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Abstract

Although DNA encodes the molecular instructions that underlie control of cell function, it is the 

proteins that are primarily responsible for implementing those instructions. Therefore, quantitative 

analyses of the proteome would be expected to yield insights into important candidates for the 

detection and treatment of disease. We present an iTRAQ (Isobaric Tagging for Relative and 

Absolute Quantification)-based proteomic analysis of 10 ovarian cancer cell lines and 2 normal 

ovarian surface epithelial cell lines. We profiled the abundance of 2659 cellular proteins, of which 

1273 were common to all 12 cell lines. Of the 1273, 75 proteins exhibited elevated expression, and 

164 proteins had diminished expression in the cancerous cells compared to the normal cell lines. 

The iTRAQ expression profiles allowed us to segregate cell lines based upon sensitivity and 

resistance to carboplatin. Importantly, we observed no substantial correlation between protein 

abundance and RNA expression or epigenetic, DNA methylation data. Furthermore, we could not 

discriminate between sensitivity and resistance to carboplatin on the basis of RNA expression and 

DNA methylation data alone. This study illustrates the importance of proteomics-based discovery 

for defining the basis for the carboplatin response in ovarian cancer and highlights candidate 

proteins, particularly involved in cellular redox regulation, homologous recombination and DNA 

damage repair, that otherwise could not have been predicted from whole genome and expression 

data sources alone.
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INTRODUCTION

The American Cancer Society projects there will be approximately 21,980 new cases of 

ovarian cancer in the United States in 2014. Of those, an estimated 14,270 will succumb to 

the disease. One of the critical steps for treatment of ovarian cancer is identifying those 

patients that will respond positively to therapy. A majority of the patients that respond 

initially to a primary treatment of surgery and chemotherapy typically suffer recurrence with 

a drug-resistant phenotype [1]. Consequently, there is a diagnostic need for both clinical and 

molecular features, or biomarkers, that can be associated with early detection, survival and 

disease recurrence. Although significant progress has been made in developing technologies 

that can simultaneously measure thousands of molecular features in a given patient sample, 

statistical methods to analyze this flood of data need to be carefully chosen in order to 

identify biomarkers that are more likely to be validated and thus achieve clinical utility [2]. 

Additionally, experimental and biological limitations in interpreting transcriptional activity 

in the context of abundance of cellular proteins have produced few functional genomic and 

prognostic commonalties from an abundance of ovarian cancer gene expression studies [3, 

4].

Proteomic analysis, to define the complement and abundance of cellular proteins, facilitates 

the identification of pertinent biological processes and the definition of molecular targets 

that contribute to a disease state. Presently, proteomic analysis of ovarian cancer is in a 

challenging but promising developmental phase that is aimed at identifying successful 

strategies for early detection and discovering potential biomarkers of chemosensitivity [5]. 

In general, proteomic approaches have become an invaluable tool for the discovery of 

functional associations with oncogenic signaling pathways and changes in protein 

abundance and modification in the disease state [6, 7]. In ovarian cancer, measurements of 

cellular protein levels by mass spectrometry have been employed on cell line, tumor and 

serum samples to identify candidate biomarkers for disease progression, histological 

subtypes and proteins associated with carboplatin resistance [8-12]. Nevertheless, very few 

of these studies have been able to quantify protein expression in multiple cancer cell lines or 

tissue samples. Furthermore, the critical issue of the extent to which changes in protein 

expression coincide with RNA expression or epigenetic variation within ovarian cancer 

remains to be defined.

We have employed the Isobaric Tagging for Relative and Absolute Quantification (iTRAQ) 

approach to examine chemosensitivity in cell models of ovarian cancer. The iTRAQ isobaric 

chemical labeling technology is often used in discovery MS-based proteomics because it 

allows multiple points of comparison, initially four, but more recently eight different 

conditions [13]. The iTRAQ reagents are chemical tags that modify the N-terminus (and the 

ε-amino group of lysine) of peptides generated by proteolytic digestion of the protein 

sample. These tags comprise a reporter group of variable Mr (113-119 and 121 in the 8-plex 

system) and a balancer group that ensures the same total mass (305 Da for the 8-plex set) for 

each tag. Tryptic peptide samples from various experimental conditions, as many as eight, 

are labeled separately with an iTRAQ tag and the samples are then combined. The mixture 

is fractionated by ion exchange chromatography or isoelectric focusing to reduce the 

complexity of the samples, and each fraction is then subjected to reverse phase nano LC-
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MS/MS. In MS mode, the multiplexed labeling of any given peptide results in an identical 

precursor mass; however, following fragmentation in MS/MS mode, each tag releases a 

unique reporter ion, the intensities of which are used for relative/absolute peptide 

quantitation. An advantage of this approach is that the multiple samples are analyzed 

simultaneously. Furthermore, the b- and y-ions derived from the peptides labeled with the 

iTRAQ tags remain isobaric, resulting in greater signal intensity in the MS/MS spectra.

Here, we performed iTRAQ analysis to quantify protein abundance in 10 ovarian cancer cell 

lines and 2 normal ovarian surface epithelial cell lines. This was integrated with analysis of 

DNA methylation and RNA expression data for each gene product identified by iTRAQ. 

There are two major conclusions of the study. First, we observed no significant correlation 

between cellular protein content and mRNA expression or methylation data. Therefore, the 

extent of mRNA expression was not a direct indicator of the extent of protein expression in 

these ovarian cancer cell models. This illustrates that reliance exclusively on global genomic 

measurements may miss important features of the disease phenotype. Second, although we 

observed no correlation between carboplatin resistance and either RNA expression or DNA 

methylation, we did observe a protein signature that directly correlated with carboplatin 

resistance. Furthermore, our analysis by iTRAQ revealed a potential role of several redox 

regulatory proteins and homologous recombination repair (HRR) pathway components in 

carboplatin resistance.

EXPERIMENTAL METHODS

Cell Culture and RNAi

Ovarian carcinoma-derived cell lines were cultured in Dulbecco's Modified Eagle Medium 

(DMEM) supplemented with 10% fetal bovine serum (FBS), penicillin (100 U/ml) and 

streptomycin (100 μg/ml). Normal human ovarian surface epithelium (HOSE) 11-12 and 6-3 

control cell lines were grown in 199: MCDB 105 (1:1) medium containing 10% FBS. Cells 

were maintained at 37°C in an atmosphere of 5% CO2. Additional information about all of 

the ovarian cell lines used in this project is presented in Supplementary Table S1.

siRNAs targeting catalase and TXNDC5 were purchased from Sigma: catalase siRNA1-3: 

SASI_Hs02_00092507, 00092508, 00332471; TXNDC5 siRNA1-3: SASI_Hs02_00171689, 

00171690, 00355463. siRNA was delivered into CAOV1 ovarian cancer cells by AMAXA 

electroporation (Kit T, Program T-016, Lonza).

iTRAQ (isobaric tag for relative and absolute quantitation) Analysis

Ovarian cancer cells were lysed in a buffer containing 8M urea, 50mM Triethylammonium 

bicarbonate (TEAB, pH 8.5) and 0.05% w/v ProteaseMax (Promega) supplemented with 

phosphatase and protease inhibitor cocktails (P2850, P5726, P8340, Sigma). Protein 

concentrations were determined by the BCA assay (Pierce). A universal standard was 

created by pooling 100 μg protein samples from each of the 12 cell lines. This universal 

standard (100 μg) was incorporated in each 8-plex iTRAQ experiments to enable robust 

quantitation between experiments. Aliquots of 100 μg total protein from each sample were 

reduced, alkylated, and then precipitated by a methanol/chloroform precipitation method. 
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Protein pellets were reconstituted in 50 μl of 6M urea/50mM TEAB with sonication [14] and 

digested by 2% trypsin overnight. iTRAQ reagents (8-plex iTRAQ kit, Sciex) were 

reconstituted in ~80 μl of isopropanol and incubated with designated tryptic peptide samples 

at 37°C for 2 hrs with mild agitation. Peptides were desalted on a C18 Sep-Pak cartridge 

(Waters) and fractionated by high resolution (24-fractions) OFFGEL fractionation [15]. 

Peptide samples from each fraction were analyzed on a Proxeon Nano LC system coupled to 

a LTQ-Orbitrap XL mass spectrometer (Thermo) with an 80 minute gradient at a flow rate 

of 300 nl/min. Survey full-scan spectra were acquired with resolution of 15,000 and mass 

range from 400-1800 m/z. The top 4 most intense ions were selected for alternated HCD and 

CID scans. Protein identification and quantification was carried out with Mascot 2.3 (Matrix 

science) against the human IPI database (87,040 sequences). Methylthiolation of cysteine, 

N-terminal and lysine 8-plex iTRAQ modifications were set as fixed modifications, 

methionine oxidation as a variable modification and one missed cleavage allowance. Peptide 

mass tolerance was set at 20 ppm, with 0.6 Da for fragment ions (decoy database false 

discovery rate < 2%). iTRAQ ratios were calculated as intensity weighted, using only 

peptides with expectation values < 0.05 [15].

Analysis of gene expression and detection of methylation in human ovarian cancer cells

We used the Affymetrix Human Genome U133A array: GEO platform identifier GPL96. 

RNA was isolated using the trizol protocol, converted into cDNA and the double-stranded 

cDNA was used as the template in an in-vitro transcription reaction containing biotinylated 

CTP and UTP in addition to the four unmodified ribonucleoside triphosphates. The standard 

Affymetrix protocol was applied. Final signal intensities were processed using the RMA 

normalization method in the Affy package of R Bioconductor 2.5.

The protocol for Methylation detection representational Oligonucleotide Microarray 

Analysis (MOMA) was performed as previously described [16, 17]. Annotated genomic 

CpG island locations were obtained from the UCSC genome browser. At the time of the 

experiment the genome contained 26,219 CpG islands in the range of 200–2000 bp. These 

CpG island locations were covered by MspI restriction fragmentation. Arrays were 

manufactured by Nimblegen Systems Inc. using the 390,000 probes format. The CpG island 

annotation from the human genome build 33 (hg17) was used to design a 50-mer tiling 

array. The primary restriction endonuclease used was MspI. After the digestion linkers were 

ligated and the material cleaned by phenol chloroform, precipitated, centrifuged, and 

resuspended. The material was divided in two, half being digested by the endonuclease 

McrBc according to specification by New England Biolabs and the other half being mock 

digested. Procedures for hybridization and washing were reported previously [16]. The 

procedure was performed in duplicate with a dye-swap for the second experiment. The 

labels were swapped between the McrBc treated and mock samples. For each probe, the 

geometric mean of the ratios (GeoMeanRatio) of McrBc treated and control samples were 

then calculated per experiment and its associated dye swap. Microarray images were 

scanned on GenePix 4000B scanner and data extracted using Nimblescan software 

(Nimblegen Systems Inc). The GeoMeanRatios of all the samples in a data set were then 

normalized using a quantile normalization method [18]. All general analysis and statistics 

were computed using S-plus, R packages and individual Perl/Python scripts.
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Cell Viability Assay

Each cell line (7 epithelial ovarian cancer cell lines and 1 control cell line) was seeded at 103 

cells/well in a 96-well plate and treated with carboplatin at a concentration range of 0-100 

μg/ml in 100 μl of fully supplemented DMEM. After a period of 72 hrs proliferation was 

assessed by MTT (3-(4.5-dimethylthiazol-2-yl)-2.5-diphenyltetrazolium bromide) assay and 

absorbance measured at 595nm using the Wallac microplate reader (Perkin Elmer). 

Absorbance was converted to the percentage of cells surviving and plotted against the 

concentration to calculate the IC50.

CellTiter-Glo Luminescent Cell Viability Assay (Promega) was used to evaluate the role of 

Catalase and TXNDC5 in carboplatin resistance. In summary, siRNA was delivered into 

CAOV1 ovarian cancer cells by AMAXA electroporation (Kit T, Program T-016, Lonza). 

Twenty-four hours later, cells were trypsinized, re-seeded in a 96-well plate at 2 × 103 cells/

well and grown for another 24 hrs. Cells then were treated with carboplatin at a 

concentration range of 0-100 μg/ml in 200 μl of fully supplemented DMEM. After 24 and 48 

hrs, 20 μl of 1/10 diluted CellTiter-Glo reagent was added to each well, mixed for ~15 

minutes on an orbital shaker to induce cell lysis, and followed by luminescence reading.

Immunoblotting Analysis

Ovarian cancer cell extracts were prepared in RIPA lysis buffer (50 mM Tris HCl pH 8, 150 

mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS) containing 50 mM sodium 

fluoride, 1 mM sodium orthovanadate and 1X complete protease inhibitor cocktail (Roche). 

Total protein concentration was determined by the method of Bradford. Proteins were 

resolved by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) and 

transferred to nitrocellulose membrane. Membranes were blocked in 5% BSA in TBST 

(20mM Tris-HCl pH 7.6, 136 mM NaCl, 0.1% Tween-20) and incubated at 4°C overnight 

with primary antibodies against RPA1, RPA2, MCM2 (kind gifts from Bruce Stillman Lab), 

MCM5 (Bethyl Laboratory), catalase (Cell Signaling), TXNDC5 (R&D Systems) and β-

Tubulin (Sigma). Proteins were detected with HRP-conjugated secondary antibodies 

(Jackson Lab) and enhanced chemiluminescence (ECL; Pierce).

Bioinformatic Analysis

All analysis was performed using a combination of Perl/Python scripts and R statistical 

functions. We used either iTRAQ raw values or iTRAQ log(2) values where applicable. A 

normal distribution of iTRAQ log(2) data per cell line was applied for the determination of 

abundance threshold values based on estimated variance. Pearson correlation calculations 

and unsupervised cluster analysis was performed via R and the gplots library was 

implemented. Pathway enrichment analysis was performed as described previously [19]. 

Large datasets are provided in Supplementary Tables 2-7.

RESULTS

Quantitative proteomic analysis of control and ovarian cancer cell lines by iTRAQ

We performed an 8-plex iTRAQ analysis to evaluate systematically and quantitatively the 

change in protein expression profile between normal ovarian epithelial control cells and 
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carcinoma-derived cell lines. To allow comparison between multiple runs, an internal 

control was developed, which was composed of an equal mixture of all the samples. The 

results of this sample were used to normalize the multiple runs. Protein samples from each 

cell line and from the internal control were analyzed on a Proxeon Nano LC system coupled 

to a LTQ-Orbitrap XL mass spectrometer. The flow chart of the analysis was illustrated in 

Fig 1A. To optimize the experimental conditions and test data reproducibility, a pilot 

experiment was performed involving HOSE 6-3, OVCAR-3, PA-1, CAOV-4, CAOV-3 and 

A2780 cell lines. Among 881 proteins identified in common between the pilot and final 

experiment for these 6 cell lines, we observed consistently high correlation (Fig S1: 

Spearman Correlation > 0.71; Pearson correlation > 0.76). In the final study of 12 cell lines, 

we identified 87,040 peptides, which represented 3099 proteins. Further protein 

identification and quantitation with Mascot identified 2657 proteins, of which 1273 were 

found in all 10 ovarian carcinoma-derived cell lines and the 2 control lines that were 

examined (Fig 1B and Table S2&3). The number of proteins captured by iTRAQ per cell 

line ranged from 1642 to 2289.

Analysis of variability in iTRAQ values among ovarian epithelial cell lines

We examined the distribution of protein expression among all the cell lines to define the 

scope of the changes we observed and to demonstrate the legitimacy of the dataset. In Fig 

2A, we present a box plot of the raw iTRAQ values to illustrate the variation between the 

internal control and each cell line and the range of iTRAQ measurements. The iTRAQ log(2) 

values of 50% of the proteins identified per cell line were between −1 and 1 (within the box, 

Fig 2A), and the median varied little among all cell lines. This indicated that there was no 

substantial change in ~50% of the proteins detected in each cell line. When this was 

extended from 1 to 2 standard deviations away from the mean (within 25-75 percentile, Fig 

2A), we captured >98% of the total protein detected. In each cell line, there was a small 

number of proteins that displayed a greater magnitude of change; however, these were not 

consistent across cell lines.

We compared the variability in expression of individual proteins between 10 ovarian cancer 

cell lines and 2 normal controls (HOSE 6-3 & Hose11-12). We identified 1273 proteins in 

common among all the cell lines and determined the “mean-hose-ratio” for each individual 

protein, which was the average iTRAQ value from the 10 ovarian cancer cell lines divided 

by the average iTRAQ value of the 2 normal control cell lines (Table S4). TUBB (tubulin 

beta chain) served as a control in this analysis, with a mean-hose-ratio of 1.01. Among the 

1273 proteins, a total of 75 proteins displayed a mean-hose-ratio greater than 1.5, whereas 

there were 164 proteins with a mean-hose-ratio less than 0.75. The distribution of the ratios 

is summarized in Fig. 2B and all the data are presented in Table S3-4. Furthermore, we 

applied the same “mean-hose-ratio” algorithm to mRNA expression and DNA methylation 

data for these cell lines (Table S4), and calculated the correlation between iTRAQ and 

mRNA expression, or between iTRAQ and DNA methylation. Interestingly, there was no 

overall correlation of iTRAQ protein expression with either mRNA expression (Fig 2C) or 

DNA methylation (Fig 2D)
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Use of unsupervised clustering of iTRAQ ratios to segregate cells according to sensitivity 
to carboplatin.

We chose 8 out of the 12 ovarian cell lines, 7 cancer and 1 control, for which we had mRNA 

expression and DNA methylation data in addition to the results of the iTRAQ analysis. 

Using median absolute deviation (MAD) filtering analysis, we calculated the extent to which 

expression of a particular protein in a given cell, measured by the iTRAQ score, varied 

relative to the median level of expression of that same protein in all of the cell lines tested. 

We performed this analysis on Z-scores obtained from the iTRAQ log(2) ratio data for 1279 

proteins among each of the 8 cell lines (Table S5). The 300 most variable proteins (Table 

S6) were selected for unsupervised hierarchical clustering analysis using a Euclidean 

distance complete method. Interestingly, using a heat map to illustrate the expression level 

of each protein for each cell line (Fig 3A), we were able to place these proteins into two 

classes. Accordingly, we were able to segregate the 8 cell lines into two major clusters, 

which, unexpectedly, coincided with the cellular response to carboplatin. Cluster 1 

comprised those cell lines with an IC50 in the range 35 - 85 μg/ml, which we categorized as 

the “carboplatin-resistant group”. This included cell lines CAOV-1, COLO-316, OVCAR-3, 

and OVCAR-5. Cluster 2, the “carboplatin-sensitive group”, comprised cell lines with IC50 

lower than 20 μg/ml and contained A2780, PA-1, CAOV-3 and the normal ovarian surface 

epithelial cell line Hose 6-3. Consistent with the outcome of this clustering analysis, 

candidates associated with DNA damage repair and redox regulation segregated according 

to the iTRAQ data as would have been expected between chemoresistant and 

chemosensitive cell lines (Table S7).

We also examined data from standard Affymetrix arrays to quantify mRNA expression and 

MOMA methylation arrays to assess DNA methylation for the MAD-filtered iTRAQ 

proteins. It is important to note that in contrast to data on protein expression, we could not 

generate a similar segregation pattern when using either MAD-filtered mRNA expression 

data (Fig 3B) or DNA methylation data (Fig 3C) for the same top 300 protein candidates. 

Furthermore, when a similar unsupervised clustering analysis was performed solely on 

mRNA expression and DNA methylation data for all of the candidate proteins identified in 

the iTRAQ experiment in these cell lines, neither data set produced significant clusters nor 

did they define chemosensitive cellular subtypes.

Protein abundance did not correlate with mRNA expression or DNA methylation.

In light of the fact that we were able to classify cell lines as either carboplatin-sensitive or 

carboplatin-resistant only on the basis of the protein signature, we examined further whether 

there were correlations between protein expression and mRNA expression, as well as protein 

expression and DNA methylation. We assigned a positive correlation to decreased DNA 

methylation and increased iTRAQ values since decreased promoter methylation corresponds 

biologically to an increase in gene expression and therefore presumably increased protein 

abundance. The normal distributions for correlation of either iTRAQ-DNA methylation or 

iTRAQ-RNA expression show that protein level was poorly correlated with either mRNA 

expression or DNA methylation (Fig. 4). A positive correlation of r ≥ 0.5 between mRNA 

expression and cellular protein concentration was observed only in 11% of the proteins; 

conversely even an anti-correlation r ≤ −0.5 was observed in 7.5% of the proteins sampled. 
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These results show that there were roughly equal numbers of genes for which gene 

expression correlated with protein level (high gene expression and high protein level or low 

gene expression and low protein expression) as there were genes for which expression did 

not correlate with protein level (high gene expression and low protein or low gene 

expression and high protein level). Similar results were observed for DNA methylation.

Validation of differentially expressed proteins

The 300 most variable proteins, through which we generated signatures that distinguished 

between carboplatin-resistant and -sensitive cell lines, were filtered through the Human 

Protein Reference Database (HPRD, Release 9) to illustrate potential protein-protein 

interactions. This analysis highlighted 74 of the 300 proteins, with 59 interactions among 

them, including 12 single edge (pairs) interactions, 8 multi-protein complex interactions and 

two larger protein interaction networks of 6 and 13 edges (Fig 5). Of particular note, we 

identified the RPA-MCM complex; correlation between the expression of RPA (replication 

protein A), a single-stranded DNA binding protein required for recombination and DNA 

repair, and the MCM2 and MCM5 mini-chromosome maintenance complex components has 

been reported and implicated as a predictor of survival in serous ovarian carcinomas [20]. In 

addition, we performed pathway enrichment analysis for these 300 proteins using the 169 

pathways available at the time of analysis in the KEGG database. The most significant of 

these were hsa04540-Gap Junction (p=0.0068) and hsa03440-Homologous recombination 

(p=0.0146), both of which have been implicated in sensitivity to chemotherapeutic agents, 

such as carboplatin. Finally, we searched the Human Protein Atlas to compare the protein 

expression levels of the top candidates from our analysis between normal ovary and 

malignant ovarian carcinomas. We observed higher expression of S100P, GGCT and CRKL 

in human ovarian cancer samples compared to normal ovary, in which these proteins were 

undetectable (Fig 6).

We examined the DNA damage response proteins RPA1, RPA2, MCM2 and MCM5 to 

validate further the differential protein expression between carboplatin-sensitive and 

carboplatin-resistant ovarian cancer cell lines. Carboplatin-resistant cell lines (CAOV-1, 

COLO316 and OVCAR-3) displayed low expression level of all the proteins tested 

compared to the carboplatin-sensitive cell lines (A2780, PA-1, CAOV-3 and normal control 

HOSE 6-3) (Fig 7A). An exception is OVCAR-5 cell line, which, based on protein 

expression analysis, would have been predicted to behave like the sensitive cell lines; 

however, it displayed a low carboplatin IC50 (35 μg/μl) compared to the other cells in the 

resistant class. We quantified the expression of these proteins in all the cells tested, by 

immunoblotting using β-tubulin as an internal normalization control, and as shown in Fig 

7B, we observed a similar expression trend to that revealed by iTRAQ analysis.

A mechanism that has been proposed to contribute to carboplatin resistance involves a more 

reductive environment in the resistant cell, which can detoxify carboplatin-induced reactive 

oxygen species (ROS) production. Consistently, we detected higher expression of three 

reductase proteins, namely catalase, TXNDC5 and TXNDC17 in carboplatin-resistant 

ovarian cancer cell lines (Table S7). The upregulation of catalase and TXNDC5 in ovarian 

cancer cells compared to normal control, especially the most resistant to carboplatin, was 
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confirmed by immunoblotting (Fig 7C). To evaluate further the importance of these genes in 

carboplatin resistance, we applied RNAi and selected 3 siRNAs for each gene. As shown in 

Fig 7D, 2 of the 3 siRNAs against catalase and all 3 siRNAs against TXNDC5 resulted in 

robust knockdown of the targeted proteins. Furthermore, suppression of these genes in the 

most resistant CAOV1 cells, with two different siRNAs, consistently increased the 

sensitivity to carboplatin (Fig 7E), highlighting their potential importance in carboplatin 

resistance.

DISCUSSION

In order to understand the functional differences between a normal and disease state, it is 

important to define the identity and quantity of the cellular proteins, the machines that 

implement the function of the cell. In the context of cancer, such insights have the potential 

to reveal more precisely the mechanistic determinants of oncogenesis, cancer progression 

and therapy response within cancer cells than an analysis of the cancer genome alone. We 

have applied iTRAQ, which is one method of quantitative proteomics that can provide 

insight into the functional significance of changes encoded in the cancer genome. Here, we 

have presented a proteomic profiling of 10 ovarian cancer cell lines and 2 normal surface 

epithelial cell lines. As has been observed in other proteomic studies [21, 22], the patterns of 

mRNA expression did not correlate with the levels of the cognate proteins. Our analysis 

extends this further to demonstrate that DNA methylation, as another representation of gene 

regulation, also did not correlate with cellular protein expression.

Our study already illustrates how proteomic analysis has the potential to contribute insights 

into cancer etiology. When we compared the variability in expression levels of individual 

proteins between the panel of ovarian cancer cell lines and the normal controls, we observed 

that among 1273 proteins in common, 75 were over-expressed >1.5 fold, whereas 164 

proteins under-expressed <0.75 fold. The protein that was overexpressed to the greatest 

extent was S100P, a member of the S100 family of proteins that contains 2 EF-hand 

calcium-binding motifs (Fig 2A). Consistent with our findings, increased levels of S100P 

have been reported in multiple tumor cell lines and different tumor types. It has been 

proposed that S100P may function in tumor growth and metastasis by Ca2+-dependent 

interaction with several critical regulatory proteins [23]. Interestingly, we observed 

relatively high protein expression of S100P in our carboplatin-sensitive cell lines, including 

PA-1 (iTRAQ: 1.974), A2780 (1.462), HOSE 6-3 (1.159), and relatively low expression in 

carboplatin-resistant cell lines, including COLO-316 (0.181), OVCAR-5 (0.225), CAOV-1 

(0.797), which is also consistent with a contribution of S100P to chemosensitivity to 

carboplatin and paclitaxel in ovarian cancer cells [24]. Additional candidates identified as 

overexpressed in the ovarian cancer cells in our analysis include GGCT (gamma-

glutamycyclotransferase), which has been shown to be a potential biomarker in esophageal 

squamous tumors [25] and CRKL (Crk-like protein), a known oncogene [26].

Among those proteins shown to be down-regulated, periostin (POSTN) is a ligand for 

integrins that has been reported to induce attachment and spreading, consistent with a role in 

cell adhesion [27]. ALDH1A3, a member of the aldehyde dehydrogenase family of 

detoxifying enzymes, has previously been linked to breast cancer. A lack of expression of 
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ALDH1A3 protein is thought to underlie the impaired production of retinoic acid in several 

breast cancer cell lines relative to normal breast tissue [28]. Expression of secernin-1 

(SCRN1), first characterized in mast cells with a unique function in exocytosis [29], is a 

novel prognostic biomarker of synovial sarcoma, expression of which is associated with 

metasis-free survival [30]. We detected expression of secernin-1 in normal control ovarian 

cell line HOSE6-3 (iTRAQ: 7.624), whereas we observed consistently lower levels in the 

cancer cell lines. Furthermore, we observed that the levels of secernin-1 were lowest in 

“carboplatin-resistant” cell lines, including CAOV-1 (1.083) and OVCAR-5 (0.866), 

compared with the “carboplatin-sensitive” cell lines including A2780 (2.195) and PA-1 

(2.547). Consequently, our data suggest that secernin-1 may have potential as a prognostic 

biomarker in ovarian cancer. Of note, we reported previously that the protein tyrosine 

phosphatase PTP1B, encoded by the PTPN1 gene, served to inhibit IGF-1R signaling that 

was essential for ovarian cancer cell proliferation, migration, invasion and anchorage 

independent growth [31]. In fact, we observed down-regulation of PTP1B (mean-hose-ratio: 

0.82) among all the ovarian carcinoma-derived cell lines tested, compared with HOSE 11-12 

& 6-3, consistent with enhanced IGF-1R signaling in the cancer cells.

Using an ICAT-based quantitative proteomic technique, Stewart and co-workers published 

an analysis of proteins associated with cisplatin resistance in ovarian cancer cells [21]. 

Compared to their work, our studies have extended the scope of the cell lines analyzed and 

increased the number of proteins captured in our iTRAQ-based quantitative analysis. 

However, perhaps the most striking results of our analysis were the observation that 

quantitative proteomics can be used to distinguish cells on the basis of their sensitivity to 

carboplatin treatment and the fact that such a “protein signature” could not be discerned 

from analysis of either DNA methylation of mRNA expression. This reinforces our position 

that quantitative analyses of the proteome have the potential to provide crucial insights that 

will help us to understand the molecular mechanism of chemoresistance.

The active form of cis-platin is a “bi-aquated” species, in which chloro groups are 

substituted with water molecules. These activated cis-platin derivatives bind DNA and 

generate inter-strand crosslinks, which trigger the cytotoxic response. In addition, the 

hydrated cis-platin interacts with endogenous nucleophiles, including cysteines in such 

molecules as reduced glutathione, GSH. This has the potential to trigger an oxidative stress 

condition, which also favors DNA damage [32]. Interestingly, it has been reported that cis-

platin resistance correlates with elevated protein expression of GSH, together with the 

enzyme that catalyzes GSH synthesis, γ-glutamylcysteine synthetase, and the enzyme that 

mediates the conjugation of carboplatin and GSH, glutathione S-transferase in patient-

derived cells [33]. In our studies, we also observed high protein expression levels of 

glutathione S-transferase (especially glutathione S-transferase omega 1, GSTO1) and 

glutathione reductase in ovarian cancer cell lines that are resistant to carboplatin (Table S6). 

Furthermore, we observed that proteins related to thioredoxin, namely thioredoxin domain 

containing 5 & 17, also displayed elevated expression in carboplatin-resistance ovarian 

cancer cell lines (Table S7 and Fig 7C). A similar pattern was observed for catalase (Table 

S7 and Fig 7C). Importantly, we demonstrated that our panel of carboplatin-resistant cells 

could be sensitized to the effects of the chemotherapeutic agent by RNAi-induced 
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downregulation of either TXNDC5 or catalase (Fig 7D-E), suggesting that an enhanced anti-

oxidant environment within the cell may contribute to chemotherapy resistance. The use of 

cytotoxic gold compounds, which display similar structural features to platinum (II) 

complexes, has been proposed as one approach to overcoming resistance to platinum-based 

therapies. It is interesting to note that proteomic profiling of the effects of such gold 

compounds on A2780 ovarian cancer cells also revealed changes in proteins involved in 

control of redox homeostasis, for example, thioredoxin-like protein 1 [34] and GSH and 

thioredoxin reductase 1 (TXNRD1) [35].

Our quantitative analysis also revealed the potential importance of DNA damage repair 

proteins, including elevated levels of single strand DNA-binding proteins RPA1-3 and 

MCM2/MCM5 in carboplatin-sensitive cells. Furthermore, RPA plays an essential role in 

the recruitment, binding and stabilization of BRCA2/RAD51 in DNA damage response [36]. 

Perhaps an increase in RPA concentration may compete with RAD51 for single strand DNA 

localization and BRCA2 interaction thereby stalling DNA repair and making the cells 

sensitive to carboplatin? In addition, our iTRAQ data also highlight other signaling 

components/pathways that may be crucial to carboplatin resistance. Jab1/CSN5, which is a 

highly conserved protein complex that is implicated in cell cycle control, apoptosis as well 

as the DNA damage response and DNA repair, is overexpressed in various cancers including 

nasopharyngeal carcinoma, where it coincides with poor prognosis. It has been reported that 

suppression of Jab1/CSN5 induced chemosensitivity in nasopharyngeal carcinoma [37], 

consistent with our observation that it was elevated in the carboplatin-resistant ovarian 

cancer cell lines. In addition, we observed that the levels of intergrin-linked kinase (ILK) 

were also increased in the carboplatin-resistant cancer ovarian cells, consistent with reports 

that KP-392, a small molecule inhibitor of ILK, exerts a beneficial therapeutic effect in 

combination with cisplatin in lung cancer [38]. Galectin-1/LGALS1, another protein whose 

function is involved in cell-cell and cell-matrix interactions, was also elevated in resistant 

cell groups. Interestingly, aberrant expression of Galectin-1 could promote lung cancer 

progression and chemoresistance (to cisplatin) by upreguating p38MAPK, ERK and 

cyclooxygenase-2 [39]. We also detected high expression of calcium-dependent 

phospholipid binding protein annexin A4 in resistant cells, down-regulation of which by 

RNAi could sensitize mesothelioma cells to cisplatin [40]. In contrast, we demonstrated that 

expression of phospholipase A2-activating protein (PLAA), RNA-binding protein RBM3 

and Bid, which have been reported to enhance cisplatin-induced apoptosis [41, 42], were 

lower in the resistant compared to sensitive ovarian cancer cells in our study.

In summary, although current high-throughput genomic strategies focus on the discovery of 

gene mutations and altered transcription to help identify novel drug targets, here we 

demonstrate the importance of proteomic analysis to reveal changes in the level of 

expression of proteins that are critical for therapy response and treatment outcome, changes 

that would not be revealed by analysis of mRNA expression or methylation data alone. Our 

study to date highlights the potential significance of proteins that regulate cellular redox 

status and DNA damage repair, suggesting additional approaches to enhance 

chemotherapeutic strategies for treatment of patients with ovarian cancer. Overall, our 

results reinforce the importance of developing further appropriate technologies for 
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quantitative analyses of the proteome to reveal novel candidates for the detection and 

treatment of disease.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Quantitative proteomic analysis of ovarian control and cancer cell lines
(A) Experimental strategy for iTRAQ-based quantitative proteomics analysis. (B) 

Identification of shared ovarian proteome and distinct proteins from each cell line.
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Figure 2. Variability analysis of iTRAQ values among ovarian cell lines
(A) A box plot of the raw iTRAQ values to illustrate the variation between cell lines and the 

range of iTRAQ measurements. The distribution range of iTRAQ measurement per protein 

identified is presented for 10 ovarian cancer cell lines and 2 normal ovarian surface 

epithelial cell lines. The log2 value of each iTRAQ measurement was used to determine 

protein abundance per cell line. (B) Variability comparison in expression levels of individual 

protein between 10 ovarian cancer cell lines and 2 normal control cell lines. Waterfall plot 

was employed to summarize the “mean-hose-ratio” for each of the 1273 common proteins. 

(C) Correlations of iTRAQ “mean-hose-ratio” with mRNA expression. (D) Correlations of 

iTRAQ “mean-hose-ratio” with DNA methylation.
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Figure 3. Hierarchical clustering of iTraq z-scores for ovarian cancer cell lines
(A) The top 300 most variable iTRAQ proteins determined by median absolute deviation 

were clustered using the Eculidean complete method for the indicated ovarian cancer cell 

lines. Minimum z-scores are depicted in red and maximum z-scores are in green. Each row 

represents an individual protein, each column is the sum of the proteins identified in the 

indicated cell line. Carboplatin survival curves were determined by performing MTT cell 

viability assay and plotted for the 7 epithelial ovarian cancer cell lines and one control cell 

line. Absorbance was converted to the percentage of cells surviving and plotted against the 

concentration to calculate the IC50. Carboplatin-resistant cell lines were labeled “R” and 

cell lines sensitive to carboplatin treatment were labeled “S”. (B) Unsupervised hierarchical 

clustering of the same 300 most variable iTRAQ proteins using mRNA expression data. (C) 

Unsupervised hierarchical clustering of the same 300 most variable iTRAQ proteins using 

DNA methylation data.
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Figure 4. Correlation of iTRAQ Data with RNA Expression and DNA Methylation
The correlation distribution of RNA expression (dashed line) and DNA methylation (solid 

line) with iTraq data is shown at r = 0.2 binned increments. Note: a positive correlation for 

DNA methylation and iTraq values signifies hypomethylation with increased iTraq protein 

value.
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Figure 5. Proteomics-derived ovarian cancer modules
Protein-protein interactions of the 300 MAD filtered iTRAQ proteins examined through the 

HPRD (Release 9) data base.
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Figure 6. Expression of S100P, GGCT and CRKL in normal ovary and ovarian carcinoma tissue 
samples
(A) “Mean-hose-ratio” of S100P, GGCT and CRKL from iTRAQ. (B) Representative tissue 

microarray cores showing high expression of S100P, GGCT and CRKL in malignant 

ovarian carcinoma sections compared to normal ovary. Data were adapted from The Human 

Protein Atlas. (C) Summary of the immunohistochemistry result for all three proteins.
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Figure 7. Biochemical validation of the role of iTRAQ candidate proteins in carboplatin 
chemosensitivity
(A) Cells were lysed in SDS-containing RIPA buffer and protein expression levels were 

measured by immunoblotting with the indicated antibodies against RPA1, RPA2, MCM2, 

MCM5 and β-Tubulin, used as a normalization control. Results have been verified in 

duplicate (n=2). (B) Results from (A) were quantitated with program ImageJ and the relative 

ratio after normalization was compared in parallel with iTRAQ value per gene per cell line. 

(C) Analysis of the expression of catalase and TXNDC5 by immunoblotting with indicated 

antibodies. Results have been verified in triplicate (n=3). (D) Control and target gene siRNA 

were electroporated into CAOV1 cells. After 48hrs, knockdown efficiency was 

demonstrated by immunoblotting. (E) 24hrs after siRNA delivery, CAOV1 cells were re-

seeded into 96-well plates. Carboplatin was then added and incubated for indicated time. 

CellTiter-Glo Luminescent Cell Viability Assay was performed to illustrate the carboplatin 

response. Results represent mean ± S.D. from three independent experiments.
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