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Abstract
In this work we describe the synthesis of mono- and divalent β-N- and β-S-galactopyranosides and related lactosides built on sugar

scaffolds and their evaluation as substrates and inhibitors of the Trypanosoma cruzi trans-sialidase (TcTS). This enzyme catalyzes

the transfer of sialic acid from an oligosaccharidic donor in the host, to parasite βGalp terminal units and it has been demonstrated

that it plays an important role in the infection. Herein, the enzyme was also tested as a tool for the chemoenzymatic synthesis of

sialic acid containing glycoclusters. The transfer reaction of sialic acid was performed using a recombinant TcTS and 3’-sialyllac-

tose as sialic acid donor, in the presence of the acceptor having βGalp non reducing ends. The products were analyzed by high

performance anion exchange chromatography with pulse amperometric detection (HPAEC-PAD). The ability of the different

S-linked and N-linked glycosides to inhibit the sialic acid transfer reaction from 3’-sialyllactose to the natural substrate N-acetyllac-

tosamine, was also studied. Most of the substrates behaved as good acceptors and moderate competitive inhibitors. A di-N-lacto-

side showed to be the strongest competitive inhibitor among the compounds tested (70% inhibition at equimolar concentration). The

usefulness of the enzymatic trans-sialylation for the preparation of sialylated ligands was assessed by performing a preparative
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sialylation of a divalent substrate, which afforded the monosialylated compound as main product, together with the disialylated

glycocluster.
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Introduction
Trypanosoma cruzi, the agent of American trypanosomiasis,

affects millions of people in Latin America [1,2] and is trans-

mitted to animals, including humans, by triatomine insects. The

parasite is passed from the mother to the fetus during preg-

nancy, and also by blood transfusions and organ transplants [3].

North American and European countries are now at risk as a

consequence of globalization and immigration, as Chagas’

disease is usually not tested in blood banks [4-6].

Terminal β-galactopyranosides (βGalp) present in T. cruzi

mucins play an important role in the interaction between the

parasite and the host since they are the acceptors for sialic acid

transferred by the unique trans-sialidase (TcTS) [7-9] from host

cells instead of using a sialyltransferase and the donor

nucleotide CMP-sialic acid [10]. Although TcTS can be consid-

ered as “promiscuous” with respect to the sialyl donor and the

β-galactopyranoside acceptor, it should be noted that the reac-

tion is in fact specific in vivo. Only sialic acid-linked α(2→3) to

β-galactopyranosides in glycoconjugates is transferred to

terminal β-galactopyranoside units in the acceptor substrate, to

construct the same type of linkage [11,12]. TcTS also transfers,

efficiently, α(2→3)-linked N-glycolylneuraminic acid to

terminal βGalp groups [13,14].

The search of efficient inhibitors for TcTS is an attractive field

of research not only for their potential use for chemotherapy,

since there is no equivalent enzymatic activity in the human

host, but also because it could provide a tool for probing the

biological functions of the enzyme. Given the 3D structure of

TcTS [15-18], inhibitors may be directed to the sialic acid

binding site or to the galactose acceptor site. Inhibitors of TcTS

binding to the βGalp acceptor site would be highly selective, as

other sialidases lack this interaction. In this direction, a group of

octyl β-galactopyranosides and octyl N-acetyllactosaminides

were described as substrates as well as inhibitors of the enzyme

[19]. Also, the synthesis of the mucin oligosaccharides allowed

the study of their acceptor and inhibitory properties [20,21].

Lactose derivatives were shown to be good inhibitors of the

transfer of sialic acid to the natural acceptor, N-acetyllac-

tosamine (LN) [22]. In particular, lactitol efficiently controlled

the apoptosis triggered by TcTS [23]. The synthesis of multiva-

lent glycoclusters designed to be high affinity ligands for

specific proteins has been an active area of research during the

last years [24-28]. Among them, tetravalent glycoclusters

bearing β-lactosyl residues showed to have trypanocidal activity

[29]. On the other hand, a recent paper described the synthesis

of 1,6-linked cyclic pseudo-galacto oligosaccharides and their

in vitro sialylation by recombinant TcTS [30]. Conjugation of

lactose analogs with multiarm poly(ethylene glycol) increases

the bioavailability in vivo [31]. Triazole-substituted β-galacto-

pyranosides and triazole-sialyl mimetics have been synthesized

by click chemistry and their inhibitory activity on the hydrol-

ysis of 2’-(4-methylumbelliferyl)-β-D-N-acetylneuraminic acid

by TcTS and trypanocidal activity were evaluated [32,33].

In the present work, we selected thioglycosidic and N-glyco-

sidic bonds to link the acceptor sugars to a platform by click

chemistry, taking into consideration that they are highly resis-

tant to enzymatic hydrolysis [34,35]. We have previously

described the synthesis of multivalent β-thiogalactopyranosides

and their inhibitory activity against the β-galactosidase from

E. coli [36,37]. The study of β-galactopyranosides as acceptor

substrates for sialic acid is in general concomitant with the

study of their inhibitory properties, as they usually behave as

competitive acceptors. Thus, both aspects have been explored,

even though our main goal was the use of the TcTS enzyme as a

tool for the synthesis of sialylated biantennary β-N- and β-S-

galactopyranosides and related lactosides. On the other hand,

we considered imperative the purification and characterization

of the sialylated products, an aspect that has not been often

exploited in previous reports. A preparative method based on

anion exchange chromatography using AG1X2 resin, followed

by analytical HPAE-PAD chromatography was optimized. The

inhibitory behavior of the substrates for the transfer of sialic

acid to the natural acceptor N-acetyllactosamine was also evalu-

ated.

Results and Discussion
As part of our project on the synthesis and biological evalua-

tion of multivalent ligands, two families of mono- and divalent

structures were synthesized in order to study their ability as

acceptors or inhibitors of the reaction catalyzed by the T. cruzi

trans-sialidase. Taking into consideration that mainly ester but

also glycosidic linkages are labile in biological fluids, we

choose amide and thioglycosidic bonds to attach the sugar

residues to the platforms.

2,3,4,6-Tetra-O-acetyl-β-D-galactosylamine (1) was obtained

by catalytic hydrogenation of the azide precursor and then

treated with succinic anhydride to afford 2 in excellent yield,

using a methodology similar to that previously described [38].

Reaction with propargylamine in the presence of DCC yielded
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Scheme 1: Synthesis of the alkynyl precursors 3, 6 and 8.

precursor 3. A similar procedure applied to the lactosylamine

derivative 4, led to compound 6 (Scheme 1). On the other hand,

thiolactose derivative 8 was prepared by reaction of the thio-

uronium salt 7 [37] and propargyl bromide in the presence of

triethylamine.

Compounds 3, 6 and 8, functionalized with terminal alkynyl

residues, were convenient precursors for the synthesis of mono-

and divalent ligands based on the azide scaffolds 9 and 14,

readily available in our laboratory [36,37]. Thus, by cycloaddi-

tion reaction of monoazide 9 and N-galactopyranoside 3 or

N-lactoside 6, two monovalent derivatives (10 and 12, respect-

ively) were obtained after purification by column chromatog-

raphy (Scheme 2A). The 1H NMR spectra showed the diag-

nostic signals corresponding to the aromatic protons of the tria-

zole ring (≈7.65 ppm), as well as the anomeric signals. For

compound 10, the H-1 of the βNGal appeared at 5.22 ppm (J ≈

9.1 Hz) and the H-1 of the αGlc at 4.92 ppm (J = 3.6 Hz). In the

case of 12, an additional anomeric signal corresponding to the

terminal βGal residue was observed at 4.46 ppm (J = 7.9 Hz).

Triazole carbon signals appeared at ca. 145.0 and 124.0 ppm in

the 13C spectrum and anomeric carbons of the αGlc (96.8 ppm)

scaffold, and the N-linked residue (78.5 ppm for the βNGal of

10 and 78.2 for the βNGlc moiety of 12) were clearly distin-

guishable. When precursors 3 and 6 reacted with α,α-trehalose

diazide derivative 14, the two divalent acetylated products 15

and 17 were respectively obtained (Scheme 2B). As a conse-

quence of the symmetry of these trehalose-based divalent prod-

ucts, the NMR spectra of 15 showed to be similar to those of

10, with the exception of the signal of the anomeric CH3O

group in the case of 10. The same observation applied for NMR

spectra of compound 17, with respect to those of 12.

On the other hand, β-thiolactosides 19 and 21 were prepared

(Scheme 3). Again, they showed very similar NMR spectra. For

example, in the 13C spectra the anomeric signals appeared at

ca. 101 ppm, 91–97 ppm and 82 ppm, corresponding respective-

ly to the terminal βGal, αGlc from the scaffold and the βSGlc

residues.

N-linked precursors 10, 12, 15 and 17 and S-glycosides 19 and

21 were treated with base in mild conditions (TEA/MeOH/
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Scheme 2: Synthesis of the mono-(A)- and di-(B)-N-galactopyranosides and lactosides.

H2O), to give the final deacetylated products. The solutions

were desalted using a mixed bed exchange resin and purified by

passing through a reversed phase mini-column. The NMR

spectra of the monovalent ligands 11, 13 and 20, as well as

those corresponding to the divalent 16, 18 and 22 confirmed

their identity and purity.

Thiolactosides 20 and 22, together with the thiogalactosides 23

and 24 previously reported (Table 1 and Table 2) [36], consti-

tuted thio-linked analogs to the above mentioned N-linked

derivatives, and thus, a set of 8 structurally related mono- and

divalent acceptors was available to study the trans-sialylation

reaction.
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Scheme 3: Synthesis of the mono- and di-S-lactosides.

Mono- and divalent β-N- and β-S-galacto-
pyranosides and related lactosides as sialic
acid acceptors and inhibitors in the trans-
sialidase reaction
The N-galactopyranoside 11, N-lactoside 13, S-galactopyra-

noside 23 [36], S-lactoside 20 (Table 1) and the divalent analo-

gous 16, 18, 24 [36] and 22 (Table 2) were first analyzed as

acceptor substrates for TcTS. The reaction is depicted for sub-

strate 18 (Scheme 4). Conditions for incubations were as previ-

ously described [22] using 1 mM of 3’-sialyllactose (SL) as

donor and 1 mM of the substrate if not otherwise indicated. The

reaction was analyzed by high pH anion exchange chromatog-

raphy with pulse amperometric detection (HPAEC-PAD) as

shown in Figure 1 for the sialylation of 18. In all cases, the

reaction was fast and reached the equilibrium in about 15 min.

All the compounds were good acceptors of sialic acid (Table 1

and Table 2). As expected, the new sialylated compounds were

more retained in the anion exchange column than the original

substrates. In the case of the divalent compounds 16, 18, 24 and

22 the disialylated compounds were also observed as minor

products with the highest retention times. The extent of total

sialylation reached about 60% for most of the divalent

substrates (Table 2). To evaluate the disialylated species

obtained from divalent substrates, experiments using 2 equiva-

lents of SL were performed (Table 2 and Figure 1C). Although

the disialylated compound was always the minor product an

increase in the ratio between di- and monosialylated derivatives

was evident. No significant changes were observed by

prolonging the incubation times. It should be noted that,

remarkably, in the case of compound 18, almost one third of the

molecules incorporated two sialyl residues. In a pioneering

work using TcTS to sialylate radiolabeled alditols obtained

from parasite mucins, analysis by paper electrophoresis showed

that, after incorporation of the first sialyl residue, the incorpor-

ation of sialic acid on a second galactosyl unit in the same

molecule was highly reduced [39]. It was then inferred that

sialylation of one residue in T. cruzi glycans modulates the

susceptibility of nearby sites, and thus, polysialylated complex

multiantennary glycans would not be reachable by using the

enzyme. Our results suggest that the amount of disialylated

glycoclusters obtained (mainly in the case of 18, and also for

16, although at a lesser extent) is related to the structure of the

acceptor and the experimental conditions. When both arms of

the divalent precursors are sufficiently distant one from the

other, they may be independently available for the enzyme.

Since determinations were performed under equilibrium condi-

tions, we cannot rule out the possibility that the percentages

obtained also depend on the stability of the sialylated products

that could act as donor substrates. However, incubations

performed at different times between 15 and 120 min gave very

similar results (not shown). A steric effect operating on the

sialylation of multiple Galp residues has been previously

suggested for lactosyl l ipids attached to membrane

microdomains [40]. The dependence of the amount of disialyla-

tion of the divalent glycans on the concentration of 3’-sialyllac-

tose in the incubation mixture was shown using equimolar or

stoichiometric ratios of SL to acceptor (Table 2).
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Table 1: Evaluation of monovalent substrates in the TcTS reaction.

Entry Compound Transfer (%)a Inhibition (%)

1 11 47 26
2 13 41 32
3 23 52 35
4 20 55 41

aCalculated by integration of the peaks of all sialylated compounds observed in the HPAEC.

Table 2: Evaluation of the divalent substrates in the TcTS reaction.

X SL:X = 1:1 SL:X = 2:1 SL:X = 1:1

% Xa % S-Xa % S2-Xa % Xa % S-Xa % S2-Xa Inhibition (%)

16 35 57 8 29 49 22 16
18 40 40 20 33 39 28 70
24 53 41 12 41 47 12 48
22 46 46 8 29 58 13 53

aRelated to the total amount of X (X + SX + S2X) by integration of the peaks observed in the HPAEC. X, compound tested, S-X, monosialylated com-
pound X, S2-X, disialylated compound X, SL, sialyllactose, SL:X indicates de molar ratio of SL with respect to X.
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Figure 1: Analysis of 18 as acceptor substrate of TcTS. A: 18 (1 mM) and 3’-sialyllactose (SL, 1 mM), without enzyme; B: 18 (1 mM) was incubated
with SL (1 mM) and TcTS for 15 min at 25 °C; C: the same as B but using 2 equivalents of SL (2 mM). The incubation mixtures were analyzed by
HPAEC using a CarboPac PA-10 ion exchange analytical column eluted with a linear gradient over 30 min from 20 to 200 mM NaAcO in 100 mM
NaOH at a flow rate of 0.9 mL/min. Structures for compounds 18, 25 and 26 are shown in Scheme 4.

The inhibition of the sialylation of the natural substrate,

N-acetyllactosamine (LN), by the synthetic derivatives was also

studied (Table 1 and Table 2). Equimolar amounts of SL, the

natural acceptor LN, and the potential inhibitors were incu-

bated with TcTS and the reaction mixtures analyzed by HPAEC

and compared with the sialylation of LN in absence of the

inhibitor. An example is shown in Figure 2 for compounds 13

and 18. The best competitive inhibitor was compound 18 which

reached 70% of inhibition of transfer to LN (Table 2). In fact,

18 is a divalent compound, and so, the concentration of lactosyl

groups can be considered as twice as that of 13, which showed a

32% inhibition (Table 1). Therefore, there is no multivalent

effect in the inhibition of the sialylation of LN. On the other

hand, when comparing monovalent 20 (41% inhibition) and

divalent 22 (53% inhibition), the latter is actually less effective

per lactose residue than the monovalent 20, showing that not

even a statistical effect on the inhibition is operative. This result

may be a consequence of the linker structure, a fact that can be

also playing a role in the proportion of sialylated species listed

above (Table 1 and Table 2). On the other hand, the multivalent

effect for the inhibition of certain glycosidases was recently

described [41,42]. To our knowledge, there is only one previous

report on the inhibition properties of multivalent ligands on the

TcTS [31].

It should be noted that by using SL as donor substrate and quan-

tifying the new sialylated compounds we assess that only the

trans-sialidase activity is measured, and not an alternative

sialidase activity. Only traces of free sialic acid have been

detected (Figure 2A).
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Scheme 4: Sialylation of 18. SL: sialyllactose.

In order to prove the usefulness of the trans-sialidase reaction

for the synthesis of sialylated derivatives, a preparative reaction

was performed with the divalent N-lactoside 18, as it was

shown to be the most sensitive, among the compounds tested, to

the concentration of the SL used as donor (Scheme 4). The reac-

tion mixture, containing unreacted 18 and sialyl derivatives 25

and 26, was purified using an AG1X2 (acetate form) resin

column. After elution of neutral compounds with water, acidic

derivatives were eluted with different concentrations of pyri-

dinium acetate buffer. The eluted fractions were monitored by

HPAEC. The fractions containing the monosialylated product,

which appeared as a single peak at 18 min, were pooled, and 25

was characterized on the basis of the 1H NMR and two-dimen-

sional HSQC spectra, by comparison with the spectrum of 18

(Figure 3A and Supporting Information File 2). The 1H NMR

spectrum of 25 was complex, but diagnostic signals were

detected (Figure 3B and Supporting Information File 2). In the

anomeric region, a doublet corresponding to both anomeric

protons of the two indistinguishable β-N-linked Glc residues

appeared at 4.89 ppm (J = 9.3 Hz), which correlated to a 13C

anomeric signal at 79.3 ppm in the HSQC spectrum. The two

unresolved signals of both anomeric protons of αGlc residues of

trehalose (T) were observed at 4.49 ppm (J = 3.9 Hz) and the

corresponding signal at 93.4 ppm in the 13C spectrum was

detected. Finally, two spots were observed at 4.44 and 4.36 ppm

which correlated with signals at 102.6 and 103.1 ppm, respect-

ively. These signals can be ascribed to both βGal residues, one

of which is sialylated [(NeuNAc)βGal and terminal βGal

(Supporting Information File 2)]. The appearance of signals at

2.66 ppm (H-3eq) and 1.72 ppm (H-3ax), which correlated with

a signal at 34.4 ppm (C-3, NeuNAc) in the 13C spectrum, was

also diagnostic of the sialic acid residue. Also, a singlet at

1.95 ppm, corresponding to the CH3CON group was observed.

The structure of 25 was also confirmed by HRMS (ESI) with
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Figure 2: Inhibition of sialylation of LN by compounds 13 and 18. A: N-acetyllactosamine (LN, 1 mM), 3’-sialyllactose (SL, 1 mM) and TcTS were incu-
bated for 15 min at 25 °C. B: The same as A, in the presence of 13 (1 mM) as inhibitor. C: The same as A, in the presence of 18 (1 mM) as inhibitor.
The incubation mixtures were analyzed by HPAEC using a CarboPac PA-10 ion exchange analytical column eluted with a linear gradient over 30 min
from 20 to 200 mM NaAcO in 100 mM NaOH at a flow rate of 0.9 mL/min. L: lactose; SA: sialic acid; SLN: sialyl N-acetyllactosamine; S13: monosialyl
compound 13.

the presence of a peak at m/z 842.7806, corresponding to the

[M + 2Na]2+ cation.

Further elution of the anion exchange column with 500 mM

AcOPy gave disialylated compound 26, which appeared as

a single peak at 26 min in the HPAEC. Although only

2 mg of compound 26 were obtained, analysis by ESIMS was

possible, and a peak at m/z 988.3291, corresponding to the

[M + 2Na]2+ cation, was observed consistent with the proposed

structure.
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Figure 3: Comparison of the 1H NMR spectra of 18 (A) and the sialylated derivative 25 (B).

Conclusion
Mono- and bivalent β-N and β-S-galactopyranosides and lacto-

sides supported on sugar scaffolds were synthesized by a

convergent approach using the CuAAC reaction. Monovalent as

well as divalent compounds were shown to be good acceptors of

sialic acid residues. Divalent substrates could also be disialy-

lated, which means that both arms are accessible to the enzyme.

By increasing the proportion of SL used as donor, a higher yield

of disialylated products could be obtained and thus, this ap-

proach can be envisaged as a chemoenzymatic methodology for

the synthesis of sialylated biantennary sugar derivatives. All the

compounds tested were shown to be competitive inhibitors for
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the sialylation of the natural acceptor N-acetyllactosamine by

TcTS. The best result was obtained for compound 18 which

showed a 70% inhibition when equimolar amounts of substrates

and inhibitor were used. The divalent N- and S-β-galacto-

pyranosides and their sialylated products are potentially useful

as inhibitors of other clinically relevant receptors of β-galacto-

side or sialic acid binding proteins. On the other hand, due to

the ability of the compounds synthesized to inhibit the sialic

acid transfer reaction from 3’-sialyllactose to the natural sub-

strate N-acetyllactosamine, they are potential candidates for

chemotherapy of Chagas’ disease, since TcTS is a fundamental

enzyme in the infection process.

Experimental
The synthetic general methods are described in the Supporting

Information File 1.

Synthesis of compounds 10, 12, 15, 17, 20 and 22. General

procedure for the click reaction [43,44]. The corresponding

azido-saccharides 9 or 14 [34] (0.20 mmol) and N-linked glyco-

sides 3 or 6, or S-linked lactoside 8 (0.20 mmol per mol of

reacting azide) were dissolved in 2.5 mL of a dioxane/H2O mix-

ture (8:2). Copper sulfate (0.05 mmol per mol of reacting azide)

and sodium ascorbate (0.10 mmol per mol of azide reacting

group) were added, and the mixture was stirred at 70 °C under

microwave irradiation during 50 min. The mixture was then

poured into a 1:1 H2O/NH4Cl solution (20 mL) and extracted

with EtOAc (4 × 15 mL). The organic layer was dried

(Na2SO4), filtered, and the solvent was removed under reduced

pressure. The residue was purified by flash chromatography,

using the solvent system indicated in each case.

Compound 17: Compound 17 was obtained by reaction of

alkyne 6 and diazide 14. Yield: 193 mg, 44%; mp 151–152 °C;

[α]D
20 +12.5 (c 1.0, CHCl3); Rf 0.18 (EtOAc/MeOH 9:1); 1H

NMR (500 MHz, CDCl3) δ 7.61 (H-triazole), 7.19 (d, J1,NH =

9.3 Hz, 1H, NH), 6.69 (t, JCH2,NH = 5.4 Hz, 1H, NH), 5.41 (t,

J3T,4T = J2T,3T = 9.7 Hz, 1H, H-3T), 5.34 (dd, J4´,5´ = 0.7, J3´,4´

= 3.4 Hz, 1H, H-4´), 5.27 (t, J2,3 = J3,4 = 9.2 Hz, 1H, H-3), 5.24

(t, J1,2 = J1,NH = 9.3 Hz, 1H, H-1), 5.09 (dd, J1´,2´ = 7.9, J2´,3´ =

10.4 Hz, 1H, H-2´), 4.96 (dd, J1T,2T = 3.8, J2T,3T = 9.9 Hz, 1H,

H-2T), 4.94 (dd, J3´,4´ = 3.5, J2´,3´ = 10.4 Hz, 1H, H-3´), 4.92 (t,

J3T,4T = J4T,5T = 9.7 Hz, 1H, H-4T), 4.87 (t, J1,2 = J2,3 = 9.5

Hz, 1H, H-2), 4.74 (d, J1T,2T = 3.8 Hz, 1H, H-1T), 4.59 (dd,

JCH2,NH = 5.0, Jgem = 15.0 Hz, 1H, CH2N), 4.54 (dd, J5T,6aT =

0.9, J6aT,6bT = 13.9 Hz, 1H, H-6aT), 4.46 (d, J1´,2´ = 7.9 Hz,

1H, H-1´), 4.40 (dd, J5,6a = 1.4, J6a,6b = 12.1 Hz, 1H, H-6a),

4.33 (dd, JCH2,NH = 4.5, Jgem = 15.0 Hz, 1H, CH2N), 4.26 (dd,

J5T,6bT = 9.4, J6aT,6bT = 14.5 Hz, 1H, H-6bT), 4.14 (dd, J5,6a´ =

6.2, J6a´,6b´ = 11.1 Hz, 1H, H-6a´), 4.09–4.02 (m, 3H, H-5T,

H-6b, H-6b´), 3.86 (ddd, J4´,5´ = 0.7, J5´,6a´ = 6.7, J5´,6b´ = 7.2

Hz, 1H, H-5´), 3.78 (t, J3,4 = 8.8, J4,5 = 9.9 Hz, 1H, H-4), 3.74

(ddd, J5,6a = 1.6, J5,6b = 4.1, J4,5 = 10.1, 1H, H-5), 2.59–2.45

(m, 4H, CH2-CH2), 2.15, 2.12, 2.06, 2.04 (3×), 2.03, 2.01 (2×),

1.96 (10 s, 30H, CH3CO); 13C NMR (125 MHz, CDCl3) δ

172.7, 171.8, 171.1, 170.5 (2×), 170.3 (2×), 170.2, 170.0, 169.9,

169.6, 169.1 (COCH3), 145.2 (C-4 triazole), 124.1 (C-5 tria-

zole), 101.1 (C-1´), 91.7 (C-1T), 78.1 (C-1), 76.0 (C-4), 74.5

(C-5), 72.9 (C-3), 71.1 (C-3´), 71.0 (C-2), 70.8 (C-5´), 69.9

(C-4T) 69.5 (C-5T), 69.4 (C-3T), 69.1 (C-2´), 69.0 (C-2T), 66.7

(C-4´), 62.0 (C-6), 60.9 (C-6´), 50.8 (C-6T), 35.2 (CH2NH),

31.4, 30.8 (CH2-CH2), 21.0 (2×), 20.8 (6×), 20.7 (2×)

(CH3CO-); anal. calcd for C90H120N10O53·2H2O: C, 48.56; H,

5.61; N, 6.29; found: C, 48.20; H, 5.59; N, 6.01. HRMS–ESI

(m/z): [M + H]+ calcd for C90H121N10O53, 2189.7075; found,

2189.7081.

General procedure for O-deacetylation
Compounds 10, 12, 15, 17, 19 and 21 (0.10 mmol) were

deacetylated by treatment with a solution of Et3N/MeOH/H2O

1:4:5 as previously described [45]. Further purification by a

mixed bed ion-exchange resin and an octadecyl (C18) mini

column was accomplished. Purity was checked by TLC

(n-BuOH/EtOH/H2O, 2.5:1:1 or 1:1:1) and the corresponding

Rf are indicated in each case.

Compound 18: Yield: 126 mg, 93%; [α]D
20 +40.6 (c 0.6,

H2O); Rf 0.34 (BuOH/EtOH/H2O 1:1:1); 1H NMR (500 MHz,

CDCl3) δ 7.80 (s, 1H, H-triazole), 4.89 (d, J1,2 = 9.2 Hz, 1H,

H-1), 4.71 (dd, J5T,6aT = 2.0, J6aT,6bT = 14.5 Hz, 1H, H-6aT),

4.49 (d, J1T,2T = 3.9 Hz, 1H, H-1T), 4.45 (dd, J5T,6aT = 8.0,

J6aT,6bT = 14.5 Hz, 1H, H-6bT), 4.36 (d, J1´,2´ ≈ 7.8 Hz, 1H,

H-1´), 4.35 (s, 2H, NH-CH2), 3.93 (ddd, J5T,6aT = 2.2, J5T,6bT =

7.9, J4T,5T = 10.2 Hz, 1H, H-5T), 3.72–3.55 (m, 9H, H-3´, H-3,

H-3T, H-4, H-5´, H-5, H-6a´, H-6b´, H-6b), 3.45 (dd, J1´,2´ =

7.8, J2´,3´ = 9.8 Hz, 1H, H-2´), 3.36 (dd, J1T,2T = 3.9, J2T,3T =

9.9 Hz, 1H, H-2T), 3.34 (t, J1,2 = J2,3 = 8.8 Hz, 1H, H-2), 3.12

(t, J3T,4T = J4T,5T = 9.5 Hz, 1H, H-4T), 2.59–2.47 (m, 4H, CH2-

CH2); 13C NMR (125 MHz, D2O) δ 175.9, 174.6 (CO), 144.7

(C-4 triazole), 124.7 (C-5 triazole), 102.9 (C-1´), 93.3 (C-1T),

79.1 (C-1), 77.8, 76.3, 75.3, 75.0, 72.6, 72.5, 71.5, 70.9, 70.8

(C-2´, C-2, C-2T, C-3´, C-3, C-3T, C-4, C-5´, C-5), 70.7

(C-4T), 70.4 (C-5T), 68.5 (C-4´), 61.0 (C-6´), 59.9 (C-6), 50.8

(C-6T), 34.4 (NH-CH2), 30.8, 30.4 (CH2-CH2); Anal. calcd for

C50H80N10O33·2H2O: C, 43.35; H, 6.11; N, 10.11; found: C,

43.04; H, 5.95; N, 9.80; HRMS–ESI (m/z): [M + Na]+ calcd for

C50H80N10O33Na, 1371.4781; found, 1371.4797.

Enzyme catalysis
Compounds 11, 13, 16, 18, 20, and 22–24 were incubated with

TcTS in 20 mM Tris–HCl, pH 7 buffer, 30 mM NaCl,

containing 1 mM 3’-sialyllactose as donor, in a similar manner
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as described before [46]. Analysis of the reaction mixture was

performed by HPAEC-PAD. For comparison of their capacity

to act as acceptors, 1 mM of each, SL and mono- or divalent

substrates were used. In the case of divalent substrates, an

experiment using a 2-fold excess of SL (2 mM) was also carried

out. The percentage of sialylation was calculated by integration

of all the sialylated species present (in the case of monovalent

compounds) or by integration of mono-, di- and non-sialylated

remaining species (in the case of divalent compounds).

Inhibition of sialylation of N-acetyllactosamine
The inhibition experiments were performed as described before

[22]. Briefly, monovalent compounds 11, 13, 20, and 23, or

divalent 16, 18, 22, and 24, (1 mM) were incubated in 20 mM

Tris–HCl, pH 7 buffer (20 µL), 30 mM NaCl, containing 1 mM

3’-sialyllactose as donor, 1 mM N-acetyllactosamine, and

recombinant TcTS (300 ng) for 15 min at room temperature.

After dilution with deionized water, analysis by HPAEC-PAD

was performed. Inhibition was calculated considering the

amount of 3’-sialyl-N-acetyllactosamine with respect to the

total amount of sialylated compounds, obtained with or without

inhibitor.

Preparative sialylation of compound 18
Compound 18 (10 mg, 6.5 μmol) and SL (9.0 mg, 14 μmol)

were incubated with 13 μg of recombinant TcTS in 0.2 mL of

20 mM Tris buffer pH 7.6 containing 30 mM NaCl for 14 h at

25 °C. The reaction mixture was analyzed by HPAEC. The

sialylated products were purified by passing through an anion

exchange resin (AG1X2, acetate form, BioRad, 1.2 × 15 cm).

Neutral compounds, namely 18 and lactose, were eluted with

H2O and sialylated compounds with a stepped gradient from

50 mM to 500 mM pyridinium acetate buffer pH 5.4. Fractions

(1.5 mL) were collected and analyzed by HPAEC. Compound

25, the product of sialylation of 18, was eluted with 100 mM

pyridinium acetate while the remaining sialyllactose was eluted

with 200 mM pyridinium acetate buffer. Further elution with

500 mM buffer afforded the disialylated compound 26 (2 mg).

The pooled fractions were concentrated by lyophilization. Com-

pound 25 was further purified by passing through a SepPack C8

cartridge (Alltech) eluting with H2O to obtain 5 mg of a colour-

less syrup: 1H NMR (500 MHz, D2O), partial assignments

assisted by the HSQC spectrum: δ 7.81 (s, 2H, H-triazole), 4.89

(d, J = 9.3 Hz, 2H, H-1-βNGlc), ≈4.69 (m, under the suppressed

signal of HDO, H-6aT), 4.49 (2 d superimposed, J = 3.9 Hz,

2H, H-1T), 4.47 (m, J ≈ 8.0, 14.3 Hz, 2H, H-6bT), 4.44 (d, J =

7.8 Hz, 1H, H-1-(NeuNAc)βGal), 4.37 (d, J ≈ 7.9 Hz, 1H, H-1-

βGal), 4.35 (s, 4H, CH2N), 4.03 (dd, J = 3.1, 9.8 Hz, 1H,

H-6NeuNAc), 3.94 (m, J = 2.3, 8.0, 10.4 Hz, 2H, H-5T),

3.87–3.45 (m, 30H), 3.37–3.33 (m, 4H, H-2T, H-2-βNGlc),

3.12 (2 t superimposed, J = 9.5 Hz, 2H, H-4T), 2.66 (dd, J =

4.6, 12.3 Hz, 1H, H-3eq-NeuNAc), 2.58–2.47 (m, 8H, 4 ×

CH2), 1.93 (s, 3H, CH3CON), 1.72 (t, J = 12.3 Hz, 1H, H-3ax-

NeuNAc); 13C NMR (125 MHz, D2O), partial assignments

assisted by the HSQC spectrum: δ 124.8 (CH-triazole), 103.1

(C-1-(NeuNAc)βGal*), 102.6 (C-1-βGal*), 93.4 (C-1T), 79.3

(C-1-βNGlc), 77.8, 77.7, 76.3, 75.4 (C-6-NeuNAc), 75.1, 72.6,

72.5, 71.6, 71.4 (C-2T*), 70.9, 70.8 (C-4T), 70.6 (C-2-βNGlc*),

70.4, 70.4 (C-5T), 69.3, 68.4, 68.1 (2×), 67.5, 62.6 (2×), 61.0,

59.8 (2×), 51.6, 50.8 (C-6T), 39.4 (C-3-NeuNAc), 34.4 (CH2N),

30.7, 30.4 (CH2-CH2), 22.2 (CH3CON); ESIMS (m/z):

[M + 2Na]2+ calcd for C61H97N11Na2O41, 842.7814; found,

842.7806.

Disialylated compound 26 (2 mg) was obtained by using the

anion exchange column and elution with 500 mM AcOPy:

ESIMS (m/z): [M + 2Na]2+ calcd for C72H114N12Na2O49:

988.3291; found: 988.3291.
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