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Methods to accurately predict potential drug target mutations in
response to early-stage leads could drive the design of more
resilient first generation drug candidates. In this study, a structure-
based protein design algorithm (K* in the OSPREY suite) was used
to prospectively identify single-nucleotide polymorphisms that
confer resistance to an experimental inhibitor effective against
dihydrofolate reductase (DHFR) from Staphylococcus aureus. Four
of the top-ranked mutations in DHFR were found to be catalyti-
cally competent and resistant to the inhibitor. Selection of resis-
tant bacteria in vitro reveals that two of the predicted mutations
arise in the background of a compensatory mutation. Using en-
zyme kinetics, microbiology, and crystal structures of the com-
plexes, we determined the fitness of the mutant enzymes and
strains, the structural basis of resistance, and the compensatory
relationship of the mutations. To our knowledge, this work illus-
trates the first application of protein design algorithms to prospec-
tively predict viable resistance mutations that arise in bacteria
under antibiotic pressure.
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Effectively treating infectious disease has become increasingly
complicated by the prevalence of strains that are resistant to

multiple classes of antimicrobial agents. Ideally, the lifetime of
newly introduced drugs could be extended by prospectively
predicting and overcoming potential resistance during the dis-
covery cycle. For example, mutations to a drug target in response
to an experimental candidate could be predicted in silico, and
the results could be used to design a second generation of
compounds that is active against the WT and mutated enzymes.
Minimally, a successful algorithm would predict resistance
mutations that maintain enzyme function and reduce inhibitor
affinity. However, a more powerful algorithm would also pre-
dict mutations that maintain the fitness of the pathogen and
are, therefore, likely to be selected in vitro or in vivo. Predicting
fit mutations is a significant challenge, because the variables
that contribute to fitness in an organism are complex and often
unknown. Additionally, a successful algorithm would predict
novel mutations that are responsive to novel compounds. A
prospective strategy such as this would be especially effective in
the discovery of therapeutics for which it is difficult to generate
resistant cells in vitro.
In a previous work (1), we used the structure-based K* algo-

rithm in the OSPREY protein design suite (2, 3) to predict double
mutations in dihydrofolate reductase (DHFR) from methicillin-
resistant Staphylococcus aureus (MRSA) that confer resistance to
the novel propargyl-linked antifolates. S. aureusDHFR (SaDHFR)
is an ideal model system for these predictions because the de-
velopment of a single amino acid mutation results in trimethoprim
resistance; higher levels of resistance are conferred by double
mutations (4). Although the propargyl-linked antifolates exhibit
greater affinity for the mutant enzymes and are active against
MRSA strains resistant to trimethoprim-sulfamethoxazole (5), it
would be useful to predict mutations that may arise for this new

class of antifolates. Using ratios of positive design scores that
predict binding of the substrate dihydrofolate and negative design
scores that predict binding of the inhibitor, OSPREY/K* (2, 3)
identified catalytically competent resistance mutations.
Additional previous attempts to predict mutational drug

resistance have been reported; a recent review summarizes
efforts using computational and structural methodologies
(6). In contrast to the approach reported here, these other
attempts have been retrospective, correlating computational
results with approved therapeutics and known mutations in the
target (7–10). Because these studies are retrospective analyses
of known mutations that arise under pressure from known
drugs, they do not address the problem of prospectively pre-
dicting a fit mutation.
Herein, we report the application of the structure-based pro-

tein design algorithm K* in OSPREY to identify prospective
single-nucleotide polymorphisms (SNPs) that confer resistance to
one of the propargyl-linked antifolates. For these studies, we
required the algorithm to identify an SNP that conferred re-
sistance and would, therefore, be more likely to be selected in
the bacteria. From a ranked list of potential SNPs, we created
and evaluated four of the mutant enzymes and found that all
four conferred resistance (2- to 58-fold) at the enzyme level
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while maintaining native function. In parallel, we selected
mutants of S. aureus in vitro using applied drug pressure with the
antifolate to simulate a natural course for resistance to occur.
Excitingly, we discovered that two of the predicted mutations
(V31L and V31G) arise in the background of a compensating
F98Y mutation. These results show that protein design algo-
rithms are capable of prospectively identifying resistance
mutations that are both biochemically validated and viable in
the bacteria. Using bacterial fitness and enzyme kinetic ex-
periments along with the determination of a high-resolution
crystal structure of the mutant enzyme, we clarify the struc-
tural and biochemical bases of the resistance, including an
explanation for the compensatory relationship of the two
mutations. Overall, this work shows that reductionist biophysical
algorithms can prospectively predict a molecular response to spe-
cific stress factors.

Identification of Resistance Mutations
The protein design algorithm K* in OSPREY (2) was used to
identify mutations characterized by SNPs that maintain binding
to the substrate dihydrofolate while conferring resistance to the
propargyl-linked antifolates. Nine active-site residues (Leu-5,
Val-6, Leu-20, Leu-28, Val-31, Thr-46, Ile-50, Leu-54, and
Phe-92) were allowed to either maintain their WT identity or
mutate to a restricted group of residues that involves only an
SNP (given in Materials and Methods and Fig. 1).
K* searches were performed on both the substrate (DHFR:

NADPH:dihydrofolate) and the inhibitor (DHFR:NADPH:1)
ternary complexes. K* scores approximate the binding affinity
(Ka) and are computed as a ratio of Boltzmann-weighted parti-
tion functions for rotamer-based conformational ensembles of
the bound protein–inhibitor complex, free protein, and free li-
gand. Because higher K* scores predict greater affinity, the ideal
mutation would have a high score for dihydrofolate and a low or
zero score for compound 1. The WT sequence was ranked 18th,
with a positive-to-negative design ratio of 1.95 × 106 (Table 1).
Mutants that had both (i) higher ranking than the WT and (ii)
a good predicted binding affinity to dihydrofolate (i.e., positive
design score) were considered as resistant mutants. Four muta-
tions (V31L, V31I, L5I, and L5V) exhibiting high ratios for the
scores representing positive (binding to DHF) and negative
(binding to inhibitor) designs are shown in Table 1 (the complete
ranking of all mutants is shown in Table S1). One mutation
(L20F) was ranked sixth because of its high K* ratio (Table S1).
However, its positive design score was over 20 orders of mag-
nitude below the WT, predicting that L20F would lose affinity
for dihydrofolate and not be a viable mutant. Therefore, L20F
was discarded from consideration.

The lowest energy-predicted conformations of the top-ranked
mutations, SaV31L and SaV31I, were compared with the crystal
structure of WT SaDHFR:NADPH:1 (5) to understand the basis
of the prediction of resistance. Carbons Cδ1 and Cδ2 in Leu-31
are predicted to displace Phe-92, most likely to avoid steric
hindrance with the phenyl side chain (Fig. 1 and Fig. S1). In
addition, these carbons are observed to sterically interfere with
the pyrimidine ring, displacing it from its corresponding position
in the WT structure. Both of these steric interactions are pre-
dicted to significantly weaken inhibitor binding.

Biochemical and Microbiological Validation
To validate the positive and negative designs from K*, we used
site-directed mutagenesis to create the top four mutant enzymes
possessing SNPs resulting in V31L, V31I, L5I, and L5V.
Michaelis–Menten kinetics (Table 1) reveal that the enzymes are
catalytically competent, with only minor losses in kcat/Km. The
activity of the mutant enzymes validates the success of the pos-
itive design component of the computational search. Sensitivity
of the enzyme to inhibitor is drastically decreased with the ad-
dition of the point mutations, proving the negative design com-
ponent. Resistance ranged from 2- to 58-fold, with the top-
ranked mutants (V31L and V31I) conferring the greatest level of
resistance. In fact, strikingly, the K* ratio rank correlated directly
with the experimental ranking of inhibition constants.
To show the application of these predictions to a living

pathogen, we then aimed to determine whether any of these
mutations would be selected by the MRSA bacteria under
pressure from compound 1 (5). To our surprise, a first round of
selection revealed known mutations, and one of which (F98Y,
a TTT to TAT transversion mutation) (Fig. S2) has a resistance
frequency of 1.21 × 10−12. The F98Y strain was then exposed to
a second round of selection for mutations. Excitingly, five of nine
colonies of surviving bacteria yielded the computationally pre-
dicted V31L mutation (a GTT to CTT transversion mutation)
(Fig. S2) in addition to the F98Y mutation for a final frequency
of 7.56 × 10−24. One of nine colonies yielded V31G (14th in the
ranked list, with a 10-fold increase in the K* ratio over the WT),
and three colonies possessed only F98Y. Both the single F98Y
and double V31L/F98Y mutant strains were characterized to
evaluate antimicrobial susceptibility and relative fitness. Tri-
methoprim, with a resistance profile that includes the F98Y
mutation, was included as a reference (Table 2).
Compound 1 and TMP have minimum inhibitory concentra-

tion (MIC) values of 2.5 and 10 μg/mL, respectively, for the
F98Y strain, representing a 32-fold loss compared with the WT
ATCC 43300 strain. The addition of the Val31Leu mutation
confers an additional 8-fold loss for compound 1 and a 4-fold
loss for TMP, resulting in total 256- and 128-fold losses, re-
spectively. As observed previously, the Sa(F98Y)DHFR mu-
tation does not reduce the fitness of the strain (11, 12). The
presence of the V31L/F98Y mutation reported here results in

Fig. 1. Modeled flexible residues in SaDHFR with NADPH and compound 1.
(A) Compound 1. (B) Comparison of the structures of WT SaDHFR bound to
NADPH and compound 1 (PDB ID code 3SGY; blue) with the K*-predicted
lowest energy structure of SaDHFR(V31L) (yellow). All residues allowed to be
flexible and mutate during the K* prediction are shown in yellow stick form.
The cofactor NADPH is shown in green.

Table 1. Characterization of WT and mutant enzymes

Enzyme
K* ratio
rank*

K* positive-
to-negative
design ratio kcat/Km

†

Fold loss†

(Ki
mut/Ki

wt)
compound 1

Sa(WT)DHFR 18 1.96 E + 06 6.1 ± 0.3 n/a
Sa(V31L)DHFR 1 7.11 E + 21 1.60 ± 0.06 58
Sa(V31I)DHFR 2 5.95 E + 21 1.74 ± 0.07 36
Sa(L5I)DHFR 3 1.71 E + 15 2.24 ± 0.1 4.4
Sa(L5V)DHFR 4 1.16 E + 14 1.8 ± 0.1 1.9

n/a, not applicable.
*In silico rank according to the ratio of K* scores shown in the subsequent
column.
†Experimentally determined.
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minimal (14%) loss of fitness. Log-phase cell growth was mini-
mally affected by the presence of the single F98Y or double
V31L/F98Y mutation, with doubling times at 22.5 min for the
WT strain and 23.2 and 25.4 min for the mutants, respectively.
To understand why the V31L mutation arises only in the back-

ground of the F98Y mutation, we examined detailed inhibition
and kinetic data for the enzymes. Here, we also included the
F98Y mutation and data for trimethoprim as a comparator. The
Sa(F98Y) mutation affects trimethoprim more significantly, result-
ing in 38- and 5-fold losses in Ki against trimethoprim and com-
pound 1, respectively. However, the Sa(V31L) mutation affects
compound 1 more significantly, resulting in 15- and 60-fold losses
in Ki against trimethoprim and compound 1 (Table 3). The
Sa(V31L/F98Y) double mutant clearly confers much greater
resistance, with a 148-fold loss in Ki for trimethoprim and an 189-
fold loss in Ki for compound 1.
Michaelis–Menten constants were determined for the enzymes

(Table 3), revealing an interesting compensatory relationship
between the mutations. The Km value for DHF is reduced from
the WT value (17.5 μM) by 2-fold for Sa(F98Y)DHFR to 8.4 μM,
whereas the same value for Sa(V31L)DHFR is increased by
2.4-fold to 42.9 μM. In combination, the Sa(V31L/F98Y)DHFR
restores the Km for DHF to 4.1 μM. Interestingly, the Km value
for NADPH for Sa(F98Y) increases to 56.8 μM from the WT
value of 32.6 μM, and the Km value for NADPH in Sa(V31L)
decreases to 15.6 μM. The double mutant maintains the de-
creased Km of Sa(V31L) and has an overall lower Km relative to
the WT at 22.3 μM. Taken together, the data show that, although
F98Y and V31L negatively affect NADPH and DHF, respectively,
the two mutations combined restore the Km values to WT levels.
Additionally, the kcat/Km value for the double mutant is increased
to 10.9 μM−1.

Structure of Sa(V31L/F98Y)DHFR
The data in Tables 1 and 3 indicate that the mutations have a
direct influence on substrate and cofactor binding as well as
inhibitor potency. To understand the structural effects of the
mutations, we determined a crystal structure of the double-mutant
enzyme. Crystals of Sa(V31L/F98Y)DHFR produced diffraction
amplitudes to 2.1 Å when cocrystallized with NADPH and a
propargyl-linked antifolate (statistics for data and refinement
are found in Table 4, and electron density is shown in Fig. S3).
The structure was solved using Fourier methods based on the
model of single-mutant Sa(F98Y) bound to NADPH and
a propargyl-linked antifolate [Protein Data Bank (PDB) ID
code 3F0U] (13). The Sa(V31L/F98Y) structure features the
standard extended form of NADPH but lacks compound 1
present during cocrystallization.

Comparisons of the Sa(V31L/F98Y) structure with the struc-
ture of the WT enzyme bound to compound 1 (Fig. 2A) reveal
a structural basis of resistance indicated by significant confor-
mational changes induced by the presence of the two mutations.
A full table of interactions of the amino acids and compound 1 is
presented in Dataset S1. The most significant amino acid reor-
ientations are observed between Phe-92, Val-3, and the binding
site of the diaminopyrimidine moiety of compound 1. The major
change centers on Leu-31, which projects 2.0 Å farther into the
active site than the WT Val-31 residue, resulting in a corre-
sponding 2.3-Å shift in Phe-92 into the active site and a 1.4-Å
shift of the backbone carbonyl (Fig. 2A). This new Phe-92 ori-
entation restricts the side chain from adopting the position
needed for ligand binding and disrupts stabilizing hydrophobic
interactions with the acetylene linker. The shift of the Phe-92
carbonyl also results in the loss of a hydrogen bond to the four-
amino group of the pyrimidine. Additionally, Leu-31 is 2.2 Å
from the 6-ethyl substituent of the diaminopyrimidine, resulting
in repulsive steric interactions.
Furthermore, the B helix adjacent to the active site and pos-

sessing critical amino acids for ligand binding shifts 0.4 Å away
from the active site. Distances between the ligand and amino
acids Asn-25, Asp-27, His-30, and Leu-34 are increased by 0.4 Å,
concomitantly reducing hydrogen bonding and van der Waals
interactions essential for stability and ligand binding. Moreover,
the shift in the B helix results in a 1.1-Å shift in the imidazole
ring of His-30. The shifted His-30 side chain extends the binding
site, allowing for a glycerol molecule to displace a water mole-
cule that typically provides stabilizing hydrogen bonds between
the pyrimidine amino group of 1 and the His-30 imidazole (Fig.
S4). A similar disruption of the water network has been pre-
viously shown in a crystal structure of the clinically observed
resistance mutant Sa(H30N/F98Y) with NADPH and a prop-
argyl-linked antifolate (14). Combined, the observations for Phe-
92, Leu-31, and the B helix explain the lower affinity of com-
pound 1 for the mutant enzyme.
The Sa(V31L/F98Y) enzyme maintains catalytic compe-

tency. Comparisons of the Sa(V31L/F98Y) structure with WT
Sa/NADPH/DHF (PDB ID code 3FRD) (15) indicate that
a shift in the Phe-92 peptide carbonyl would have little or no
effect on DHF binding or turnover, because there are no direct
interactions between the two groups. Any minor steric inter-
actions between Phe-92 and the pterin ring of DHF may be
compensated by the additional interactions in the glutamate
tail, which remains undisturbed.
To verify which structural effects result from the presence of

the mutations and which result from an enzyme lacking a bound
ligand, we determined the structure of Sa(F98Y)DHFR bound
only to NADPH (statistics for data and refinement are found in
Table 4). Comparisons of the structures of binary Sa(F98Y):
NADPH, Sa(F98Y/V31L):NADPH, and ternary Sa:NADPH:1
indicate that the reorientations of Phe-92 and His-30 are caused
by the presence of the mutations. Like the Sa(F98Y/V31L):
NADPH structure, the Sa(F98Y):NADPH structure features the
same 0.4-Å shift of the B helix away from the active site. How-
ever, the conformation of Phe-92 in the Sa(F98Y/V31L) struc-
ture is clearly influenced by the V31L mutation, because the
conformation of this residue in the Sa(F98Y) structure is ∼0.5 Å

Table 2. Characterization of strain susceptibility and fitness

Strain
MIC compound 1
(μg/mL; fold loss)

MIC TMP
(μg/mL; fold loss)

Relative
fitness

Doubling
time (min)

WT 0.0781 0.3123 1 22.5
F98Y 2.5 (32) 10 (32) 0.98 23.2
V31L/F98Y 20 (256) 40 (128) 0.86 25.4

Table 3. Enzyme characterization

DHFR Ki (TMP; fold loss; μM) Ki (compound 1; μM) Km (DHF; μM) Km (NADPH; μM) kcat kcat/Km

WT 0.0035 ± 0.0005 0.0028 ± 0.0002 17.5 ± 2 32.6 ± 4 106.9 ± 2 6.1 ± 0.3
F98Y 0.131 ± 0.004 (38) 0.013 ± 0.001 (5) 8.4 ± 0.7 56.8 ± 5 44.7 ± 0.4 5.33 ± 0.08
V31L 0.054 ± 0.002 (15) 0.17 ± 0.02 (60) 42.9 ± 3 15.6 ± 3 68.8 ± 2 1.60 ± 0.06
V31L/F98Y 0.52 ± 0.03 (148) 0.53 ± 0.03 (189) 4.1 ± 0.8 22.3 ± 2 44.8 ± 2 10.9 ± 0.8
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closer to that observed in the ternary structure. Similarly, the
V31L mutation influences the conformation of His-30, be-
cause a comparison of the Sa(F98Y):NADPH and ternary (Sa:
NADPH:1) structures shows that the His-30 conformation is
the same (Fig. 2B).
Comparisons of the crystal structure of Sa(F98Y/V31L):

NADPH (Fig. 2A) with the lowest energy-predicted structure of
the K*-predicted single V31L mutant (Fig. 1) show a conservation
of the effect of the V31L mutation on Phe-92. The predicted
structure also indicates a steric interaction between Leu-31 and the
C-6-ethyl substituent of the pyrimidine ring of compound 1, which
matches the crystallographic results. Incidentally, when K* was used
to predict resistance mutations with another propargyl-linked anti-
folate that maintains the same atoms as compound 1 other than
possessing a methyl instead of an ethyl group at the C-6 position of
the pyrimidine ring, the Val-31 mutants ranked lower than the Leu-5
mutations. These results validate that the steric interaction between
Leu-31 and the ethyl group specifically contributes to resistance.

In summary, the K* algorithm in OSPREY was used to pre-
dict unique single mutations in the active site of S. aureus
DHFR that confer resistance to an experimental propargyl-
linked antifolate, 1. Four of the predicted mutant enzymes were
created and shown to be catalytically competent and resistant to
compound 1, with the top-ranked mutant having a 58-fold re-
duction in inhibitor potency. Excitingly, the computational
predictions were shown to be not only biochemically validated
but also, selected in the bacteria under antibiotic pressure, be-
cause the top-ranked mutation, V31L, was selected in the
background of an F98Y mutation, which has been clinically
observed. Exploration of the enzymatic fitness of this double
mutant revealed a compensatory relationship between the single
F98Y and V31L mutations that results in a doubly mutated en-
zyme with fitness comparable with the WT enzyme. Consider-
ation of the cellular fitness revealed that the double-mutant strain
only suffered a slight loss in fitness over both the progenitor strain
and the previously characterized F98Y strain. Crystal structures

Table 4. Crystallographic data collection and refinement statistics

Sa(V31L/F98Y):NADPH Sa(F98Y):NADPH

PDB ID code 4Q6A 4Q67
Space group P6122 P6122
No. monomers in asymmetric unit 1 1
Unit cell (a, b, c; Å) 79.33, 79.33, 107.53 79.26, 79.26, 107.42
Resolution (Å) 50.00–2.10 (2.14–2.10) 42.30–2.04 (2.51–2.04)
Completeness % (last shell; %) 99.87 (100) 98.7 (98.5)
Unique reflections 12,235 13,132
Redundancy (last shell) 13.7 (13.5) 10.22 (10.44)
Rsym (last shell) 0.094 (0.320) 0.070 (0.340)
<I/σ> (last shell) 31.7 (20.0) 16.9 (5.6)
Rfactor/Rfree 0.1647/0.2063 0.1752/0.2330
No. of atoms (protein, ligands, and solvent) 1,510 1,446
rmsd Bond lengths (Å), angles (°) 0.008, 1.214 0.007, 1.205
Average B factor for protein (Å2) 19.57 28.75
Average B factor for ligand (NADPH; Å2) 14.32 21.11
Average B factor for solvent molecules (Å2) 32.75 35.18
Residues in most favored regions (%)* 98.14 98.10
Residues in additional allowed regions (%)* 1.86 1.90
Residues in disallowed regions (%)* 0 0
Collection location BNL X4A Rigaku Micromax-007 HF

*Ramachandran plot analysis.

Fig. 2. Crystal structures of the WT and mutant enzymes show conformational changes at Phe-92 and His-30. (A) Superposition of the structures of Sa(WT):
NADPH:1 from PDB ID code 3SGY (blue) with Sa(V31L/F98Y):NADPH (magenta). (B) Superposition of the structures of Sa(WT):NADPH:1 from PDB ID code 3SGY
(blue) with Sa(F98Y):NADPH (yellow) and Sa(V31L/F98Y):NADPH (magenta).
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of the double-mutant enzyme revealed the structural basis of
compound resistance.
The mutation V31L emerged as the top-ranked SNP that

maintained dihydrofolate binding while conferring inhibitor re-
sistance by perturbing Phe-92 and sterically interfering with the
C-6-ethyl group of the pyrimidine ring. Interestingly, there is
a strong correlation between these results and those obtained
in the first application of K* to identify double mutants of
SaDHFR that confer resistance. In a previous study (1), the
seven top-ranked mutations were variants of Val-31 and Phe-92;
a crystal structure of the V31Y/F92I mutant enzyme shows that the
F92I mutation reduces van der Waals interactions and that the V31Y
mutation introduces destabilizing steric bulk. Overall, it is striking that
the same structural effect is selected with both applications of K*
whether it is applied to identify double or SNP mutations.
S1 DHFR (from dfrA), a plasmid-acquired enzyme on trans-

poson Tn4003 that confers high levels (>100-fold) of trimethoprim
resistance, shares three of four active-site mutations (F98Y, V31I,
G43A, and L5I) with the predicted K* mutations (16). Similar to
our conclusions, S1 DHFR crystal structures indicate that F98Y
disrupts NADPH binding. In fact, crystal structures with S1
DHFR bound to NAPDH and trimethoprim completely lack
NADPH in three of six molecules in the asymmetric unit (17);
related experiments show that the synergy between NADPH
and trimethoprim is eliminated in dfrA. The F98Y mutation has
also been shown to disrupt NADPH binding in the context of the
propargyl-linked antifolates. When Sa(F98Y) is crystallized with
inhibitor, the structure possesses two conformations of NADPH:
the standard extended β-NADPH and one with the pyrophos-
phate moiety in a rotated position (13).
Having validated the mutational prediction capabilities of K*/

OSPREY through bacterial selection of the predicted mutants,
the algorithm could potentially be applied to many different
research areas. Specifically, the computational prediction of drug
resistance mutations could be valuable in cases where it is more
difficult to raise mutant strains or cell lines in vitro, such as with
viruses or cancer cell lines. Overall, the extension of the com-
putational prediction of drug resistance to observations of bi-
ologically relevant mutants provides new opportunities in drug
discovery, especially for those targets that are most affected by
mutational resistance.

Materials and Methods
Computational Prediction of Resistance Mutations. The K* algorithm (18, 19)
within the OSPREY protein design program (2) predicted binding affinities
of DHFR mutants to both DHF (positive design) and compound 1 (negative
design). Drug resistance was predicted by ranking each mutant and the
WT protein by the K* ratio: the K*-positive design score divided by the
K*-negative design score.

The set of mutant sequences was selected by choosing all single-nucle-
otidemutants of the active-site residues. Nine residues in the active site were
modeled as flexible and allowed to mutate by up to one nucleotide (sub-
stitution): L5{L/V/I/R/Q}, V6{V/A/L/I/F/D/G}, L20{L/V/I/F/S}, L28{L/V/M/W/F/S},
V31{V/A/I/F/L/D/G}, T46{T/A/R/I/K/S}, I50{I/V/L/M/F/N/S/T}, L54{L/R/Q/V}, and
F92{F/V/L/I/Y/S/C}. This combination resulted in a total of 47 sequences. Two
structures were used as input: a model of the DHF:DHFR:NADPH WT com-
plex (for the positive design) and a model of compound 1. Because
a structure of compound 1 bound to DHFR was not available at the time of
the design predictions, compound 1 was modeled on the bound structure
of a related DHFR inhibitor [PDB ID code 3FQC (13)]. The mutable residues
were allowed to assume any conformation in the continuous conformation
space (20) within 9° of the rotamers in the Richardson’s penultimate
rotamer library (21); in addition, the WT rotamer of Phe-92 was added to
the rotamer library. Because of observed conformations of the escape
mutations to antifolate inhibitors described in ref. 11, we modeled ∼10,000
possible binding conformations of compound 1 to DHFR. These binding
poses were first filtered by OSPREY’s MinDEE/A* algorithms (18) that
searched for the lowest energy conformation of any of the mutants to each
of the binding conformations. Conformations with predicted energies
above a steric threshold where then pruned, resulting in 1,660 binding

poses for compound 1. We then used the K* algorithm in OSPREY, a sta-
tistical mechanics-derived algorithm that uses the MinDEE/A* algorithms to
compute Boltzmann-weighted partition functions over energy-minimized
conformational ensembles and generates an approximation to Ka, the as-
sociation binding constant for a given protein–substrate complex. The
resulting K* scores of mutations for both DHF (positive design) and com-
pound 1 (negative design) were used to compute a ratio of scores between
positive and negative designs (Table S1).

Selection of Resistant Bacterial Colonies. Resistant strains were selected by
plating overnight culture (∼1012 cfu/mL) of the progenitor strain, ATCC
43300, or S. aureus (F98Y) on Isosensitest Agar (Oxoid) containing compound
1 at six times the MIC of the progenitor strain. After 16–18 h of growth at
37 °C, surviving colonies were harvested for characterization. Genotypic
characterization was achieved using direct colony PCR to amplify the dfrB
gene using sense primer (5′-ATGACTTTATCCATTCTAGTTGC-3′), antisense
primer (5′-TTATTTTTTACGAATTAAATGTAG-3′), and high-fidelity Taq Poly-
merase (Takara) (22). Mutation frequencies were calculated based on se-
quencing results for resistant colonies.

Evaluation of Antibacterial Activity. MICs were determined according to the
Clinical and Laboratory Standards Institute Guideline’s Standard Micro-
dilution broth assay using a final inoculum of 5 × 105 cfu/mL in Isosensitest
Broth (Oxoid) (23). The MIC was defined as the lowest concentration of in-
hibitor to visually inhibit growth. Growth was monitored at A600 after 18 h
of incubation at 37 °C. MICs were colorimetrically confirmed using Presto
Blue (Life Technologies).

Strain Fitness Determination. Relative strain fitness was determined by pair-
wise competition assays (24) with trimethoprim as the selective agent. Cell
growth was monitored every 20 min by A600, and the doubling time of the
strains was determined by monitoring cell growth in the log phase at an
absorbance of 600 nm every 15 min for a total of 180 min. Fitness was cal-
culated using the following equation: Fitness= InðRð24Þ=Rð0ÞÞ=InðSð24Þ=Sð0ÞÞ.

Enzyme Expression and Purification. Procedures for cloning the Sa(F98Y)DHFR
construct in pET41-a(+) have been previously reported (13). A QuikChange
Site-Directed Mutatgenesis Kit (Agilent Technologies) was used to mutate
Val31 to Leu31 on the Sa(F98Y)DHFR construct using sense (5′-GGCACC-
TACCAAATGATTTGAAACAT-3′) and antisense (5′-CCTGTTGATAATTTTTTA-
AGATGTTTC-3′) primers. Mutagenesis was confirmed by sequencing. The
recombinant Sa(V31L/F98Y) enzyme was overexpressed in Escherichia coli
BL21 (DE3; Invitrogen) cells and purified using nickel affinity chromatogra-
phy (5Prime). Protein was desalted using a PD-10 column (GE Healthcare)
into buffer containing 20 mM Tris (pH 7.0), 20% (vol/vol) glycerol, 0.1 mM
EDTA, and 2 mM DTT and stored in aliquots at −80 °C.

Enzymatic Inhibition Assays. Enzyme inhibition assays were performed by
monitoring the rate of NADPH oxidation by DHFR through absorbance at
340 nm at room temperature in assay buffer containing 20 mM TES (N-[tris
(hydroxymethyl)methyl]-2-aminoethanesulfonic acid) (pH 7.0), 50 mM KCl,
0.5 mM EDTA, 10 mM β-mercaptoethanol, and 1 mg/mL BSA using 0.1 mM
NADPH and 2 μg/mL enzyme. Inhibitor, in DMSO, was added to the enzyme–
NADPH mixture and allowed to incubate for 5 min before the addition of 0.1
mM DHF in 50 mM TES (pH 7.0).

Enzyme kinetics were determined by nonlinear regression analysis
(GraphPad) of data generated by enzyme activity assays using 12.5, 25, 50, 75,
and 100 μM DHF with 20 μM NADPH to determine the Km and Vmax for DHF
or 12.5, 25, 50, 75, and 100 μM NADPH with 50 μM DHF to determine the Km

and Vmax for NADPH.

Sa(V31L/F98Y)DHFR and Sa(F98Y) Crystal Structures. Sa(V31L/F98Y)DHFR was
cocrystallized with NADPH and a propargyl-linked antifolate using the
hanging drop vaporization method. Sa(F98Y)DHFR was cocrystallized with
NADPH only. Purified protein (20 mg/mL) was incubated with 2 mM NADPH
(Sigma-Aldrich) and 1 mM inhibitor in DMSO [in the case of Sa(V31L/F98Y)
DHFR] for 2 h on ice. Equal volumes of the protein–cofactor solution were
mixed with an optimized crystallization solution containing 13% PEG
10,000, 0.1 M sodium acetate, 0.1–0.2 M 2-(N-morphilino)ethanesulfonic acid
(pH 6.0), and 5% γ-butyrolactone. When stored at 4 °C, conditions typically
yielded crystals within 7 d. Crystals were frozen in cyroprotectant buffer
containing 25% glycerol. High-resolution data were collected on the X4A
Beamline at Brookhaven National Laboratories for Sa(V31L/F98Y)DHFR:
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NADPH and the Rigaku HighFlux HomeLab Protein Crystallography X-Ray
System at the University of Connecticut for Sa(F98Y):NADPH.

Data for Sa(V31L/F98Y)DHFR:NADPH and Sa(F98Y):NADPH were indexed
and scaled using HKL2000 and d*TREK, respectively. Phaser (25) was used to
identify molecular replacement solutions for the structures of Sa(V31L/F98Y)
DHFR:NADPH and Sa(F98Y):NADPH using PDB ID code 3F0U (13) or 3FQO (13)
as probe molecule, respectively. The programs Coot (26) and Phenix (27) were
used for structure refinement until acceptable Rwork and Rfree were achieved.
Structural geometry was evaluated by Procheck (28) and Ramachandran plots.

Inhibitors. The synthesis and characterization of compound 1 have been
described (5). Trimethoprim is commercially available (Sigma-Aldrich).
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