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Abstract

Background.—Control of C. difficile infection (CDI) is an increasingly difficult problem for 

healthcare institutions. There are commonly recommended strategies to combat CDI transmission 

such as oral vancomycin for CDI treatment, increased hand hygiene with soap and water for 

healthcare workers, daily environmental disinfection of infected patient rooms, and contact 

isolation of diseased patients. However, the efficacy of these strategies, particularly for endemic 

CDI, has not been well studied. The objective of this research is to develop a valid agent-based 

simulation model (ABM) to study C. difficile transmission and control in a mid-sized hospital.

Methods.—We develop an ABM of a mid-sized hospital with agents such as patients, healthcare 

workers, and visitors. We model the natural progression of CDI in a patient using a Markov chain 

and the transmission of CDI through agent and environmental interactions. We derive input 

parameters from aggregate patient data from the 2007-2010 Wisconsin Hospital Association and 

published medical literature. We define a calibration process, which we use to estimate transition 

probabilities of the Markov model by comparing simulation results to benchmark values found in 

published literature.

Results.—Comparing CDI control strategies implemented individually, routine bleach 

disinfection of CDI+ patient rooms provides the largest reduction in nosocomial asymptomatic 

colonizations (21.8%) and nosocomial CDIs (42.8%). Additionally, vancomycin treatment 

provides the largest reduction in relapse CDIs (41.9%), CDI-related mortalities (68.5%), and total 

patient LOS (21.6%).

Conclusion.—We develop a generalized ABM for CDI control that can be customized and 

further expanded to specific institutions and/or scenarios. Additionally, we estimate transition 

probabilities for a Markov model of natural CDI progression in a patient through calibration.
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INTRODUCTION

Clostridium difficile Infection (CDI) is the leading infectious cause of healthcare-associated 

diarrhea. CDI affects more than 500,000 Americans every year and is responsible for nearly 

20,000 deaths annually. There is strong evidence that the incidence and severity of CDI are 

increasing over time.(1)(2)(3) Mortality rates from CDI increased more than 400% between 

2000 and 2004.(1) In some studies, CDI has surpassed Methicillin-Resistant Staphylococcus 

aureus (MRSA) as the most common hospital acquired infection.(4)

Recent guidelines from the Society for Healthcare Epidemiology of America (SHEA) and 

the Infectious Diseases Society of America (IDSA) discuss several strategies for reducing 

the transmission of C. difficile in a healthcare institution.(5) These include: treatment with 

antibiotics for patients with CDI, environmental decontamination of rooms with bleach, 

increased healthcare worker (HCW) hand-hygiene using soap and water, and contact 

isolation of diseased patients. However, control of CDI continues to be problematic. 

Adherence to contact isolation and hand hygiene proves to be challenging to achieve.(6) 

While several studies investigate how these strategies individually affect C. difficile spread 

in small epidemic settings,(3)(7)(8)(9) to the best of our knowledge, there is no systematic 

method to evaluate the combined effects of these control measures in endemic and large 

epidemic situations. Furthermore, many existing models often consider transmission of C. 

difficile without modeling the interactions among patients, visitors, and HCWs thus ignoring 

important vectors of transmission and sources of variability.(10)

The complexity of CDI outbreaks and the interactions among patients, visitors, and HCWs 

present a problem that is too difficult to analytically compute how recommended control 

strategies affect performance metrics such as total patient length of stay (LOS), prevalence 

of asymptomatic C. difficile colonization, CDI incidence, and CDI-related mortality. In this 

study, we develop a discrete-event agent-based simulation model (ABM) that can be used to 

determine the best CDI control strategies for a particular situation. An ABM is ideal for 

studying such a problem, because it can model the effects on transmission of C. difficile 

through agent interactions and the effect of CDI control strategies on agent behavior inside 

the system. The main objective of this paper is to develop a core framework to model CDI 

transmission and control in a hospital. This simulation can then be improved upon to build 

more advanced and complex future models. Additionally, we develop a Markov model of 

the natural progression of CDI in a patient and estimate the transition probabilities through 

calibration.
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METHODS

Overview of the ABM

We develop a discrete-event ABM that simulates C. difficile transmission and control in a 

general mid-sized hospital. An ABM is an extension of traditional discrete-event simulation 

where the agents in the model have unique attributes and interact with each other. These 

interactions affect the simulation output and performance of the overall system. The ABM 

updates occur in discrete-time units each equivalent to 5 simulated minutes. Our model 

hospital is compartmentalized into 10 wards with 10 rooms per ward, and 2 beds per room. 

Diagrams of agent flow and environment construction are shown in Figure 1. There are three 

agent types in our model: patients, HCWs, and visitors. Agents interact with each other and 

the environment, and these interactions serve as possible transmission routes for C. difficile.

We assume HCWs and visitors are not susceptible to colonization or infection. However, 

they may become exposed to C. difficile through interactions and therefore spread C. 

difficile through the hospital. Hence, HCW and visitor agents have a binary descriptor 

indicating if they are exposed to C. difficile. Describing C. difficile in patients is more 

complex, since we consider the possibility of asymptomatic colonization, CDI, and relapse 

CDI. Therefore, we use a Markov chain to model C. difficile related condition of each 

patient.

We use this ABM to evaluate four strategies that are commonly used to control the spread of 

CDI: A standard regimen of vancomycin, hereafter referred to as strategy (V), for treatment 

of CDI+ patients, increased hand-hygiene with soap and water for HCWs (H), contact 

isolation of diseased patients (I), and bleach disinfection of rooms that contain diseased 

patients (B). Additionally we look at a mixed strategy (M) of all four individual strategies at 

the same time. These strategies affect the behavior of agents, the parameters relevant to C. 

difficile exposure and contamination, and ultimately, the propagation of CDI in patients. Our 

ABM can be used to evaluate the impact of applying each strategy individually or a 

combination of strategies.

Agents & The Environment

Our model consists of three agent types: patients, HCWs, and visitors. Agents can interact 

with each other and the hospital environment, which is divided into wards consisting of 

patient rooms and a ward common area. The rooms and the common areas of each ward 

have a binary descriptor of C. difficile exposure: they are either free of C. difficile or 

contaminated and thus risk exposing agents.

Patients arrive to the hospital following a Poisson process with arrival rate specified by 

historical data and are then assigned to a room. Each patient has several descriptive 

attributes including a unique patient ID, age, length of stay (LOS), remaining stay, 

designated ward, room assignment, bed assignment, CDI-related state, and exposure level. A 

patient is provided service for a lognormal distributed period of time and then discharged.

The HCW agents are assigned to specific wards and work in 12-hour shifts. There are 15 

HCWs per ward and each HCW services a set of patient rooms. Each HCW makes rounds 
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visiting patients in the ward. Once a service round is completed, an HCW can either return 

to the ward common area to wait until the next time to he/she tends to patients, or he/she 

temporarily visits another ward then returns at a later time. HCWs have a binary attribute 

that indicates if the HCW has been exposed to C. difficile.

At the beginning of each day, a Bernoulli trial determines whether or not a patient receives 

visitors on that day. A patient may receive between 0 and 3 visitors at a time. Visitor agents 

arrive to a ward and wait in the common areas or spend time with patients. C. difficile 

exposure for visitors works in the same fashion as HCWs. Visitors exposed to C. difficile 

can contribute to the transmission of C. difficile between patient rooms, common areas, and 

through interactions with the patient they are visiting. While in the hospital, a visitor can 

either visit a patient in his/her room, or wait in the ward’s common area. We assume patients 

in shared rooms can receive visitors and HCWs concurrently, and visitors and HCWs can be 

in a patient room at the same time.

Interactions

Interactions among the agents and interactions with the environment, such as rooms and 

ward common areas, are the primary modes in which C. difficile spreads. During an 

interaction, a Bernoulli trial is used to determine whether exposure to C. difficile occurs. The 

probability of exposure depends on the interaction type, and is estimated from C. difficile 

contamination studies and expert opinion (Table 1). A patient can become exposed to C. 

difficile after interacting with an exposed HCW, visitor, or contagious patient with 

probability peh, pev, or pep respectively. After remaining in a contaminated room for 6 hours, 

a patient can become exposed to C. difficile with probability penv. Similarly, an HCW can 

become exposed to C. difficile by interacting with an exposed patient, with probability peh, 

or being in a contaminated room, with probability penv. Finally, a visitor can become 

exposed to C. difficile after being in a contaminated room with probability penv, or 

interacting with a contagious patient, with probability pep.

Markov Model

Each patient agent has a dynamic C. difficile related status that is modeled as a discrete-time 

Markov chain (DTMC). For simplicity and ease of computation, we assume this Markov 

chain is updated every 6 hours of simulation time. The states of the Markov chain are 

described by a modified version of the natural history model proposed by Otten et al. (11). 

Namely, we use the following states to represent the C. difficile related status of a patient: 

Susceptible (S), Exposed (E), Colonized (C), Diseased (D), Cleared (CL), Clinically 

Resolved Colonized (CR), Relapse Diseased (R), Dead (X), and Not Susceptible (NS). A 

patient in the Susceptible (S) state can develop CDI or asymptomatic colonization after 

exposure to C. difficile. If a patient is exposed to C. difficile after an interaction with a 

contagious patient, or another exposed agent, he/she will transition to the Exposed state. The 

Exposed (E) state represents a patient who is exposed to C. difficile through interactions 

within the past 6 hours. Such a state is particularly useful for examining the effects of 

interactions among agents. A patient in the Colonized (C) state is asymptomatically 

colonized with C. difficile and can put others at risk for exposure. A patient in the Diseased 

(D) state has been diagnosed with active CDI and can expose other patients, HCWs, and 
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visitors to C. difficile. A patient in the Cleared (CL) state once had an infection or 

colonization, but is now recovered and the patient is no longer contagious. A patient in the 

Clinically Resolved and Colonized (CR) state once had CDI, but the symptoms have 

subsided despite the patient still having colonization of C. difficile. Similarly, a patient in the 

Relapse Diseased (R) state once had CDI, but is experiencing a recurrence of the previous 

CDI. A patient in the Dead (X) state has died due to CDI-related complications. Finally, a 

patient in the Not-susceptible (NS) state cannot develop colonization or CDI during his/her 

stay, i.e. they do not fall into risk categories for CDI or colonization. Figure 3 shows the 

states and possible transitions of the Markov model.

CDI Control Strategies

Using several studies we estimate Strategy (V) as being effective in resolving CDI in 79.3% 

of CDI cases without relapse.(11)(12)(13)(14)(15)(16)(17)(18)(19)(20) Due to the increased 

severity of CDI and the increased number of patients that meet requirements for vancomycin 

rather than other antibiotics, such as metronidazole, we consider vancomycin as the primary 

treatment. Other treatment methods such as metronidazole or fidaxomycin can be included 

in future iterations of the model, and we may estimate the proportion of CDI+ patients who 

receive each treatment. Metronidazole is shown to be as less effective than vancoymcin at 

treating CDI.(15,21,22) While fidaxomycin has been shown to be less effective than 

vancomycin at treating the hyper virulent NAP1 strain, it has been shown to be more 

effective at treating non NAP1 CDI.(23–25)

We assume 100% of CDI patients will receive oral vancomycin treatment when the strategy 

is used and the diagnosis of CDI is 100% accurate. Hence, we do not consider any 

consequences of incorrectly treating patients without CDI. We make this assumption based 

on the current availability of highly accurate algorithms to detect CDI. Sharp et al. (2010)

(26) demonstrate that the use of C.Diff Quik Chek Complete test, which tests for both GDH 

and Toxin A/B, followed by random-access PCR test for discrepant results from the C.Diff 

Quik Chek, result in high sensitivity (100%; 95% confidence interval [CI], 89.6 to 100%) 

and high specificity (99.6%; 95% CI, 97.3 to 99.9%).

Strategy (H) requires all HCWs to thoroughly wash their hands for 25 seconds with soap and 

water. We use a hand hygiene adherence of 48%, as reported by Pittet et al. who conducted 

one of the largest studies on hand hygiene in a hospital.(27) We assume each hand hygiene 

action removes C. difficile from the HCW’s hands between taking care of patients.(3)(9) If 

increased hand-hygiene measures are not enacted, HCWs may use alternative hand 

sanitation methods such as alcohol-based hand gel, which are shown to not effectively 

eliminate C. difficile contamination.(8) Strategy (B) involves the disinfection of rooms with 

diseased patients every 24 hours and assumes 100% adherence to bleach disinfection when 

used. Lastly, strategy (I) is the isolation of diseased patients where he/she is placed in his/her 

own room and do not interact with other patients, and HCWs must wear protective gowns 

and gloves before entering the room. We assume 62% adherence to proper HCW gowning 

as indicated by Muto et al.(28) If there is insufficient room capacity, the patient is not 

isolated. We run 6 different strategies for comparison: no intervention strategy (N), the 4 

individual strategies (V), (H), (I), (B), and the mixed strategy (M).
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Input Parameters

There are three main sources for our data. The first is aggregate patient data from the 

Wisconsin Hospital Association (WHA). The second is published papers from medical and 

epidemiological literature pertaining to CDI. The third data source is published statistics and 

guidelines from organizations such as the Centers for Disease Control and Prevention 

(CDC) and the American Hospital Association (AHA).

The WHA dataset consists of patient admissions to all healthcare institutions across the state 

of Wisconsin from 2007 to 2010. We use this dataset to estimate patient LOS, proportion of 

arrivals, patient age distribution, and susceptibility to CDI. We use published studies on C. 

difficile spread and control to estimate essential model parameters of C. difficile control 

strategies such as the duration of vancomycin treatment and the efficacy of bleach 

disinfection. A full list of input parameters is presented in Table 1. Additionally, we use 

published literature to estimate outcome measures such as percentage of colonized patient 

population, mortality rates, and infection rates; all of which are used as calibration 

constraints for generating the transition probabilities of the Markov model as explained 

below. We use the AHA 2010 Fast Fact report to estimate the arrival rate of 17.55 patients 

per day. We initialize our model with a patient population equal to the average number of 

patients in the hospital at a given time.

Based on the WHA data, we assume patient LOS to be lognormally distributed (Figure 4), 

and age to be normally distributed. We calculate the percentage of elderly patients, that is, 

patients over the age of 65, and considered all these patients to be susceptible to CDI. 

Therefore, we estimate the proportion of all patients who are susceptible to CDI during 

his/her stay to be 30.18%. We assume HCW service times and visitor services times are 

exponentially distributed. All other parameters where distribution data was not readily 

available are modeled as triangularly distributed with minimums and maximums of 75% and 

125% of the mean (mode) values.

Calibration of the Markov Model

We use a DTMC to represent the natural progression of CDI in a patient. There is no 

available data to estimate the state transition probabilities directly, so for this purpose we use 

a method known as calibration, which is implemented as follows. First, we partition each 

transition probability pi,j into discretized values using an initial step size. This creates many 

different instances of P, denoted by Px, whose entries, denoted pi,j,x, are defined as the 

probability of a patient in state i transitioning to state j in 6 hours . For each Px, we impose 

constraints on the entries of n-step transition probability matrix, Px
n, which are derived from 

the WHA dataset and long-term probabilities from published literature. We classify 

instances of Px that satisfy the constraints listed in Table 2 as feasible and instances of Px 

that fail to satisfy the constraints as infeasible. This generates a large set of feasible matrices 

denoted by Π. Then, we randomly sample 2000 matrices from Π into a new set Π’ and run 

100 independent replications of the simulation for every Px in Π’. Next, we examine the 

ABM output and accept the instances of Px whose benchmark values are within the lower 

and upper bound values obtained from the literature. These four benchmark values are the 

proportion of patients who experience asymptomatic colonization [0.076,0.127, 0.177](29)
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(30)(31) (i.e. [lower bound, mean, upper bound]), CDI [0.004 , 0.019, 0.072 ](30)(32)(20)

(33)(19)(34), relapse CDI [0.184 , 0.232, 0.273](32)(35)(33), and CDI-related mortality 

[0.057 , 0.0855, 0.138](20)(19)(32)(34)(33)(36). We reject an instance Px if any of the four 

benchmark values lies outside of the lower or upper bounds. We then calculate the mean 

percentage error (MPE) for each benchmark statistic t and for each Px by comparing 

simulated results in each replication m, denoted ŷt,x,m, with the benchmark values, denoted 

by yt that are derived from published literature. We define the MPE of benchmark t 

pertaining to a probability matrix Px as:

and the average mean percentage error (AMPE) as:

We use AMPE to avoid biasing the calibration on the benchmark values with the largest 

magnitude. We define ΠTOP10 as the set of 10 instances of Px with the smallest AMPE 

value. ΠTOP10 is then used to run the simulation scenarios for the final results, and the larger 

set of feasible matrices Π’ is used to explore the effects of error in the estimates for the 

Markov model transition probabilities.

Verification and Validation

We use the definitions of verification and validation as presented by the renowned 

simulation textbook, Simulation Modeling and Analysis by Law (2007, p. 299)(37) in which 

he describes verification as “determining that a simulation computer program performs as 

intended, i.e. debugging the computer program.” and validation as, “concerned with 

determining whether the conceptual simulation model (as opposed to the computer program) 

is an accurate representation of the system under study.” In another paper on verification and 

validation, Kleijnen outlines commonly used techniques for verification and validation.(38)

Our simulation model is written in Java using the Eclipse IDE. For verification, agent logic 

is well documented and compartmentalized by agent-type. Additionally, we perform tracing 

of agents via simulation output and using the Eclipse IDE debugger. Our tracing method 

follows randomly selected agents of each type through his/her stay in the hospital and 

checking whether the behavior of simulated agents match the intended agent logic, which is 

mapped in Figure 2.

Validation of the simulation model occurs in 5 segments: face validation, Markov model 

calibration results, calibration robustness, cross validation, and sensitivity analysis. In face 

validation, one of the authors, Dr. Nasia Safdar, a healthcare epidemiologist and infectious 

diseases trained physician, provided expertise on C. difficile transmission and control. The 

agents, environment, methods of interaction, Markov model states, and parameters are also 

developed in conjunction with Dr. Safdar to ensure the model is a sufficiently accurate 

Codella et al. Page 7

Med Decis Making. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



representation of a real hospital, while making the necessary simplifying assumptions to 

create such a model. Calibration of the Markov model is a validation of the natural history 

model by minimizing the error between the model predictions and the four performance 

benchmarks. We also study the effects of error in the performance target values by 

performing simulation runs using randomly sampled Pxs in the set of matrices accepted by 

the calibration bounds, Π’.

Cross validation is performed by running various scenarios found in published literature on 

CDI control and comparing our simulation results to those reported in these studies. These 

performance metrics are not used in the development of the model or calibration of the 

natural disease progression Markov model. Sensitivity analysis is used to confirm changes in 

the input parameters correspond with logical changes in the simulation results.

Cross-Validation to Published Literature

We compare the simulation results to expected total patient LOS using our assumptions 

about patient LOS from the WHA data and published literature on CDI. Estimates are used 

from Louie et al. (18) who report the mean vancomycin treatment duration as 10 days, and 

Teasley et al. (15) who find 15%-23% of patients recover naturally in 2-3 days without the 

use of antibiotics, and Barbut et al.(39) who find CDI is responsible for an 8 to 21 day 

increase in diseased patient LOS. Using the incidence of CDI and relapse CDI from our 

simulation results, we can use the parameters from these aforementioned publications and 

calculate the expected LOS of the 6 strategies discussed previously, and then compare these 

estimates with results from our simulation. The efficacy of CDI control strategies depends 

strongly on the susceptibility of patient populations, adherence to CDI control strategies, and 

treatment of patients. Unfortunately, many of these data are not available from the literature. 

Hence, validation through comparison to findings in published literature is, at best, limited. 

For this reason, we refrain from performing statistical tests for validation; however, we 

demonstrate the feasibility of our results by comparing simulation results of similar 

scenarios to published studies. For a comparison metric, we use the rate ratio, which is 

defined as the ratio of CDI incidence after intervention over the CDI incidence before 

intervention.

Sensitivity Analysis

We perform a deterministic one-way sensitivity analysis where we examine the output and 

look for a significant change (i.e. >5%) in asymptomatic colonizations, CDIs, relapse CDIs, 

mortalities, and total patient LOS. We also perform probabilistic sensitivity analysis, where 

we use a Monte Carlo approach such that parameters that are triangular or uniformly 

distributed random will have their min/max ranges extended by +/− 50% of their original 

values, and other parameters will have their attributes changed by +/− 50%.

RESULTS

Markov Model Calibration

The matrices in ΠTOP10 produced the following calibration results: average colonization 

incidence of 9.17% (MPECOL = 0.576 %), CDI incidence of 1.44% (MPECDI = 3.64%), 
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proportion of relapse CDI as 22.43% (MPERD = 11.091%), CDI-related mortality at 8.53% 

(MPEMOR = 11.782%), and an AMPE of 6.77%. We use this ΠTOP10 in the simulation for 

output validation, performance of individual control strategies, and sensitivity analysis. We 

evaluate the robustness of our selection of Pxs by randomly sampling 10 unique Pxs from Π’ 

and evaluating the simulation output generated by using these matrices to represent the 

parameters that dictate the natural progression of C. difficile in a patient. We perform these 

runs for each of the 6 strategy scenarios (N), (V), (H), (I), (B), and (M) and summarize the 

results as the maximum deviations from the results across all strategy scenarios. We observe 

a maximum deviation of 13.3% for colonizations, 11.61% for CDIs, 3.03% for relapse CDIs, 

8.46% for mortalities, and 1.73 days for total patient LOS. Table 3 contains the full results 

of this analysis and the difference range of each non-zero transition probability, pi,j that has 

been accepted by the calibration. The results demonstrate that the choice of Px in Π’ 

provides a similar magnitude and rank for the efficacy of each individual CDI control 

strategy, despite the differences in the values of the pi,js. Therefore, we conclude that our 

calibration method is stable against error in the choice of calibration targets, and can easily 

be modified to match new and dynamic strains of C. difficile.

Performance of CDI Control Strategies

Figure 5 showcases the effects of each scenario, with 95% confidence intervals, on the 

incidence of asymptotic colonization, CDI, relapse CDI, CDI-related mortality, and total 

patient LOS. As expected, the mixed strategy (M) results in the largest reduction for all 

performance metrics: 41.5%, 83.7%, 86.3%, 92.8%, and 21.7% respectively. However, 

strategy (B) results in the largest reduction in asymptomatic colonizations and CDIs, while 

strategy (V) results in the largest reduction in total patient LOS, relapse CDIs, and CDI-

related mortalities. The results for individual strategies on the aforementioned performance 

metrics in order of efficacy on CDI reduction: Strategy (B) reduces colonizations by 

21.83%, CDIs by 42.84%, relapse CDIs by 41.90%, CDI-related mortalities by 43.68%, and 

LOS by 9.18%; strategy (V) reduces colonizations by 14.61%, CDIs by 29.09%, relapse 

CDIs by 41.9 3%, CDI-related mortalities by 68.50%, and LOS by 21.63%.

We also compare our simulation results to those found in the literature. First, we compare 

the results of our model using environmental bleach disinfection of CDI incidence. Safdar et 

al. find the bleach disinfection rate ratio to be 0.21 (95% CI 0.11 - 0.39). (40) Mayfield et al. 

report a bleach disinfection rate ratio to be 0.37 (95% CI 0.14 - 0.74)(3) for bone marrow 

transplant patients, but there was no change in CDI incidence in the neurosurgical intensive 

care unit and no change in CDI incidence (i.e., rate ratio=1) for general medicine patients. In 

another study, Wilcox et al.(41) find the bleach disinfection rate ratio to be 0.595 in one 

ward and notice an increase in CDI (i.e. rate ratio>1) in another ward. Using the same 

adherence rate of 88% for hand hygiene as Safdar et al.,(40) which was the only study that 

reported hand hygiene adherence, our simulation results in a bleach-disinfection rate ratio of 

0.428 (95% CI 0.401 - 0.455). There are many factors that can be responsible for the wide 

range of results from these studies such as adherence to other interventions, which was not 

always present in these studies. Dettonkoffer et al. call for more detailed studies study of 

disinfection routines to identify the dependent variables of bleach disinfection efficacy.(42)
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Next, we compare our simulation results with Apisarnthanarak et al. who report a rate ratio 

of 0.5 through implementation of contact isolation, increased hand-hygiene, and 

environmental bleach disinfection.(43) Adherence rates were not available from the study. 

However, using average adherence rates from published literature,(27)(28) our model 

reports a rate ratio of 0.546 (95% CI 0.540 – 0.552) with these strategies enacted. To 

summarize, the outputs from our simulation appear to be within reasonable ranges found in 

published literature on CDI control. However, due to the complexity of CDI control 

strategies and the precise data required for validation, such comparisons should be taken as 

demonstrative.

Finally, we can compare published study estimates of patient LOS with output from our 

simulation. The expected LOS from published studies for our six strategy scenarios is as 

follows: strategy (N) 5.41, strategy (V) 4.25, strategy (I) 5.14, strategy (H) 5.19, strategy (B) 

4.91, and strategy (M) 4.26 days. Comparatively, our simulation attains the following LOS 

values: strategy (N) 5.44(95% CI 5.37 – 5.51), strategy (V) 4.26 (95% CI 4.23 - 4.29), 

strategy (I) 5.13 (95% CI 5.07 – 5.20), strategy (H) 5.20 (95% CI 5.13- 5.27), strategy (B) 

4.94 (95% CI 4.88 - 4.99), and strategy (M) 4.26 (95% CI 4.23 - 4.29). The proximity of the 

LOS results indicates valid flow logic for patients with and without CDI. These results 

suggest additional validity of the Markov model, namely in the transition probabilities that 

dictate the duration of CDI.

Results for the Sensitivity Analysis

Changes in parameters that are correlated with a significant increase as compared to the 

average scenario are mapped in Table 5. As expected, an increased proportion of patients 

susceptible or colonized to CDI results in an increased incidence of colonizations, CDI, 

relapse CDI, and mortality. Increasing the probability of environmental contamination and 

increasing the probability of patient-to-HCW exposure leads to increases in nosocomial 

colonization and CDI. However, increased exposure probability with visitors did not 

necessarily lead to significantly more CDIs. These results imply that environmental 

contamination and HCWs may serve as significant sources of C. difficile transmission in the 

hospital, however, visitors may play only a minor role. Additionally, longer LOS for patients 

produced more CDIs, which is likely due to extended opportunities for C. difficile exposure.

Figure 6 shows the results of the probabilistic sensitivity analysis including the 95% CIs for 

colonization, CDI, mortality, relapse CDI, and total patient LOS for each scenario. Overall, 

while increased variability in input parameters leads to increases in CDI related outcomes; 

the trend of strategy efficacy remains consistent with the average results. Additionally, 

increased uncertainty in input parameters did not result in large variability in the number of 

CDIs and relapse CDIs when strategy (M) is implemented. This is likely due to strategy (M) 

eliminating most nosocomial CDI due to the effectiveness of combined strategies.

DISCUSSION

In this study, we achieve two goals. First, we develop an ABM that models C. difficile 

spread and control in a hospital. Second, we use parameter estimates from clinical studies on 

CDI and our ABM to estimate transition probabilities for a Markov model that describes the 
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natural progression of CDI in a patient. Together, these provide a framework for future 

development of more complex models that may help clinicians and infectious disease 

experts understand the dynamics of C. difficile transmission and the efficacy of individual 

CDI control strategies.

There have been few studies using agent-based modeling for nosocomial infectious diseases. 

Ruben et al.(44) also use an agent-based approach to study isolation and treatment policies 

for CDI. However, they use a simpler stochastic model for CDI progression in a patient, and 

details on any calibration or validation methods used in their model were not publicly 

available at the time this article was submitted. Barnes et al.(45) present an agent-based 

model for MRSA transmission and control that also considers interactions between patients, 

visitors, and HCWs, common MRSA control strategies, and a stochastic model for MRSA 

acquisition. We use this model as a starting point in the development of our ABM and 

expand these methods with additional complexities. For example, Barnes et al. do not 

evaluate the effectiveness of environmental disinfection or consider HCW interactions with 

other HCWs. Several other models study nosocomial infections using differential equations 

with an estimated basic reproduction number value for CDI transmission. However, an 

ABM can analyze the system dynamics and complexity of interactions in a hospital and give 

a detailed account of C. difficile spread, without uniform generalizations on transmissibility. 

When modeling the natural history of CDI in a patient, Lanzas et al.(10) use a more compact 

disease state transition model and exclude distinct states for relapse colonized and diseased 

patients. We consider low-probability events and relapse CDI patients as possible sources 

for CDI outbreaks, and hence we use a more complete transition model, which include the 

aforementioned relapse states. Furthermore, modeling interactions among agents allows us 

to evaluate the effects of individual infection control strategies, whereas evaluating 

adjustments to the parameters of closed-form expressions may not capture a sufficient level 

of detail for small-scale disease transmission dynamics.

Our model is not without its limitations. Several of our parameters are approximated from 

limited data. The admission rates for Colonized, Infected, or Not-susceptible patients are not 

explicitly available from our data or the literature; hence we rely on age as the only 

determining factor for CDI susceptibility. The inclusion of relative-risk for different patient 

conditions would provide insight to CDI spread in at-risk patients. However, limited data on 

disease progression for specific patient types make it difficult to calibrate the state transition 

probabilities of the Markov model for many different patient types. We also assume the 

probability of exposure to C. difficile after interacting with a contagious patient is the same 

for both HCWs and visitors. The exact relationship between these probabilities is not known 

at this time since the available data on the transmission of C. difficile spores to HCWs from 

patients is limited. That is, we are unaware of any studies on C. difficile transmission to 

visitors.

Additionally, since there may be different ways that the ABM matches observed data, our 

calibration method may not be very precise due to the unavailability of explicit data, which 

may also explain the variation given in Table 3. Furthermore, only a generalized strain of C. 

difficile. That is, we do not consider the possibility of a patient with the hyper virulent NAP1 

strain, which has been shown to result in increased severity and transmissibility.(46) We 
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make this assumption due to the lack of control studies on the NAP1 strain for CDI, and the 

availability of data on C. difficile over other strains. The incidence of relapse CDI for 

patients who do not receive antibiotic treatment is not well documented. Therefore, we 

assume the chance of relapse for CDI patients without vancomycin is the same as those who 

receive vancomycin. Moreover, the behavior of agents and hospital design in our model is 

simplistic. However, additional detail without explicit information would add uncertainty 

and increase the difficulty of validation. Cost of CDI control is not included in our model at 

this time, as the evaluation of costs would require additional analysis to determine accuracy 

of such cost estimates. In one study, the cost of vancomycin ranges from $71 to $143 per 

day depending on regimen.(47) However, many CDI control costs require further study of 

indirect costs, which require more complexities and detail in the ABM. For example, the 

cost of increased hand hygiene measures depends heavily on HCW type (i.e. physician, 

nurse, or ancillary) and time. Using 2012 average nurse and physician salary information 

from the US Bureau of Labor Statistics (USBLS), we estimate the cost of increased hand 

hygiene measures between $0.23 and $0.62 per hand washing episode. Bleach disinfection 

costs associated with environmental services personnel time are estimated between $3.08 

and $4.11 per room using USBLS information. Furthermore, the cost of contact isolation 

ranges from $0.46 to $0.66 per protective gown, but the cost of reduced patient capacity due 

to contact isolation is unknown. Hence, we leave the topic of cost analysis to be addressed in 

future work.

We develop the model with a level of detail that we believe appropriately captures 

interactions among agents, while being generalized to avoid any major flaws in our 

assumptions or limitations from scarce data. Furthermore, we do not consider modeling 

environmental disinfection strategies beyond bleach since clinical data on the efficacy of 

newer technology such as hydrogen peroxide vapor and UV light disinfection are limited 

and these tools are not extensively used at this time. Since our model's primary focus is on 

horizontal transmission of C. difficile, we choose not to introduce additional complexity by 

adding antibiotic stewardship constraints.

This model serves as a framework for more complex models. Future iterations of the model 

will include multiple strains of CDI, additional antibiotic treatments (i.e. metronidazole and 

fidaxomycin), relative-risk of CDI due to a patient’s underlying condition, antibiotic 

stewardship, and the possibility of treating false positive CDIs. Additionally, due to the large 

number of parameters required for such a model, we plan to conduct a large observational 

study, which is necessary to obtain the data needed to perform a more rigorous calibration 

and validation of the model.
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Figure 1. 
Agent flow and interactions in the simulated mid-sized hospital.

Codella et al. Page 17

Med Decis Making. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Codella et al. Page 18

Med Decis Making. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Codella et al. Page 19

Med Decis Making. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2. 
Flowcharts depicting Agent logic and behavior for (a) Patients, (b) HCWs, and (c) Visitors.
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Figure 3. 
State transition diagram of the Markov model for the C. difficile related status of a patient 

agent.
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Figure 4. 
Histogram for patient length of stay from the Wisconsin Hospital Association 2007-2010 

dataset.

Codella et al. Page 22

Med Decis Making. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 5. 
Simulation results comparing the number of colonizations, CDIs, relapse CDIs, CDI related 

mortalities, and total patient LOS over the individual CDI control strategies (V), (I), (H), (B), 

and mixed strategy (M) to the base case of no interventions (N).
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Figure 6. 
Results for the Monte Carlo sensitivity analysis. We compared individual CDI control 

strategies (V), (I), (H), (B), and mixed strategy (M) to the base case of no interventions (N).
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Table 1

A list of input parameters, values, distribution information, and sources.

Symbol Description Mean
Value Distribution Range Source

μ LOS Patient LOS 4.254 Lognormal 1.497 (SD) WHA Data

λ Patient arrival rate per day 17.55 Exponential -- AHA

μ h HCW service time in minutes 10 Exponential -- Expert Opinion

nh Number of HCWs per ward 15 Triangular [13, 17] Expert Opinion

phh Hand Hygiene Compliance 0.48 Triangular [0.36, 0.6] Pittet et al.(27)

piso Adherence to Contact Isolation 0.62 Triangular [0.47, 0.78] Muto et al. (28)

μ v Visitor service time in minutes 20 Exponential -- Expert Opinion

pvis
Probability a patient will receive
visitors during on a given day 0.6 Triangular [0.45, 0.75] Expert Opinion

nv Number of visitors 2 Triangular [1, 3] Expert Opinion

α s
Proportion of patient arrivals in
Susceptible state 0.3018 Triangular [0.256, 0.347] WHA Data

α c
Proportion of patient arrivals in
Colonized state 0.076 Triangular [0.067, 0.097] (31,34,48)

α d
Proportion of patient arrivals in
Diseased state 0.00242 Triangular [0.002, 0.006] (19,20,31-34,48)

α n
Proportion of patients in Not-
Susceptible state 0.6176 Triangular [0.549, 0.673] WHA Data,

Extrapolation

pvanc
Probability of recovering from CDI
with 2.0g/day vancomycin treatment 0.7981 Triangular [0.5985, 0.9975] (18,24,32,33,49,50)

μ vanc Vancomycin treatment time 10 Triangular [5, 15] (15)

penv
Probability of exposure from
interaction with environment 0.435 Triangular [0.3262, 0.5437] (51) & Expert

Opinion

ppe
Probability of patient exposure from
interacting with contagious patient 0.24 Triangular [0.18, 0.3] (51,52) & Expert

Opinion

peh

Probability of HCW exposure given
an interaction with contagious
patient occurred

0.48 Triangular [0.4, 0.6] (51-53) & Expert
Opinion

pep

Probability of patient exposure given
an interaction with exposed HCW
occurred

0.5 Triangular [0375, 0.625] (51-53) & Expert
Opinion

pev

Probability of a visitor exposure
given an interaction with exposed
patient

0.5 Triangular [0.425, 0.625] (51,52) & Expert
Opinion
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Table 2

Markov chain calibration constraints derived from the WHA dataset or published literature. The notation Pi,j
n 

denotes (i,j)th entry in the n-step transition probability matrix P where i and j correspond to states in the 

Markov model.

Constraint Description Source

0 < PS,D
20 ≤ 0.00683 Probability of developing CDI WHA Data

0 < PS.D
28 ≤ 0.0093 Probability of developing CDI in 1 week Clabots et al.(30)

0 < PS,D
56 ≤ 0.125 Probability of developing CDI in 1-2 weeks Clabots et al. (30)

0 < PS,D
84 ≤ 0.2787 Probability of developing CDI in 2-3 weeks Clabots et al. (30)

0 < PS,D
112 ≤ 0.32 Probability of developing CDI in 3-4 weeks Glabots et al. (30)

0 < PS,D
140 ≤ .5 Probability of developing CDI in >4 weeks Clabots et al. (30)

0 < PC,D
20 ≤ 0.0227 Probability of a colonized patient becoming diseased within his/her stay. Redehngs, et al. (1)

0 < PS,C
20 ≤ 0.1937 Probability of susceptible patient becoming colonized within his/her stay. McFarland, et al.(54)

0 < PE,D ≤ PS.D < PE,D
Colonized patients are not more likely to develop CDI than susceptible
patients Johnson, et al.(55)

0.026 ≤ PD,X
83 ≤ 0.30 Probability a diseased patient will die from CDI Loo, et al.(34)

0 < PD,L
12 ≤ 0.23 Probability of a quick recovery (2.5 days mean time) CDC estimates Olson, et al.(16)

0 < PD,L
88 ≤ 0.595 Probability of a long recovery (22 days mean time)

0 < PCL,D ≤ 0.0255 Probability a patient will develop CDI after being cleared Olson, et al.(16)&
Teasley et al.(15)

PR,X > PD,X
Probability of death when relapse diseased is greater than the probability of
death in diseased state O’Neill, et al.(56)
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Table 3

Results (min/max) of each strategy scenario using randomly sampled transition probability matrices Px in Π’.

Strategy Colonizations CDIs Relapse CDIs CDI-Related
Mortalities

Total
Patient LOS

N [13.09%,26.39%] [8.92%,20.53%] [23.57%,26.44%] [14.59%,22.62%] [5.29,7.01]

V [11.29%,21.09%] [6.58%,13.7%] [19.4%,20.53%] [5.21%,9.66%] [4.26,4.28]

I [12.51%,23.71%] [7.6%,18.46%] [23.55%,25.94%] [14.42%,22.88%] [5.13,6.71]

H [12.72%,24.29%] [7.79%,19.14%] [23.16%,26.19%] [14.68%,22.42%] [5.15,6.8]

B [10.62%,19.53%] [5.83%,12.03%] [23.27%,25.74%] [14.15%,22.42%] [4.93,5.78]

M [8.8%,12.47%] [2.3%,4.02%] [18.96%,20.66%] [5.46%,10.15%] [4.25,4.26]
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Table 4

Spread of pi,j Values Across all Pxs in Π’ Accepted by the Calibration.

CL S E C D CR R X NS

CL 0 0.02 0 0 0 0 0 0 0.02

S 0 <.001 <.001 <.001 <.001 0 0 0 0

E 0 0.862 0 0.480 0.382 0 0 0 0

C 0.012 0 0 <.001 <.001 0 0 0 0

D 0.010 0 0 0 0.011 0.016 0 0.009 0

CR 0.019 0 0 0 <.001 0.003 0

R 0.011 0 0 0 0 0 0.008 0.012 0

X 0 0 0 0 0 0 0 0 0

NS 0 0 0 0 0 0 0 0 0
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Table 5

Results for one-way sensitivity analysis. The listed parameters resulted in a significant change in output values 

for the given strategies compared to the average parameter value scenario. A single +/− indicates a change of 

[5 - 15]%, and a double ++/−− indicates a change of >15%.

Name Δ Colonizations CDIs Relapse CDIs Deaths Total Patient LOS

− N−− V−− I−− H−− B−− 
M−−

N−− V−− I−− H−− B
−− M−−

N−− V−− I−− H−− B−− 
M−−

N−− V−− I−− H−− 
B−− M−

N−

α s N++ V++ I++ H++ B++ N++ V++ I++ H++ B
++

N++ V++ I++ H++ B++

+ N++ V++ I++ H++ 
B++ M+

N+

M++ M++ M++

− N−− V−− I−− H−− B−− 
M−−

N−− V−− I−− H−− B
−− M−−

N−− V−− I−− H−− B−− 
M−−

N− V− I− H− B− M
−

N−

α c N++ V++ I++ H++ B++ N++ V++ I++ H++ B
++

N++ V++ I++ H++ B++

+ N+ V+ I+ H+ B+ M
+

N+

M++ M++ M++

− N−− V−− I−− H−− B−− 
M−−

N−− V−− I−− H−− B
−− M−−

N−− V−− I−− H−− B−− 
M−−

N− V− I− H− B− M
−

N−

α d N++ V++ I++ H++ B++ N++ V++ I++ H++ B
++

N++ V++ I++ H++ B++

+ N+ V+ I+ H+ B+ M
+

N+

M++ M++ M++

N++ V++ I++ H++ B++ N++ V++ I++ H++ B
++

N++ V++ I++ H++ B++

− N++ V++ I++ H++ 
B++ M+

N+

α ns M++ M++ M++

+ N−− V−− I−− H−− B−− 
M−−

N−− V−− I−− H−− B
−− M−−

N−− V−− I−− H−− B−− 
M−−

N−− V−− I−− H−− 
B−− M−

N−

− V+ M+ V++ M+ V++ M++ V++ M++ V+ M+

Pvanc

+ V− M− V− M− V− M− V− M− V− M−

− V− M− V− M−

μ vanc

+ V+ M+ V+ M+

− N− V− I− H− M− N− V− I− H− B− M− N− V− I− H− B− M− N− V− I− H− B− M
−

Penv

+ N+ V+ H+ I+ M+ N+ V+ I+ H+ B+ M+ N+ I+ H+ B+ M+ N+ V+ I+ H+ B+ M
+
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Name Δ Colonizations CDIs Relapse CDIs Deaths Total Patient LOS

− N− V− H− B− M− H− I− M− H− I− M− H− I− M−

Ppe

+ N+ I+ H+ B+ M+ H+ I+ M+ H+ I+ M+ H+ I+ M+

− N−− V−− I−− H−− B−− 
M−−

N−− V−− I−− H−− B
−− M−−

N−− V−− I−− H−− B−− 
M−−

N− V− I− H− B− M
−

N−− V− I− H− B− M
−−

Peh N++ V++ I++ H++ B++ N++ V++ I++ H++ B
++

N++ V++ I++ H++ B++

+ N+ V+ I+ H+ B+ M
+

N+ V+ I+ H+ B+ M+

M++ M++ M++

− N− V− H− B− M− N− H− B− M− N− H− B+ N− H− B− M−

Pev

+ N+ I+ H+ B+ M+ N+ I+ H+ B+ M+ N+ H− B+ N+ I+ H+ B+ M+

− N− V− I− H− B− M− N− V− I− H− B− M− N− V− I− H− B− M− N− V− I− H− B− M
−

N− V− I− H− B− M−

μ LOS

+ N+ V+ I+ H+ B+ M+ N+ V+ I+ H+ B+ M+ N+ V+ I+ H+ B+ M+ N+ V+ I+ H+ B+ M
+

N+ V+ I+ H+ B+ M+

− N− H− I− B− M− N− H− I− B− M− N− H− I− B− M− N− H− I− B− M−

λ 

+ N+ H+ I+ B+ M+ N+ H+ I+ B+ M+ N+ H+ I+ B+ M+ N+ H+ I+ B+ M+

− N− H− I− B− M− N− H− I− B− M− N− H− I− B− M−

nhcws

+ N+ H+ I+ B+ M+ N+ H+ I+ B+ M+ N+ H+ I+ B+ M+

− H++ M+ H++ M+ H++ M+ H+ M+ H+

Phh

+ H−− M− H−− M− H−− M− H− M− H−

− I++ M+ I++ M+ I++ M+ I+ M+ I+

Piso

+ I−− M− I−− M− I−− M− I− M− I−

− I− B− M− I− B− M− I− I− B− M−

Pv

+ I+ B+ M+ I+ B+ I+ I+ B+ M+
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