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Enhancers are critical genomic elements that define cellular and
functional identity through the spatial and temporal regulation of
gene expression. Recent studies suggest that key genes regu-
lating cell type-specific functions reside in enhancer-dense geno-
mic regions (i.e., super enhancers, stretch enhancers). Here we
report that enhancer RNAs (eRNAs) identified by global nuclear
run-on sequencing are extensively transcribed within super
enhancers and are dynamically regulated in response to cellular
signaling. Using Toll-like receptor 4 (TLR4) signaling in macro-
phages as a model system, we find that transcription of super
enhancer-associated eRNAs is dynamically induced at most of the
key genes driving innate immunity and inflammation. Unexpect-
edly, genes repressed by TLR4 signaling are also associated with
super enhancer domains and accompanied by massive repression
of eRNA transcription. Furthermore, we find each super enhancer
acts as a single regulatory unit within which eRNA and genic
transcripts are coordinately regulated. The key regulatory activity
of these domains is further supported by the finding that super
enhancer-associated transcription factor binding is twice as likely
to be conserved between human and mouse than typical enhancer
sites. Our study suggests that transcriptional activities at super
enhancers are critical components to understand the dynamic
gene regulatory network.
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Enhancers are cis-acting regulatory elements located distantly
from transcription start sites (TSSs) that are regulated by the

binding of sequence-specific transcription factors (TFs) (1, 2). In
addition to core promoters that recruit general transcriptional
machinery to modulate gene expression, enhancers play a critical
role in transcriptional regulation of tissue- and cell type-specific
gene expression (2–4). Recent studies exploring how enhancers
exert their functions in gene regulation have revealed a variety
of enhancer properties including chromatin looping between
enhancers and target gene promoters, enhancer-specific histone
modification such as histone H3 mono- and di-methyl lysine 4
and H3 lysine 27 acetylation modifications, histone variants,
coactivator binding, and an open chromatin architecture (3, 5–
11). More recent studies have indicated that enhancers are the
key elements in cell-type specificity and have shown that there
are regions where enhancers are clustered together near key
genes that are involved in determining cell identity, called “super
enhancers” (SEs) or “stretch enhancers” (12–15). It has been
shown that these enhancer-dense regions are distinct from the
typical enhancers (TEs) in their ability to activate cell-type and
tissue-specific genes and result in a higher susceptibility for dis-
ease when mutated (12, 13, 15, 16). Interestingly, previous ge-
nomic studies have shown that active enhancers overlap with
RNA Pol II loading, which generates active bidirectional tran-
scripts called enhancer RNAs (eRNAs) (10, 17–19). Although
the role of enhancer transcription remains unknown, it is con-
sidered a hallmark of functionally active enhancers (20–24).
Previous studies of eRNAs that are associated with the bind-

ing of p53 and nuclear receptors such as estrogen receptor (ER),

androgen receptor (AR), and Rev-erbs have demonstrated
eRNA knockdown can lead to parallel changes in gene expres-
sion (20, 23, 25–27). These studies suggest that active enhancers
generate at least some eRNAs that are required for transcrip-
tional activation. Other studies suggest that eRNAs may pro-
mote enhancer–promoter looping or recruit TFs to specific en-
hancers (5, 8, 21, 23, 28). However, most studies focused mainly
on the functions of enhancers and eRNAs in transcriptional
activation, whereas signal-dependent transcriptional repression
has not been directly addressed in the context of enhancer
function. Recent studies have demonstrated that signaling
through nuclear receptors such as ER and peroxisome pro-
liferator-activated receptor can cause release of coactivators at
enhancers, resulting in repression of gene expression (14, 29, 30).
However, the contribution of eRNA repression, if any, to this
process remains unknown.
In macrophages, inflammatory signaling triggers immediate

and dramatic changes at the level of gene transcription in re-
sponse to external stimuli (3, 31, 32). Although the contribution
of lineage-determining factors such as ccaat-enhancer–binding
proteins (C/EBP) and PU.1 in macrophage identity has been
studied, macrophage SEs as targets of signal-dependent control
have just begun to be explored. A recent study has demonstrated
the importance of NF-κB–dependent redistribution of bromodo-
main containing 4 (BRD4) within SEs to exert rapid inflammatory
transcriptional responses (33). Although the mechanistic details of
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the phenomena remain to be explored, the study provides insight
into how SEs play critical roles in inflammatory responses. It has
also been strongly implicated that eRNAs and enhancer functions
are involved in the regulation of inflammatory transcription net-
works (22, 34–37); however, it remains to be solved how, and if at
all, SE-associated eRNAs (seRNAs) contribute to the regulatory
landscape. Using global nuclear run-on sequencing (GRO-Seq) to
map the location and orientation of all active RNA polymerases
genome-wide (38), we found eRNAs extensively transcribed within
the macrophage SE subset. We found that SEs, although only
3% of the enhancer network, are strongly enriched near genes
that are either induced or repressed in response to TLR4 sig-
naling, suggesting that they may play a key role in both signal
response and developmental transcriptional programs. The key
regulatory activity of these domains is further supported by the
finding that SE-associated TF binding is twice as likely to be
conserved between human and mouse than TE sites. Notably, we
found that each SE acts as a single regulatory unit within which
transcription of eRNAs and their genic transcripts are co-
ordinately regulated. Induction or repression of transcription
within each SE appears to be largely dictated by the cumulative
binding of specific TFs. Collectively, these results suggest that
each SE and its associated eRNAs function as a type of molecular
rheostat with a high dynamic range to control gene expression.

Results and Discussion
Detecting Highly Active Transcription at SEs. To investigate the
transcriptional response of macrophages to TLR4 signaling, we
generated nascent RNA transcriptomes using GRO-Seq from
mouse primary macrophages in response to lipopolysaccharide
(LPS) at 0, 20, 60, and 180 min. We defined de novo transcrip-
tion units to characterize the macrophage response in an un-
biased manner. The transcripts were classified into different
groups based on their location relative to known gene annota-
tions (Fig. 1A). Nearly 27% of transcripts were classified as
eRNAs, found in intergenic regions, closely associated with TFs
and epigenetic modifications. We observed that eRNAs were
typically clustered at key genes within enhancer-dense regions,
resembling sites that were recently described as SEs (12–14). To
explore the relationship between eRNAs and SEs more closely,
we analyzed ChIP-Seq data for key macrophage TFs, PU.1,
C/EBPA, JUNB, and NF-κB p65 (RELA), and defined SEs
based on the binding of these key factors (Dataset S1). To ensure
that the SEs that are identified based on the key TFs are com-
parable to those that are defined based on histone modifications
in macrophage, we first used H3K27Ac data to find SEs in both
vehicle- and LPS-treated conditions (34). Two independently
identified SEs showed statistically significant overlaps in both
vehicle and LPS treatment (Fig. S1A). To further validate our SE
discovery, we compared SEs reported in Brown et al. (33) to SEs
identified using Hypergeometric Optimization of Motif Enrich-
ment (HOMER) with the same mouse macrophage H4K12ac
ChIP-Seq dataset (33). Over 60% of the SEs are identical be-
tween methods, with most of those that differed found just shy of
the SE threshold set by the other method (Fig. S1 B and C). We
independently assessed the functional quality of differential SE
calls by measuring the eRNA production from intergenic TF
binding sites (TFBSs) that were specific to Brown et al. or
HOMER SEs, and find their transcriptional activity to be similar
and quite distinct from TE levels (Fig. S1D). As exemplified by
the Cebpa locus, SEs are characterized by the presence of high
transcriptional activity and multiple eRNAs (Fig. 1B). We found
that the number of eRNAs in the vicinity of a gene was predictive
of the presence of a nearby SE, with over 60% of genes with
seven or more adjacent eRNAs also containing an SE (Fig. S2
and Table S1). We refer to these SE-associated eRNAs as
seRNAs herein. Interestingly, when we compared the fraction of
eRNAs that overlaps with TEs or SEs, relatively few typical

intergenic enhancers overlap with an eRNA (30.6%), whereas
nearly all SEs contain eRNAs (93.3%) within intergenic regions.
This implies that the frequency and presence of eRNAs can be
used to mark SEs and these SEs are likely to be an assembly of
very active and functional enhancers. Furthermore, the tran-
scriptional activity at individual intergenic TFBSs was much
higher in SEs than at sites in TEs, with about a 3.3-fold increase
in the area under the curve (Fig. 1C). The fact that SEs tend to
cluster at lineage-defining gene loci (12, 13) suggests that regu-
latory elements in these regions may be conserved between
species. To address this hypothesis, we compared binding of
PU.1 and C/EBPA, using ChIP-Seq data from human and mouse
macrophages. Interestingly, mouse PU.1 and C/EBPA binding
peaks that are located in SEs are more likely to bind conserved
regions in human homologs compared with the peaks at TEs
(∼twofold enrichment) (Fig. 1D). As an example, PU.1- and
C/EBP-bound peaks near the Spi (PU.1) gene locus showed more
conserved binding at the defined SE regions between human and
mouse compared to other binding sites (Fig. 1E), indicating the
possibility that this conservation of SEs is linked to their con-
served roles in gene regulation in different species.
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Regulation of SEs and seRNAs upon Activation of TLR4. Previous
genome-wide studies have demonstrated that SEs are closely
correlated with key developmental genes (12, 13, 39). To explore
SEs and their associated genes as targets of ligand signaling, we
examined the regulation of seRNAs following LPS activation of
the TLR4 pathway. This revealed that genes activated by LPS
were often found in close proximity to SEs and seRNAs (Fig.
2A). Unexpectedly, genes repressed by LPS were also found in
the vicinity of SEs and seRNAs (Fig. 2B), indicating that func-
tional roles of SEs are correlated not only to activation of nearby
genes but also with gene repression. Additionally, we have in-
vestigated Pol II levels at actively up- and down-regulated SEs
that are associated with gene expression. In aggregate, GRO-Seq
provides a higher sensitivity readout for active Pol II than Pol II
ChIP-Seq at enhancer regions, although the results are highly
comparable (Fig. S3). We also compared the regulation of
seRNAs with previous GRO-Seq data generated in the presence
of Kdo2-LipidA (KLA), the active moiety of LPS (34). Both sets
of results showed highly similar regulation of seRNAs as ex-
pected (Fig. S4). In analyzing the physical association between
SEs and gene transcription, we found that genes undergoing
greater fold regulation were highly correlated to SE proximity
(Fig. 2C). For instance, upon 180 min of LPS stimulation, ∼35%
of genes near SEs exhibited ∼16-fold up- or down-regulation.
This suggests that SEs similarly impact not only TLR4-elicited
activation but also repression. Additionally, genes with high fold
changes show parallel changes in nearby eRNA expression (Fig.
2D), demonstrating the close association between the proximity
of SEs, seRNAs, and gene control.

Signal-Dependent SEs. LPS treatment provides the opportunity to
screen for “facultative” or “signal-dependent” SEs that can be
“gained” or “lost” during macrophage activation (34, 36). In-
deed, within minutes of LPS addition, 80 new SEs materialize,
whereas 277 SEs recede within minutes of LPS addition (Fig.
S5). These transitory SEs reflect gained or lost seRNAs that
directly center over regions of previously identified TFs (Fig. 3 A
and B). Interestingly, genes that gain SEs appear to be involved
in immune processes and inflammatory responses (Fig. 3B),
whereas the genes that lose SEs upon LPS stimulation tend to
have more general functions in cellular metabolism and nuclear
organization (e.g., chromatin assembly/disassembly, nucleosome
organization) (Fig. 3C). This suggests that SEs are involved in
regulating not only cellular identity at the basal level by marking
the subset of lineage-restricted genes but also functional identity
by concurrently robustly activating immune response genes and
repressing cellular maintenance genes. It is possible that LPS
maximizes inflammatory responses by redistributing TFs that are
required to transcribe genes involved in normal cellular metab-
olism in a resting condition to SEs that mark functionally rele-
vant proinflammatory genes. Thus, the decrease in transcrip-
tional levels might be due to either a loss or redistribution of
these TFs or, as previously shown in other systems, a sequester-
ing of TFs (14, 29, 30, 33). Further studies are needed to address
this issue. It is notable that genes that respond within 20 min of
LPS stimulation are marked by nearby SEs and show a clear bias
toward activation (Fig. 2 C and D). Thus, new seRNA transcripts
appear to be the immediate early products of TLR4 signaling. In
exploring the mechanism of this rapid transcriptional response,
we found that this SE subset has higher levels of paused Pol II at
basal levels compared with genes without SEs. Furthermore,
genes with LPS-induced SEs show enhanced release of Pol II
into the gene body and increased recruitment of Pol II at their
promoters (Fig. 3D). This suggests that SEs mark those genes
selected to rapidly respond to LPS stimulation. It is possible that
the presence of signal-dependent SE subsets allows scalable
communication, to allow precise temporal control of activated
and repressed gene expression networks.

Coordinate Regulation of SEs and seRNAs. Inspection of several
LPS-regulated genes revealed that the seRNAs within a given
SE were often coordinately regulated with the target gene. For
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example, all seRNAs found in the vicinity of Fpr1 and Fpr2 genes
are induced during LPS induction (Fig. 4A). Surprisingly, the same
concerted trend was observed at LPS-repressed loci, such that all
eRNA transcripts within the SE domain located in the upstream of
Igf1 are coordinately repressed (Fig. 4B). This observation is at odds
with the hypothesis that the transcriptional activity of an individual
enhancer is defined by the specific bound TFs, as all SEs seem to
contain PU.1, C/EBPA, p65, and JUNB sites irrespective of being
activated or repressed. To assess the degree to which the dynamics
of eRNA expression are coupled within an SE, we calculated the
fraction of eRNAs that are either induced or repressed by LPS in
each SE relative to a randomized control. Strikingly, we found ge-
nome wide that eRNAs within an SE are uniformly either up- or
down-regulated rather than individually regulated (Fig. 4C). It is
possible that stretches of densely packed enhancers form functional
modules within which concerted regulatory activity is propagated
through enhancer cross-talk. These functional modules may be as-
sociated with the formation of a topological domain where the
regulations within the domain are uniformly regulated (40), a point
that requires further investigation.

TF Composition in SEs Determines Regulatory Properties. With
regard to TLR4 activation, a key question is “What are the
molecular determinates that direct these opposing events?” TFs
activated by TLR4 signaling, such as NF-κB, are known to play
a key role in inducing gene expression (31–33). A recent study
has also shown the involvement of NF-κB in SE formation (33).
Interestingly, ChIP-Seq for NF-κB (p65) shows the binding in

both induced and repressed SEs, which is at odds with its as-
sumed function as an activator (41). Closer inspection revealed
that key inflammatory genes show more intense p65 binding
within the SE relative to repressed loci. To assess whether SE
regulation may be related to the quantity of binding at multiple
sites within the regulatory domain, we calculated the ChIP-Seq
read densities of NF-κB relative to other key master TFs that are
used to define SEs and ranked them based on the ratio of NF-κB
to these key TFs. We then compared this ratio to the fraction of
eRNAs induced or repressed within each SE (Fig. 5A). In-
terestingly, SEs with strong p65 binding relative to other factors,
such as Fpr1/2, exhibited high fractions of eRNA induction,
whereas SEs with low p65 binding, such as Igf1, exhibited eRNA
reduction (Fig. 5A), indicating that TF composition in SEs
determines regulatory properties, in both eRNA activation and
repression (Fig. 5B). Because it is possible that a subset of SEs
requires redistribution of transcriptional cofactors such as BRD4
(33), we examined a series of seRNAs by quantitative RT-PCR
in response to LPS treatment in the presence and absence of
JQ1, a BRD4 inhibitor. The results show a clear reduction in
transcription with LPS in the presence of JQ1 (Fig. S6), sug-
gesting the involvement of BRD4 in seRNA transcription, at
least in the SE subset examined in our system. Additionally, it
is possible that these specific subsets of SEs and seRNAs serve
as targets for anti-inflammatory pathways by modulating the
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Fig. 5. Regulation of TF composition and seRNAs in SEs. (A) Relationship
between the NF-κB ChIP-Seq read density relative to combined master TF
ChIP-Seq read density used to define SEs (log2 ratio) and the ratio of NF-κB
p65 over master TF binding ratio at SE. Igf1 represents low NF-κB p65
binding and Fpr1/2 for high NF-κB p65 binding (Upper). Contour graph
representations of the fraction of LPS-stimulated eRNAs that are repressed
with low NF-κB p65 binding (Lower Left) or induced with high NF-κB p65
binding (Lower Right) within an SE. (B) Model depicting LPS-dependent
regulations of seRNA as well as NF-κB and TF binding changes within an SE.

E300 | www.pnas.org/cgi/doi/10.1073/pnas.1424028112 Hah et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1424028112/-/DCSupplemental/pnas.201424028SI.pdf?targetid=nameddest=SF6
www.pnas.org/cgi/doi/10.1073/pnas.1424028112


composition of TFs and attenuating their seRNA expression,
leading to reduced expression of key inflammatory genes.

Conclusion
Collectively, using macrophage activation as a model, we de-
scribe a relationship between SEs, seRNAs, and TF binding that
reveals a role for SE domains and the roles of transcriptional
events in those sites. In our study, we showed that SEs and
seRNAs, although spread over long genomic regions, function
as a single regulatory unit, which allows coordinated genic tran-
scriptional regulation in the context of gene activation and gene
repression. Previous studies have focused on the role of SEs in
maintaining cellular identity (12, 13, 16, 39). However, Brown
et al. (33) and our current study further investigate the regula-
tory dynamics of SEs upon inflammatory stimuli in endothelial
cells and macrophages. Interestingly, both studies identify signal-
regulated loss or gain of SE formation. Whereas Brown et al.
focus on BRD4 as an enhancer output that directs SE formation
and transcriptional changes of proinflammatory genes (33), our
study uses eRNA production and regulation as a readout to
determine enhancer activities in addition to TF binding. One of
the advantages of using eRNA synthesis as a readout for de-
termining SE is that it can allow more unbiased information of
active loci throughout the genome. We also demonstrated that
SEs are likely to be more conserved among species compared
with TEs and can mediate dynamic signaling events such as
macrophage activation. Interestingly, both activating and re-
pressive properties of SEs and seRNAs are largely dictated by
the composition of TFs within SEs. It is possible that this may
not only be limited to LPS but may also apply to any signaling
pathway that triggers changes in the transcriptome. For instance,
different TLR ligands can regulate different compositions of
IRFs in SEs, resulting in a distinctive set of gene regulations
based on the stimuli. As SEs provide insights into how inflam-
matory responses are driven, SEs might also play a critical role in
developing endotoxin tolerance in macrophages. It is possible
that low-dose LPS priming is sufficient to fully induce eRNA
synthesis as well as key TF binding within SEs, masking further
activation of inflammatory responses in macrophages at a high-
dose LPS response. Although further mechanistic understanding
is required, we propose that proinflammatory SEs may be de-
sirable genomic targets of anti-inflammatory drugs and that SEs
function as molecular sensors and rheostats integrating the
binding profiles of key regulators to produce dynamic profiles of
gene expression in a signal-dependent fashion.

Materials and Methods
Cell Culture and Treatments. All primary macrophages were differentiated
from bone marrow isolated from an isogenic C57 background as described
previously (42). The primary macrophages were plated for experiments in
macrophage serum-free media (Invitrogen) before treatment with 100 ng/mL
of LPS (Sigma-Aldrich) for the time indicated.

Generation of GRO-Seq Libraries. GRO-Seq library generation was carried out
as described previously (20) from two biological replicates of mouse primary
macrophages treated with LPS. GRO-Seq libraries were sequenced on an
Illumina HiSeq2500 sequencer to a depth of over 50 million reads per library.

Genomic Data Analysis and Visualization.
GRO-Seq analysis. GRO-Seq sequencing reads were mapped to the mouse ge-
nome (mm9, National Center for Biotechnology Information build 37) using
Bowtie2 with default parameters (v2.1.0) (43). Only reads that mapped to
a single unique location were considered for further analysis. Genome browser
BedGraph tracks and read density histograms were generated using HOMER
(44). De novo transcript identification was performed using HOMER (findPeaks
program using the “-style groseq” option), which looks for regions of con-
tinual GRO-Seq read coverage (45). Discovered transcripts were annotated as
genic (overlapping known RefSeq genes, sense direction), antisense (over-
lapping known genes in the antisense direction), repetitive (5′ end of tran-
script overlapping University of California Santa Cruz (UCSC) annotated

repeatmasker region), promoter antisense (5′ end emanates from promoter
within 500 bp in the opposite direction from a gene), or eRNA (intergenic
transcript not belonging to any of the other categories). Gene expression
or transcript expression was determined using HOMER to count reads within
transcript boundaries (exon + intron) for either previously annotated or de
novo identified transcripts. eRNA levels at individual enhancer locations were
calculated as the total GRO-Seq signal within ±500 bp relative to the peak
center. Only intergenic enhancers at least 3 kb upstream of the TSS or greater
than 10 kb downstream of the transcript end were used for these calculations
to minimize signal from polymerase read-through from genic transcripts.
ChIP-Seq analysis. The macrophage ChIP-Seq data used in this study came from
the following Gene Expression Omnibus data accessions: GSE46494 (PU.1 and
CEBPA), GSE16723 (NF-κB p65), GSE38379 (JUNB), and GSE31621 (human
PU.1 and CEBPB). All ChIP-Seq data were analyzed from raw sequencing
reads and aligned to either the mouse or human genomes (mm9/hg19) using
Bowtie2. Genome browser tracks, ChIP-Seq peak finding (“-style factor”),
and ChIP-Seq read density calculations were all performed using HOMER. To
compare PU.1 and CEBP recruitment between human and mouse macro-
phages, the mapped coordinates of human ChIP-Seq reads and peak posi-
tions were converted to the mm9 genome using the UCSC Liftover tool.
Identification of SEs. SEs were identified in a highly similar manner to the
method outlined in Whyte et al. (13). First, master TFs of macrophage de-
velopment and activation (PU.1, CEBPA, JUNB, p65) were combined by
sampling 10 million reads from each sequencing experiment and merging
the results into a single metaexperiment for untreated and LPS-treated
conditions separately. Input/IgG experiments were merged in the same
manner. SEs were then found by running HOMER findPeaks using the “-style
super” option. This process first identifies traditional ChIP-Seq peaks by
treating the metaexperiment and metainput as normal ChIP-Seq experi-
ments and then merges identified peaks found within 12.5 kb into contin-
uous regions. The “enhancer score” for each region is defined by the number
of metaexperiment reads minus the metainput reads normalized for sequenc-
ing depth. All regions are then sorted by their score and plotted by their rel-
ative rank and score (0–1). Enhancer regions past which the slope of the line
reaches 1 are considered SEs, and all remaining enhancers are considered as
“typical enhancers.” Discovery of these SEs was further validated by comparing
SEs found in Brown et al. (33) to SEs found using HOMER with the same mouse
macrophage H4K12ac ChIP-Seq dataset (33). Differences were mostly attributed
to differential identification of key peaks that might allow a given SE region to
expand across 12.5-kb regions to increase signal. Independently, the functional
quality of differential SE calls was assessed by measuring the eRNA production
from intergenic TFBSs that were specific to Brown et al. or HOMER SEs.

The binding index of a given TF within an SE is defined as the log2 ratio of
reads for the given factor in the SE relative to the total reads of the meta-
experiment in the SE. In this sense, if a factor is highly bound within the SE
relative to other TFs, the binding index will be high, whereas if there is
minimal binding of the factor in the SE relative to other factors, the binding
index will be low. Gene ontology analysis was performed using Database for
Annotation, Visualization and Integrated Discovery (DAVID). The release of
RNA Pol II from proximal promoter pausing was quantified by calculating
the density of Pol II ChIP-Seq reads within 200 bp of the TSS relative to the
gene body (200 bp – 3 kb relative to the TSS).
Coordinate regulation within SEs. To detect coregulated eRNAs within SEs, in-
dividual peak regions within each SE (defined by applying peak finding to the
“metaexperiment” representing the merge of master regulators) were
analyzed for changes in GRO-Seq read density (±500 bp from peak center).
Only peaks located in intergenic regions >3 kb from the TSS and >10 kb
from transcript end locations were considered. Only peaks with detectable
transcription (>10 GRO-Seq reads in either control or treated conditions)
were considered. Peaks were assigned to their overlapping SE or assigned to
a random SE as a control. Each SE was considered in terms of the fraction of
peaks with up-regulated or down-regulated eRNA expression and then
plotted as a contourplot in R using a 2D Gaussian kernel density estimator.
Regulated eRNAs were defined by >twofold.
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