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Iterated filtering algorithms are stochastic optimization procedures
for latent variable models that recursively combine parameter
perturbations with latent variable reconstruction. Previously,
theoretical support for these algorithms has been based on
the use of conditional moments of perturbed parameters to ap-
proximate derivatives of the log likelihood function. Here, a theo-
retical approach is introduced based on the convergence of
an iterated Bayes map. An algorithm supported by this theory
displays substantial numerical improvement on the computa-
tional challenge of inferring parameters of a partially observed
Markov process.

sequential Monte Carlo | particle filter | maximum likelihood |
Markov process

An iterated filtering algorithm was originally proposed for
maximum likelihood inference on partially observed Markov

process (POMP) models by Ionides et al. (1). Variations on
the original algorithm have been proposed to extend it to
general latent variable models (2) and to improve numerical
performance (3, 4). In this paper, we study an iterated filtering
algorithm that generalizes the data cloning method (5, 6) and
is therefore also related to other Monte Carlo methods for
likelihood-based inference (7–9). Data cloning methodology
is based on the observation that iterating a Bayes map con-
verges to a point mass at the maximum likelihood estimate.
Combining such iterations with perturbations of model
parameters improves the numerical stability of data cloning
and provides a foundation for stable algorithms in which the
Bayes map is numerically approximated by sequential Monte
Carlo computations.
We investigate convergence of a sequential Monte Carlo im-

plementation of an iterated filtering algorithm that combines
data cloning, in the sense of Lele et al. (5), with the stochastic
parameter perturbations used by the iterated filtering algorithm
of (1). Lindström et al. (4) proposed a similar algorithm, termed
fast iterated filtering, but the theoretical support for that algo-
rithm involved unproved conjectures. We present convergence
results for our algorithm, which we call IF2. Empirically, it can
dramatically outperform the previous iterated filtering algorithm
of ref. 1, which we refer to as IF1. Although IF1 and IF2 both in-
volve recursively filtering through the data, the theoretical justifi-
cation and practical implementations of these algorithms are
fundamentally different. IF1 approximates the Fisher score
function, whereas IF2 implements an iterated Bayes map. IF1
has been used in applications for which no other computa-
tionally feasible algorithm for statistically efficient, likelihood-
based inference was known (10–15). The extra capabilities of-
fered by IF2 open up further possibilities for drawing infer-
ences about nonlinear partially observed stochastic dynamic
models from time series data.
Iterated filtering algorithms implemented using basic sequential

Monte Carlo techniques have the property that they do not need
to evaluate the transition density of the latent Markov process.

Algorithms with this property have been called plug-and-play (12,
16). Various other plug-and-play methods for POMP models have
been recently proposed (17–20), due largely to the convenience of
this property in scientific applications.

An Algorithm and Related Questions
A general POMP model consists of an unobserved stochastic
process fXðtÞ; t≥ t0g with observations Y1; . . . ;YN made at times
t1; . . . ; tN . We suppose that XðtÞ takes values in X⊂RdimðXÞ, Yn
takes values in Y⊂RdimðYÞ, and there is an unknown param-
eter θ taking values in Θ⊂RdimðΘÞ. We adopt notation ym:n =
ym; ym+1; . . . ; yn for integers m≤ n, so we write the collection of
observations as Y1:N . Writing Xn =XðtnÞ, the joint density of
X0:N and Y1:N is assumed to exist, and the Markovian prop-
erty of X0:N together with the conditional independence of
the observation process means that this joint density can be
written as

fX0:N ;Y1:N ðx0:N ; y1:N  ; θÞ
= fX0ðx0  ; θÞ

QN
n=1

fXn jXn− 1ðxnjxn−1  ; θÞfYnjXnðynjxn  ; θÞ:

The data consist of a sequence of observations, y1:N* . We write
fY1:N ðy1:N   ; θÞ for the marginal density of Y1:N , and the likelihood
function is defined to be ℓðθÞ= fY1:N ðy1:N*   ; θÞ. We look for a max-
imum likelihood estimate (MLE), i.e., a value θ̂ maximizing ℓðθÞ.
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The IF2 algorithm defined above provides a plug-and-play
Monte Carlo approach to obtaining θ̂. A simplification of IF2
arises when N = 1, in which case, iterated filtering is called
iterated importance sampling (2) (SI Text, Iterated Importance
Sampling). Algorithms similar to IF2 with a single iteration
ðM = 1Þ have been proposed in the context of Bayesian inference
(21, 22) (SI Text, Applying Liu and West’s Method to the Toy
Example and Fig. S1). When M = 1 and hnðθjφ  ; σÞ degenerates
to a point mass at φ, the IF2 algorithm becomes a standard
particle filter (23, 24). In the IF2 algorithm description, ΘF;m

n;j
and XF;m

n;j are the jth particles at time n in the Monte Carlo
representation of the mth iteration of a filtering recursion. The
filtering recursion is coupled with a prediction recursion, rep-
resented by ΘP;m

n;j and XP;m
n;j . The resampling indices k1:J in IF2

are taken to be a multinomial draw for our theoretical analysis,
but systematic resampling is preferable in practice (23). A
natural choice of hnðθjφ  ; σÞ is a multivariate normal density
with mean φ and variance σ2Σ for some covariance matrix Σ,
but in general, hn could be any conditional density parame-
terized by σ. Combining the perturbations over all of the time
points, we define

hðθ0:N jφ  ; σÞ= h0ðθ0jφ ; σÞ
YN
n=1

hnðθnjθn−1  ; σÞ:

We define an extended likelihood function on ΘN+1 by

ℓ
^ðθ0:NÞ=

Z
. . .

Z
dx0 . . . dxN

�
fX0ðxo   ; θ0Þ

×
QN
n=1

fXnjXn− 1ðxnjxn−1  ; θnÞfYnjXn

�
y*n
��xn  ; θn�

�
:

Each iteration of IF2 is a Monte Carlo approximation to
a map

Tσ f ðθNÞ=

Z
ℓ
^ðθ0:NÞhðθ0:N jφ  ; σÞf ðφÞdφ  dθ0:N−1Z
ℓ
^ðθ0:NÞhðθ0:N jφ  ; σÞf ðφÞdφ  dθ0:N

; [1]

with f and Tσ f approximating the initial and final density of the
parameter swarm. For our theoretical analysis, we consider the
case when the SD of the parameter perturbations is held fixed at
σm = σ > 0 for m= 1; . . . ;M. In this case, IF2 is a Monte Carlo
approximation to TM

σ f ðθÞ. We call the fixed σ version of IF2
“homogeneous” iterated filtering since each iteration imple-
ments the same map. For any fixed σ, one cannot expect a pro-
cedure such as IF2 to converge to a point mass at the MLE.
However, for fixed but small σ, we show that IF2 does approx-
imately maximize the likelihood, with an error that shrinks to
zero in a limit as σ→ 0 andM→∞. An immediate motivation for
studying the homogeneous case is simplicity; it turns out that
even with this simplifying assumption, the theoretical analysis
is not entirely straightforward. Moreover, the homogeneous anal-
ysis gives at least as much insight as an asymptotic analysis into
the practical properties of IF2, when σm decreases down to some
positive level σ > 0 but never completes the asymptotic limit
σm → 0. Iterated filtering algorithms have been primarily devel-
oped in the context of making progress on complex models for
which successfully achieving and validating global likelihood
optimization is challenging. In such situations, it is advisable
to run multiple searches and continue each search up to the
limits of available computation (25). If no single search can
reliably locate the global maximum, a theory assuring conver-
gence to a neighborhood of the maximum is as relevant as a
theory assuring convergence to the maximum itself in a prac-
tically unattainable limit.
The map Tσ can be expressed as a composition of a parameter

perturbation with a Bayes map that multiplies by the likelihood
and renormalizes. Iteration of the Bayes map alone has a central
limit theorem (CLT) (5) that forms the theoretical basis for the
data cloning methodology of refs. 5 and 6. Repetitions of the pa-
rameter perturbation may also be expected to follow a CLT. One
might therefore imagine that the composition of these two oper-
ations also has a Gaussian limit. This is not generally true, since the
rescaling involved in the perturbation CLT prevents the Bayes map
CLT from applying (SI Text, A Class of Exact Non-Gaussian Limits
for Iterated Importance Sampling). Our agenda is to seek conditions
guaranteeing the following:

(A1) For every fixed σ > 0, limm→∞Tm
σ f = fσ exists.

(A2) When J and M become large, IF2 numerically approxi-
mates fσ .

(A3) As the noise intensity becomes small, limσ→0 fσ approaches
a point mass at the MLE, if it exists.

Stability of filtering problems and uniform convergence of
sequential Monte Carlo numerical approximations are closely
related, and so A1 and A2 are studied together in Theorem 1.
Each iteration of IF2 involves standard sequential Monte Carlo
filtering techniques applied to an extended model where latent
variable space is augmented to include a time-varying param-
eter. Indeed, all M iterations together can be represented as
a filtering problem for this extended POMP model on M rep-
lications of the data. The proof of Theorem 1 therefore leans
on existing results. The novel issue of A3 is then addressed in
Theorem 2.

Convergence of IF2
First, we set up some notation. Let fΘ^m

0:N ;m= 1; 2; . . . g be a
Markov chain taking values in ΘN+1 such that Θ

^1
0:N has den-

sity
R
hðθ0:N jφ  ; σÞf ðφÞdφ, and Θ

^m
0:N has conditional density

Algorithm IF2. Iterated filtering

input:
Simulator for fX0 ðx0  ; θÞ
Simulator for fXn jXn−1

ðxnjxn−1  ; θÞ, n in 1 : N
Evaluator for fYn jXn ðynjxn   ; θÞ, n in 1 : N
Data, y1:N*

Number of iterations, M
Number of particles, J
Initial parameter swarm, fΘ0

j ,j in  1 : Jg
Perturbation density, hnðθjφ  ; σÞ, n in 1 : N
Perturbation sequence, σ1:M

output: Final parameter swarm, fΘM
j ,j in  1 : Jg

For m in 1 : M
ΘF,m

0,j ∼h0ðθjΘm−1
j   ; σmÞ for j in 1 : J

XF,m
0,j ∼ fX0 ðx0;ΘF,m

0,j Þ for j in 1 : J
For n in 1 : N

ΘP,m
n,j ∼hnðθjΘF,m

n−1,j ,σmÞ for j in 1 : J

XP,m
n,j ∼ fXn jXn−1

�
xnjXF,m

n−1,j ;Θ
P,m
j

�
for j in 1 : J

wm
n,j = fYn jXn

�
y*n

���XP,m
n,j ;ΘP,m

n,j

�
for j in 1 : J

Draw k1:J with Pðkj = iÞ=wm
n,i=

PJ
u=1w

m
n,u

ΘF,m
n,j =ΘP,m

n,kj
and XF,m

n,j =XP,m
n,kj

for j in 1 : J
End For
Set Θm

j =ΘF,m
N,j for j in 1 : J

End For
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hðθ0:N jφN  ; σÞ given Θ
^m−1

0:N =φ0:N for m≥ 2. Suppose that fΘ^m
0:N ;

m≥ 1g is constructed on the canonical probability space Ω=
fðθ10:N ; θ20:N ; . . .Þg with θm0:N =Θ

^m
0:NðϑÞ for ϑ= ðθ10:N ; θ20:N ; . . .Þ∈Ω.

Let fFmg be the corresponding Borel filtration. To consider
a time-rescaled limit of fΘ^m

0:N ;m= 1; 2; . . . g as σ→ 0, let
fWσðtÞ; t≥ 0g be a continuous-time, right-continuous, piece-
wise constant process defined at its points of discontinuity
by Wσðkσ2Þ=Θ

^k+1
N when k is a nonnegative integer. Let

fZ^m
0:N ;m= 1; 2; . . . g be the filtered process defined such that,

for any event E∈FM ,

P
Z
^ðEÞ=

E
Θ
^

h
ℓ
^

1:MIE
i

E
Θ
^

h
ℓ
^

1:M

i ; [2]

where IE is the indicator function for event E and

ℓ
^

1:MðϑÞ=
YM
m=1

ℓ
^�

θm0:N
�
:

In Eq. 2 , P
Z
^ðEÞ denotes probability under the law of fZ^m

n g, and
E
Θ
^ denotes expectation under the law of fΘ^m

n g. The process

fZ^m
n g is constructed so that Z

^m
N has density Tmf . We make the

following assumptions.

(B1) fWσðtÞ; 0≤ t≤ 1g converges weakly as σ→ 0 to a diffusion
fW ðtÞ; 0≤ t≤ 1g, in the space of right-continuous functions
with left limits equipped with the uniform convergence topol-
ogy. For any open set A⊂Θ with positive Lebesgue measure
and e> 0, there is a δðA; eÞ> 0 such that P½W ðtÞ∈A for
all e≤ t≤ 1jW ð0Þ�> δ.

(B2) For some t0ðσÞ and σ0 > 0,WσðtÞ has a positive density on Θ,
uniformlyover thedistributionofW ð0Þ for all t> t0 andσ < σ0.

(B3) ℓðθÞ is continuous in a neighborhood fθ : ℓðθÞ> λ1g for
some λ1 < supφℓðφÞ.

(B4) There is an e> 0 with e−1 > fYn jXnðyn* jxn; θÞ> e for all
1≤ n≤N, xn ∈X and θ∈Θ.

(B5) There is a C1 such that hnðθj  φ  ; σÞ= 0 when jθ−φj>C1σ,
for all σ.

(B6) There is a C2 such that sup1≤n≤N jθn − θn−1j<C1   σ implies��� ℓ^ðθ0:NÞ− ℓðθNÞ
���<C2   σ, for all σ and all n.

Conditions B1 and B2 hold when hnðθjφ  ; σÞ corresponds to
a reflected Gaussian random walk and fW ðtÞg is a reflected
Brownian motion (SI Text, Checking Conditions B1 and B2). More
generally, when hnðθjφ  ; σÞ is a location-scale family with mean φ
away from a boundary, then fW ðtÞg will behave like Brownian
motion in the interior of Θ. B4 follows if X is compact and
fYnjXnðyn* jxn  ; θÞ is positive and continuous as a function of θ and
xn. B5 can be guaranteed by construction. B3 and B6 are un-
demanding regularity conditions on the likelihood and extended
likelihood. A formalization of A1 and A2 can now be stated
as follows.
Theorem 1. Let Tσ be the map of Eq. 1 and suppose B2 and B4.

There is a unique probability density fσ such that for any probability
density f on Θ,

lim
m→∞

����Tm
σ f − fσ

����
1 = 0; [3]

where jjf jj1 is the L1 norm of f. Let fΘM
j ;   j= 1; . . . ; Jg be the output

of IF2, with σm = σ > 0. There is a finite constant C> 0 such that,
for any function ϕ : Θ→R and all M,

E

(�����1J
XJ

j=1

ϕ
�
ΘM

j

�
−

Z
ϕðθÞfσðθÞdθ

�����
)
≤

C  supθjϕðθÞjffiffiffi
J

p : [4]

Proof. B2 and B4 imply that Tk
σ is mixing, in the sense of ref. 26,

for all sufficiently large k. The results of ref. 26 are based on the
contractive properties of mixing maps in the Hilbert projective
metric. Although ref. 26 stated their results in the case where
T itself is mixing, the required geometric contraction in the
Hilbert metric holds as long as Tk is mixing for all
K ≤ k≤ 2K − 1 for some K ≥ 1 (ref. 27, theorem 2.5.1). Corollary
4.2 of ref. 26 implies Eq. 3, noting the equivalence of the Hil-
bert projective metric and the total variation norm shown in
their lemma 3.4. Then, corollary 5.12 of ref. 26 implies Eq. 4,
completing the proof of Theorem 1. A longer version of this
proof is given in SI Text, Additional Details for the Proof of
Theorem 1.
Results similar to Theorem 1 can be obtained using Dobrushin

contraction techniques (28). Results appropriate for noncompact
spaces can be obtained using drift conditions on a potential function
(29). Now we move on to our formalization of A3:
Theorem 2. Assume B1–B6. For λ2 < supφℓðφÞ,

limσ→0
R
fσðθÞ 1fℓðθÞ<λ2g   dθ= 0.

Proof. Let λ0 = supφℓðφÞ and λ3 = infφℓðφÞ. From B4, ∞> λ0 >
λ3 > 0. For positive constants e1, e2, η1, η2 and λ1 < λ0, define

e1 = ð1− e1Þlogðλ0 + e2Þ+ e1 logðλ2 + e2Þ;

e2 = ð1− η1Þlogðλ1 − η2Þ+ η1 logðλ3 − η2Þ:

We can pick e1, e2, η1, η2, and λ1 so that e1 < e2. Suppose that
fΘ^m

n g is initialized with the stationary distribution f = fσ identi-
fied in Theorem 1. Now, setM to be the greatest integer less than
1=σ2, and let F1 be the event that fΘm

N ;m= 1; . . . ;Mg spends at
least a fraction of time e1 in fθ : ℓðθÞ< λ2g. Formally,

F1 =

(
ϑ∈Ω :

1
M

XM
m=1

1fℓðθmNÞ<λ2g > e1

)
:

We wish to show that P
Z
^½F1� is small for σ small. Let F2 be the set

of sample paths that spend at least a fraction of time ð1− η1Þ up
to time M in fθ : ℓðθÞ> λ1g, i.e.,

F2 =

(
ϑ∈Ω :

1
M

XM
m=1

1fℓðθmNÞ>λ1g > ð1− η1Þ
)
:

Then, we calculate

P
Z
^½F1�=

E
Θ
^

h
ℓ
^

1:M1F1

i
E
Θ
^

h
ℓ
^

1:M

i

≤
E
Θ
^

h
ℓ
^

1:M1F1

i
E
Θ
^

h
ℓ
^

1:M1F2

i

≤
E
Θ
^

hQM
m=1



ℓ
�
θm
N

�
+C2σ

�
1F1

i
E
Θ
^

hQM
m=1



ℓ
�
θm
N

�
−C2σ

�
1F2

i

[5]

≤
E
Θ
^½expfMe1g1F1 �

E
Θ
^½expfMe2g1F2 �

[6]
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= expfðe1 − e2ÞMg
P
Θ
^½F1�

P
Θ
^½F2�: [7]

We used B5 and B6 to arrive at Eq. 5, then, to get to Eq. 6, we
have taken σ small enough that C2σ < e2 and C2σ < η2. From B3,
fθ : ℓðθÞ> λ1g is an open set, and B1 therefore ensures each
of the probabilities PΘ1:M ½F1� and PΘ1:M ½F2� in Eq. 7 tends to
a positive limit as σ→ 0 given by the probability under the
limiting distribution fW ðtÞg (SI Text, Lemma S1). The term
expfðe1 − e2ÞMg tends to zero as σ→ 0 since, by construction,
M→∞ and e1 < e2. Setting L= fθ : ℓðθÞ≤ λ2g, and noting that
fZ^m

N ;m= 1; 2; . . . g is constructed to have stationary marginal
density fσ , we have

Z
L

fσðθÞdθ= 1
M

XM
m=1

�
P
Z
^

�
Z
^m

N ∈L
����F1


P
Z
^½F1�

+P
Z
^

�
Z
^m

N ∈L
����Fc

1


P
Z
^

�
Fc
1

��
;

≤ e1 +P
Z
^½F1�;

which can be made arbitrarily small by picking e1 small and σ
small, completing the proof.

Demonstration of IF2 with Nonconvex Superlevel Sets
Theorems 1 and 2 do not involve any Taylor series expansions,
which are basic in the justification of IF1 (2). This might suggest
that IF2 can be effective on likelihood functions without good
low-order polynomial approximations. In practice, this can be
seen by comparing IF2 with IF1 on a simple 2D toy example
ðdimðΘÞ= dimðXÞ= dimðYÞ= 2Þ in which the superlevel sets
fθ : ℓðθÞ> λg are connected but not convex. We also compare
with particle Markov chain Monte Carlo (PMCMC) imple-
mented as the particle marginal Metropolis–Hastings algo-
rithm of ref. 17. The justification of PMCMC also does not
depend on Taylor series expansions, but PMCMC is compu-
tationally expensive compared with iterated filtering (30). Our
toy example has a constant and nonrandom latent process,
Xn = ðexpfθ1g; θ2 expfθ1gÞ for n= 1; . . . ;N. The known mea-
surement model is

fYn jXnðyjx  ; θÞ∼Normal
�
x;
�
100 0
0 1

�
;

This example was designed so that a nonlinear combination of
the parameters is well identified whereas each parameter is
marginally weakly identified. For the truth, we took θ= ð1; 1Þ.
We supposed that θ1 is suspected to fall in the interval ½−2; 2�
and θ2 is expected in ½0; 10�. We used a uniform distribution on
this rectangle to specify the prior for PMCMC and to generate
random starting points for all of the algorithms. We set N = 100
observations, and we used a Monte Carlo sample size of J = 100
particles. For IF1 and IF2, we used M = 100 filtering iterations,
with initial random walk SD 0.1 decreasing geometrically down
to 0.01. For PMCMC, we used 104 filtering iterations with ran-
dom walk SD 0.1, awarding PMCMC 100 times the computa-
tional resources offered to IF1 and IF2. Independent, normally
distributed parameter perturbations were used for IF1, IF2, and
PMCMC. The random walk SD for PMCMC is not immediately
comparable to that for IF1 and IF2, since the latter add the noise
at each observation time whereas the former adds it only be-
tween filtering iterations. All three methods could have their
parameters fine-tuned, or be modified in other ways to take

advantage of the structure of this particular problem. However,
this example demonstrates a feature that makes tuning algo-
rithms tricky: The nonlinear ridge along contours of constant
θ2 expðθ1Þ becomes increasingly steep as θ1 increases, so no sin-
gle global estimate of the second derivative of the likelihood is
appropriate. Reparameterization can linearize the ridge in this
toy example, but in practical problems with much larger param-
eter spaces, one does not always know how to find appropriate
reparameterizations, and a single reparameterization may not be
appropriate throughout the parameter space.
Fig. 1 compares the performance of the three methods, based

on 30 Monte Carlo replications. These replications investigate
the likelihood and posterior distribution for a single draw from
our toy model, since our interest is in the Monte Carlo behavior
for a given dataset. For this simulated dataset, the MLE is
θ= ð1:20; 0:81Þ, shown as a green triangle in Fig. 1 A−C. In this
toy example, the posterior distribution can also be computed
directly by numerical integration. In Fig. 1A, we see that IF1
performs poorly on this challenge. None of the 30 replications
approach the MLE. The linear combination of perturbed
parameters involved in the IF1 update formula can all too easily
knock the search off a nonlinear ridge. Fig. 1B shows that IF2
performs well on this test, with almost all of the Monte Carlo
replications clustering in the region of highest likelihood. Fig. 1C
shows the end points of the PMCMC replications, which are
nicely spread around the region of high posterior probability.
However, Fig. 1D shows that mixing of the PMCMC Markov
chains was problematic.

Application to a Cholera Model
Highly nonlinear, partially observed, stochastic dynamic systems
are ubiquitous in the study of biological processes. The physical
scale of the systems vary widely from molecular biology (31) to
population ecology and epidemiology (32), but POMP models
arise naturally at all scales. In the face of biological complexity,
it is necessary to determine which scientific aspects of a system
are critical for the investigation. Giving consideration to a range
of potential mechanisms, and their interactions, may require
working with highly parameterized models. Limitations in the

Fig. 1. Results for the simulation study of the toy example. (A) IF1 point
estimates from 30 replications (circles) and the MLE (green triangle). The
region of parameter space with likelihood within 3 log units of the maxi-
mum (white), within 10 log units (red), within 100 log units (orange), and
lower (yellow). (B) IF2 point estimates from 30 replications (circles) with the
same algorithmic settings as IF1. (C) Final parameter value of 30 PMCMC
chains (circles). (D) Kernel density estimates of the posterior for θ1 for the
first eight of these 30 PMCMC chains (solid lines), with the true posterior
distribution (dotted black line).
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available data may result in some combinations of parameters
being weakly identifiable. Despite this, other combinations of
parameters may be adequately identifiable and give rise to some
interesting statistical inferences. To demonstrate the capa-
bilities of IF2 for such analyses, we fit a model for cholera
epidemics in historic Bengal developed by King et al. (10). The
model, the data, and the implementations of IF1 and IF2 used
below are all contained in the open source R package pomp
(33). The code generating the results in this article is provided
as supplementary data (Datasets S1 and S2).
Cholera is a diarrheal disease caused by the bacterial pathogen

Vibrio cholerae. Without appropriate medical treatment, severe
infections can rapidly result in death by dehydration. Many
questions regarding cholera transmission remain unresolved:
What is the epidemiological role of free-living environmental
vibrio? How important are mild and asymptomatic infections
for the transmission dynamics? How long does protective im-
munity last following infection? The model we consider splits
up the study population of PðtÞ individuals into those who are
susceptible, SðtÞ, infected, IðtÞ, and recovered, RðtÞ. PðtÞ is as-
sumed known from census data. To allow flexibility in repre-
senting immunity, RðtÞ is subdivided into R1ðtÞ; . . . ;RkðtÞ,
where we take k= 3. Cumulative cholera mortality in each
month is tracked with a variable MðtÞ that resets to zero at the
beginning of each observation period. The state process, fXðtÞ=
ðSðtÞ; IðtÞ;R1ðtÞ; . . . ;RkðtÞ;MðtÞÞ; t≥ t0g, follows a stochastic dif-
ferential equation,

dS= fkeRk + δðS−HÞ− λðtÞSgdt+ dP− ðσSI=PÞdB;
dI = fλðtÞS− ðm+ δ+ γÞIgdt+ ðσSI=PÞdB;

dR1 = fγI − ðke+ δÞR1gdt;
..
.

dRk = fkeRk−1 − ðke+ δÞRkgdt;

driven by a Brownian motion fBðtÞg. Nonlinearity arises through
the force of infection, λðtÞ, specified as

λðtÞ= β exp

(
βtrendðt− t0Þ+

XNs

j=1

βjsjðtÞ
)
ðI=PÞ

+ω exp

(XNs

j=1

ωjsjðtÞ
)
;

where fsjðtÞ; j= 1; . . . ;Nsg is a periodic cubic B-spline basis;
fβj; j= 1; . . . ;Nsg model seasonality of transmission; fωj; j= 1; . . . ;
Nsg model seasonality of the environmental reservoir; ω and β
are scaling constants set to ω= β= 1  y−1, and we set Ns = 6. The
data, consisting of monthly counts of cholera mortality, are mod-
eled via Yn ∼NormalðMn; τ2M2

nÞ for Mn =
R tn
tn−1

m  IðsÞds.
The inference goal used to assess IF1 and IF2 is to find high-

likelihood parameter values starting from randomly drawn
starting values in a large hyperrectangle (Table S1). A single
search cannot necessarily be expected to reliably obtain the
maximum of the likelihood, due to multimodality, weak identi-
fiability, and considerable Monte Carlo error in evaluating the
likelihood. Multiple starts and restarts may be needed both for
effective optimization and for assessing the evidence to validate
effective optimization. However, optimization progress made on
an initial search provides a concrete criterion to compare
methodologies. Since IF1 and IF2 have essentially the same
computational cost, for a given Monte Carlo sample size and
number of iterations, shared fixed values of these algorithmic
parameters provide an appropriate comparison.
Fig. 2 compares results for 100 searches with J = 104 particles

and M = 100 iterations of the search. An initial Gaussian ran-
dom walk SD of 0.1 geometrically decreasing down to a final
value of 0.01 was used for all parameters except S0, I0, R1;0, R2;0,
and R3;0. For those initial value parameters, the random walk
SD decreased geometrically from 0.2 down to 0.02, but these
perturbations were applied only at time t0. Since some starting
points may lead both IF1 and IF2 to fail to approach the global
maximum, Fig. 2 plots the likelihoods of parameter vectors
output by IF1 and IF2 for each starting point. Fig. 2 shows that,
on this problem, IF2 is considerably more effective than IF1.
This maximization was considered challenging for IF1, and (10)
required multiple restarts and refinements of the optimization
procedure. Our implementation of PMCMC failed to converge
on this inference problem (SI Text, Applying PMCMC to the
Cholera Model and Fig. S2), and we are not aware of any pre-
vious successful PMCMC solution for a comparable situation.
For IF2, however, this situation appears routine. Some Monte
Carlo replication is needed because searches occasionally fail
to approach the global optimum, but replication is always ap-
propriate for Monte Carlo optimization procedures.
A fair numerical comparison of methods is difficult. For ex-

ample, it could hypothetically be the case that the algorithmic
settings used here favor IF2. However, the settings used are
those that were developed for IF1 by ref. 10 and reflect con-
siderable amounts of trial and error with that method. Likeli-
hood-based inference for general partially observed nonlinear
stochastic dynamic models was considered computationally un-
feasible before the introduction of IF1, even in situations con-
siderably simpler than the one investigated in this section (19).
We have shown that IF2 offers a substantial improvement on
IF1, by demonstrating that it functions effectively on a problem
at the limit of the capabilities of IF1.

Discussion
Theorems 1 and 2 assert convergence without giving insights into
the rate of convergence. In the particular case of a quadratic log
likelihood function and additive Gaussian parameter pertur-
bations, limM→∞TM

σ f is Gaussian, and explicit calculations are
available (SI Text, Gaussian and Near-Gaussian Analysis of

Fig. 2. Comparison of IF1 and IF2 on the cholera model. Points are the log
likelihood of the parameter vector output by IF1 and IF2, both started at
a uniform draw from a large hyperrectangle (Table S1). Likelihoods were
evaluated as the median of 10 particle filter replications (i.e., IF2 applied
with M= 1 and σ1 = 0) each with J= 2× 104 particles. Seventeen poorly per-
forming searches are off the scale of this plot (15 due to the IF1 estimate, 2
due to the IF2 estimate). Dotted lines show the maximum log likelihood
reported by ref. 10.
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Iterated Importance Sampling). If log ℓðθÞ is close to quadratic
and the parameter perturbation is close to additive Gaussian noise,
then limM→∞TM

σ f exists and is close to the limit for the approxi-
mating Gaussian system (SI Text, Gaussian and Near-Gaussian
Analysis of Iterated Importance Sampling). These Gaussian and near-
Gaussian situations also demonstrate that the compactness con-
ditions for Theorem 2 are not always necessary. In the case N = 1,
IF2 applies to the more general class of latent variable models. The
latent variable model, extended to include a parameter vector that
varies over iterations, nevertheless has the formal structure of
a POMP in the context of the IF2 algorithm. Some simplifications
arise when N = 1 (SI Text, Iterated Importance Sampling, Gaussian
and Near-Gaussian Analysis, and A Class of Exact Non-Gaussian
Limits) but the proofs of Theorems 1 and 2 do not greatly change.
A variation on iterated filtering, making white noise pertur-

bations to the parameter rather than random walk perturbations,
has favorable asymptotic properties (3). However, practical
algorithms based on this theoretical insight have not yet been pub-
lished. Our experience suggests that white noise perturbations can be
effective in a neighborhood of the MLE but fail to match the
performance of IF2 for global optimization problems in com-
plex models.

The main theoretical innovation of this paper is Theorem 2,
which does not depend on the specific sequential Monte Carlo
filter used in IF2. One could, for example, modify IF2 to use an
ensemble Kalman filter (20, 34) or an unscented Kalman filter
(35). Or, one could take advantage of variations of sequential
Monte Carlo that may improve the numerical performance (36).
However, basic sequential Monte Carlo is a general and widely
used nonlinear filtering technique that provides a simple yet
theoretically supported foundation for the IF2 algorithm. The
numerical stability of sequential Monte Carlo for the extended
POMP model constructed by IF2 is comparable, in our cholera
example, to the model with fixed parameters (SI Text, Con-
sequences of Perturbing Parameters for the Numerical Stability
of SMC and Fig. S3).
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