disease and the eighth biopsy 

showed nonspecific myopathic changes. Vacuoles were seen in 5 LOPD cases along with 

abnormal glycogen deposition on Periodic Acid Schiff (PAS) stain while the other 2 cases 

showed abnormal glycogen deposition without vacuolation. Hematoxilin and eosin stained 

muscle tissue showed rimmed vacuoles in 2 cases and non-rimmed in an additional 2cases. 

In one of these cases, rimmed vacuoles could not be confirmed on modified Gomori 

trichrome stain, but in Case 4 (severe episodic myalgia), there were non-rimmed vacuoles 

only seen on trichrome. Acid phosphatase positive vacuolar aggregates were seen in 

2/5vacuolated muscle biopsies. Abnormal glycogen deposition on PAS was present in 7 

cases and was the only finding in 2/7 biopsies suggestive of Pompe.

Ten patients received ERT and reported subjective improvement although this was not 

measurable on clinical examination except in case 2 with non-classical IOPD (see below) 

and case 9 where objective improvement in proximal arm strength was noted 4 months after 
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the start of ERT. Anti-rhGAA antibody titers were elevated in 6 patients and negative in 2 

patients (Table 4). In this cohort, all patients are still alive except patient 11 who was 

intolerant of ERT and died at 53 years of age due to progressive and severe respiratory 

insufficiency. GAA mutation analysis was done in 8/12 patients and a total of 12 mutations 

and 4 variants of unknown significance (VUS) were identified. All patients with identifiable 

mutations were compound heterozygotes except case 3 with classical IOPD who was “c.

1843G>A; p.Gly615Arg ” homozygote. Two unrelated patients were heterozygous for the 

common “IVS1-13T>G/c.-32-13t>g” mutation. The novel (heterozygous) mutation 

(c.-1402A>T p.I468F) was identified in 2 unrelated patients while another novel splice site 

(c.546G>A) mutation was found in case 6. Both novel alleles are predicted in-solico to be 

pathogenic. In this series, family history was positive in 3 sib pairs (1 and 2; 5 and 6; 10 and 

11). Next, we describe 4 cases in this cohort in more details.

Patients 1 and 2 (Fig. 2A, B) are African American sib pair. The older brother was 

diagnosed with hypertrophic cardiomyopathy at 2 months of age when he was also found to 

be carnitine deficient. Cardiomyopathy did not resolve despite carnitine supplementation. At 

5 years of age, he presented with skeletal muscle weakness and respiratory failure triggered 

by influenza pneumonia for which a tracheostomy was placed. He then became ventilator 

dependent. Membrane bound glycogen was abundant on muscle biopsy and muscle and 

DBS GAA enzyme activity were markedly reduced. About 18 months following the 

initiation of ERT, daytime ventilation was discontinued and muscle strength improved 

significantly. His younger sister was diagnosed prenatally with infantile Pompe disease via 

amniocentesis. GAA activity in amniocytes was undetectable. However, postnatal GAA 

activity in DBS was detectable but reduced. She had mild macroglossia (Fig. 2B) and her 

echocardiogram showed septal hypertrophy only. She is doing quite well despite the delay in 

starting her enzyme replacement therapy at 10 months of age. Both siblings maintain 

negative anti-rhGAA antibody titer. CRIM status was not tested in either sib since they had 

significant residual GAA activity and by definition would be CRIM positive.

Patient 3 is 8.5 year old Vietnamese boy (Fig.1A) with severe, classical, infantile Pompe 

disease and severe hypertrophic cardiomyopathy. His diagnosis was made at 4 months of 

age and received ERT almost immediately. Cross Reactive Immunologic Material (CRIM) 

testing of his skin fibroblasts by Western blot analysis was positive (Duke University). He 

continues to be ventilator dependent with minimal muscle power in both upper and lower 

limbs. He maintained a negative anti-rhGAA antibody titer until 1 year ago when he 

developed a non-neutralizing low titer at 1:200.

Patient 4 had a muscle biopsy at 10 years of age when she presented with severe recurrent 

myalgia. A provisional diagnosis of “atypical” dermatomyositis was made for which she 

was treated with steroids and hydroxychloroquine. Numerous other laboratory studies were 

uninformative. A second muscle biopsy was done at 18 years of age and showed membrane 

bound glycogen. Low GAA enzyme activity was detected in muscle tissue and skin 

fibroblasts while DBS GAA activity was borderline reduced at 4.8 (normal 10-49). Only one 

predicted to be pathogenic novel GAA mutation (c.1402A>T; p.I468F) was identified. 

Deletion/duplication analysis using exon array (GeneDx, Gaithersburg, MD) was negative 

as well.
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Case 7 presented as a young adult with progressive skeletal muscle weakness. The diagnosis 

of Pompe disease was made based on abnormal findings in muscle biopsy. GAA activity in 

DBS was low and GAA mutation analysis revealed compound heterozygosity for the 

common mutation (IVS1-13T>G) and a novel, likely deleterious, variant (p.R527F). She 

became pregnant for the first time while she was receiving alglucosidase alfa. She suffered a 

spontaneous miscarriage at 10 weeks gestation. Unfortunately, no pathological examination 

of the abortus was done.

Discussion, Current Management and Therapeutic Options

Our clinical experience with the 12 patients with Pompe disease which we report here is 

consistent with the literature. Findings in our case series suggest that a short latency between 

muscle symptoms and shortness of air should raise suspicion for LOPD. Muscle biopsy 

histopathology was done in 10/12 cases and was the first test to yield suspicion for Pompe 

disease in 8/12 cases and the second test in 2 out of the 4 remaining cases. DBS GAA 

enzymatic activity was done in 9/12 cases, being the first test in 2 cases, the second 

confirmatory test in 6 cases (in 5/6 after muscle biopsy) and the third test in Case 4 

following skin fibroblasts and muscle GAA analysis. Our only patient with classic IOPD 

who was CRIM positive still has profound muscle weakness and hypotonia despite early and 

adequate ERT and a very low non-neutralizing anti-rhGAA antibody titer which suggests 

another mechanism for his suboptimal clinical response. Case 11, an adult with LOPD, died 

due to progressive respiratory failure which was associated with a high anti-rhGAA 

antibody titer, an experience consistent with what Patel et al reported recently.99 Our 26-

year old Caucasian female (case 7) who became pregnant for the first time while receiving 

alglucosidase alfa had a serious adverse event as she suffered a spontaneous miscarriage at 

14 weeks gestation. Unfortunately, we did not have access to the product of conception and 

therefore we were unable to determine the genotype. Her fetus may or may not have been 

affected with Pompe disease. While recombinant enzyme replacement therapy is generally 

thought to be safe during pregnancy, a possible direct/indirect detrimental effect on that 

pregnancy could not be excluded. In addition, the maternal anti-rhGAA antibodies may have 

played a role as well. While high sustained antibody titers in infantile and more recently 

late-onset Pompe disease correlate with poor outcome, their potential effect in pregnancy 

had not be reported yet.99 On the other hand, there are only two reports in the literature 

which describe a normal outcome in 2 babies whose mothers with Pompe disease were 

successfully and safely treated with alglucosidase alfa throughout their pregnancies.100,101 

More clinical experience with the prenatal use of alglucosidase alfa is needed to establish its 

safety.

Since the recognition that maltose and acarbose inhibit neutral α-glucosidase activity, 

reliable measurement of acid GAA activity in DBS became feasible and was quickly 

adopted as a non-invasive alternative to skin fibroblasts and muscle biopsies which are 

invasive, more expensive and take longer time to process. Preisler et al used this approach to 

identify three patients with LOPD among 38 patients with unclassified LGMD (8%).15 Also, 

as newborn screening for metabolic disorders utilizes blood collected on dried filter papers 

(DBS), various platforms to measure GAA activity in DBS were developed. They include: 

tandem mass spectrometry, fluorometric and microfluidics based enzyme assays (Table 5). 

Dasouki et al. Page 10

Neurol Clin. Author manuscript; available in PMC 2015 August 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Emerging evidence from these studies suggests a higher incidence of Pompe disease 

(1/28,000) compared to lower estimates reported previously. In addition, GAA 

pseudodeficiency (< 1% in Caucasians and up to 3.9% in Asians) was recognized which 

prompted an adjustment of the newborn screening algorithms.37

Based on a pooling of clinical studies, 28% of Pompe disease cases are infantile-onset, of 

which about 85% are classic infantile-onset and 75% of those are CRIM positive.30,103,104 

CRIM negative patients with classic IOPD very likely will develop neutralizing antibodies 

upon exposure to rhGAA. Such antibodies limit the efficacy of ERT. Induction of immune 

tolerance using various regimens such as rituximab with plasma exchange or alternatively 

the combination of rituximab and methotrexate with or without intravenous gamma-globulin 

is an important therapeutic intervention which should be accomplished prior to initiation of 

ERT in such naïve patients.102-106 The recent development of a blood-based assay for 

determining CRIM status is expected to facilitate this process in a timely manner.

The growing literature on Pompe disease reveales significant clinical variability in the age of 

onset of symptoms among patients with late-onset Pompe disease which can be only 

partially predicted by their GAA genotype. Recently, expert opinion based guidelines about 

newborn screening, confirmatory and symptomatic diagnostic testing as well as management 

of patients with Pompe disease had been published.7,107 International Pompe disease 

registry (https://www.registrynxt.com/Pompe/) as well as country based registries had been 

established.87-92 Recent reports from these registries indicate that diagnostic delay for 

patients with Pompe disease is still significant, less than 2/3 of muscle biopsies done in 

French patients showed specific features of Pompe disease thus confirming the importance 

of GAA enzymatic assessment, and high prevalence of scoliosis (33%) especially among 

patients with IOPD.109,110,113 Systematic analysis of data collected from the Pompe 

Registry will help improve recognition of the disease, enhance understanding of its variable 

course and the effect of direct interventions such as current ERT and other potential future 

therapies.

The literature contains 29 autopsy examination reports of Pompe patients including 9 in the 

non-English literature and 8 reports of autopsies of fetuses affected with Pompe disease. 

Collectively, these studies demonstrated the extensive and generalized accumulation of 

lysosmal glycogen in various organs including the brain, well beyond the liver, heart and 

skeletal muscles. In the brain, the cytoplasm of Schwann cells but not neurons was shown to 

accumulate glycogen. This observation suggests that progressive neurodegeneration of the 

brain is not expected. While glycogen deposition was also demonstrated in the spinal cord 

and peripheral nerves, there is no clinical correlate to this finding since peripheral 

neuropathy had not been demonstrated clinically, by electromyography or by histologic 

examination of muscle. These observations are consistent with the report of better than 

expected cognitive outcomes in a small group of 10 children with classic infantile Pompe 

disease treated with alglucosidase alfa. They were evaluated prospectively both 

developmentally and by neuroimaging.114 Cognitive development at school age improved 

and ranged between normal and mildly delayed. Periventricular white matter abnormalities 

were found in 4 children. While treatment with alglucosidase alfa had been demonstrated to 

significantly increase survival in patients with IOPD, and since Pompe disease affects many 
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tissues, including the brain, rhGAA is not expected to have beneficial effects on the central 

nervous system since it does not cross the blood-brain barrier.

The new insights into the complex pathogenesis of Pompe disease explain, at least partially, 

the suboptimal clinical response in patients with LOPD and some patients with IOPD. As a 

result, novel therapies including modified ERT are being investigated. Novel experimental 

modified rhGAA therapies include glycosylation-independent lysosomal targeting of GAA 

(rhGAA-GILT), ICAM-1-targeted nanocarriers which aim to enhance delivery of α-

glucosidase and muscle glycogen clearance, and neo-GAA.115-117 The neo-rhGAA is a 

carbohydrate-remodeled enzyme with higher affinity for the cation-independent mannose 6-

phosphate receptor and improved delivery to muscles of Pompe mice. Since CRIM negative 

IOPD patients are likely to develop neutralizing anti-rhGAA antibodies, early identification 

of their CRIM status and initiation of immunomodulation tolerance therapy using various 

approaches are very important for these patients. Co-administration of the pharmacologic 

chaperone, Duvoglustat hydrochloride (AT2220), with alglucosidase alfa in Pompe disease 

fibroblasts, blood cell lines and in-vivo appears to stabilize the enzyme and enhance its 

activity.117-119 A bacterial glycosidase which enables mannose-6-phosphate modification 

also improves cellular uptake of yeast-produced recombinant human lysosomal enzymes.120

Additional potentially promising investigational therapeutic approaches include: autophagy 

suppression, gene therapy using modified single-stranded oligonucleotides, short hairpin 

ribonucleic acids (shRNA), transcription factors (TFEB), AAV1-CMV-hGAA, 

hematopoietic stem cell (HSC) transplantation and induced pluripotent stem cells 

(iPS).120-134 GILT-tagged rhGAA (BMN 701), Duvoglustat hydrochloride (AT2220), neo-

rhGAA and AAV1-CMV-hGAA are currently in clinical trials.

Conclusion and Future Directions

Pompe disease is the first metabolic myopathy for which corrective targeted enzyme 

replacement therapy was developed. Besides limb-girdle weakness and scoliosis in LOPD 

cases, shortness of air affected nearly half of our cases and led to early presentation within 

the first 2 years of symptom onset. The most common first diagnostic test to raise Pompe 

suspicion was muscle biopsy and confirmation was often with DBS assay. DBS GAA 

enzymatic activity levels in the borderline 40 to 50% range warrants further investigation. 

The efficacy of the current form of ERT is generally variable and unpredictable especially in 

patients with LOPD given the long diagnostic delay. There is a need for improved early 

recognition and therapy for this disorder which will be aided by improved understanding of 

its pathogenesis. Novel therapies based on improved understanding of the disease 

pathogenesis are already under study and some are in clinical trials. Early identification 

through newborn screening and more effective and specific therapies will likely significantly 

improve the outcome for all patients with Pompe disease.
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KEY POINTS

• Pompe disease, also known as type II glycogenosis, is a progressive autosomal 

recessive glycogen storage disease caused by deficiency of lysosomal acid alpha 

glucosidase (GAA) primarily in skeletal and cardiac muscle with age of onset 

ranging from infancy through adulthood. Extramuscular phenotypes are also 

recognized.

• Recognized clinical presentations of Pompe disease include infantile (with/

without cardiomyopathy) and late onset (childhood, juvenile and adult) forms. 

In addition to cardiomyopathy in the classic infantile form, musculoskeletal 

signs and symptoms are the most frequent.

• Excessive lysosomal glycogen storage and defects in autophagy are the main 

determinants of pathogenesis of Pompe disease.

• Diagnosis of symptomatic individuals as well as screening in healthy newborns 

is now possible by demonstrating low GAA enzyme activity in dried blood 

samples complemented by DNA mutation analysis.

• Diagnostic gaps in Pompe disease patients across the disease spectrum continue.

• In our cohort of patients, 3 with infantile and 9 with late onset Pompe disease, 

we identified 4 novel, potentially pathogenic GAA mutations and one pregnancy 

which was complicated by prenatal exposure to recombinant human rhGAA and 

spontaneous miscarriage.

• In addition to supportive therapy, rhGAA enzyme replacement therapy (ERT) is 

now available. Oral chaperone therapy, modified rhGAA, autophagy 

suppression and gene transfer represent potentially promising novel therapies 

that are being tested in clinical research trials.

Dasouki et al. Page 20

Neurol Clin. Author manuscript; available in PMC 2015 August 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 1. 
Schematic representations of GAA genomic location and structure (A) and its protein 

structure (B). GAA maps to chr17q25.3 and consists of 20 (19 coding) exons which encode 

952 amino acids. Mutations (DNA variants) identified in this study are shown according to 

their respective genomic position. Novel variants are boxed. GAA has 4 isoforms (a-d), 2 

catalytically active sites (*), 3 disulfide bonds (s-s) and 7 N-linked glycosylation sites (∇).
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Figure 2. 
Histological examination of muscle biopsies of patients 9 (A, B) and 4 (C, D). H&E stained 

muscle biopsy (A) from patient 9 shows extensive vacuolar changes (asterisk) and positive 

acid phosphatase aggregates (#) in panel B. The H&E stained muscle biopsy (C) from 

patient 4 is essentially unremarkable while the muscle electron micrograph (D) showed 

membrane bound glycogen deposits and mildly distorted mitochondrial morphology.
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Figure 3. 
Photographs of patients with infantile onset Pompe disease. The sib pair (A, B; patients 1 

and 2 respectively) have non-classical IOPD while patient 3 (C) has classical IOPD with 

macroglossia, tracheostomy and severe hypotonia. Abnormal EKG of patient 3 shows sinus 

tachycardia, short PR interval, ST segment and T wave abnormalities as well as left 

ventricular hypertrophy.
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Table 3
Respiratory status in patients with infantile and late onset Pompe disease

In this group of patients, 4/12 (33%) needed assistive ventilation including invasive ventilation in the 2 

patients with infantile Pompe disease.

Patient FVC (L) Ventilatory support (onset in years)

1 - -

2 0.96 Tracheostomy/5

3 - Tracheostomy/0.5

4 4.6 -

5 - -

6 5.08 -

7 3.8 -

8 4.06 -

9 1.7 BiPAP/39

10 3.15 -

11 2.00 BiPAP/48

12 4.14 -

Abbreviations: BiPAP (Bi-Level Positive Air Pressure), FVC forced vital capacity, L liter.
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Table 5

Newborn screening studies for Pompe disease.

Country Newborns screened Screening Method/Criteria Outcome Ref.

USA-Washington 111,544 MS/MS; cutoff of < 2.60 mmol/h/L 
(<15% of mean)

4 PD cases (1/27, 800), 3 
carriers with an additional 
pseudodeficiency allele, 6 
were heterozygotes for a 
pseudodeficiency allele only; 
PPV 0.24; FPR 1/8600

86

5055 MS/MS; cutoff: < 20% daily mean 
activity

5 with low GAA activity 87

USA-Missouri 27,724 digital microfluidics 3 PD cases (1/8,657): 1 
classic, 1 non-classic IOPD & 
1 LOPD; 3 false positive 
results (carrier status 
unknown), 1 
pseudodeficiency, 2 carriers, 2 
pending cases

88

USA-Illinois 8,012 digital microfluidics 2 false positive 89

Taiwan 344,056 (2005-2009) fluorescence assay, NAG/GAA > 60 & 
GAA inhibition by acarbose > 80%, 2nd 

tier: lymphocyte GAA activity < 5% of 
normal mean & GAA activity in skin 
fibroblasts, GAA sequencing

13 LOPD (1/26,466) & 6 
IOPD cases

90

473,738 (2005-2011) fluorescence assay, NAG/GAA ratio ≥ 
100

9 IOPD & 19 LOPD cases; 
NAG/GAA cutoff ratio≥ 60 
(PPV) of 63.4%

91

Japan 496 healthy controls, 29 PD cases 
& 5 PD carriers (530 DBS)

GAA activity < 8% of normal mean & % 
GAA inhibition > 60% and NAG/GAA 
ratio > 30

5 healthy pseudodeficiency 
homozygots & 1 obligate 
carrier

92

Italy 3403 Fluorescent GAA activity; cutoff: < 35% 
of average control activities

3 cases with low GAA activity 
(final status not confirmed)

93

Hungary 40,024 MS/MS followed by molecular 
confirmation

9 PD cases 94

Germany 3251 MS/MS & fluorimetric assays; repeat 
testing in < 0.5% of DBS samples

No PD cases 95

944 (symptomatic individuals) 14 PD cases and 8 GAA 
carriers

Colombia 4700 (DBS samples from 
symptomatic, high risk 
individuals; 3 months – 73 years 
old))

Fluorometric microfluidic, molecular 
GAA analysis (some)

16 PD cases 96

Austria 34,736 (January - July, 2010) ESI-MS/MS 4 confirmed by GAA mutation 
analysis (1/8684). Most GAA 
missense mutations were 
LOPD; PPV 80%; 1 false 
positive case (FPR 30 per 
million)

97

Abbreviations: acid glucosidase (GAA), false positive rate (FPR), infantile onset Pompe disease (IOPD), late onset Pompe disease (LOPD), 
MS/MS tandem mass spectrometry, neutral alpha-glucosidase (NAG), Pompe disease (PD), positive predictive value (PPV).
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