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The kinetics of folding–unfolding of a structurally diverse set of four
proteins optimized for thermodynamic stability by rational redesign
of surface charge–charge interactions is characterized experimentally.
The folding rates are faster for designed variants comparedwith their
wild-type proteins, whereas the unfolding rates are largely unaf-
fected. A simple structure-based computational model, which incor-
porates the Debye–Hückel formalism for the electrostatics, was used
and found to qualitatively recapitulate the experimental results. Anal-
ysis of the energy landscapes of the designed versus wild-type pro-
teins indicates the differences in refolding rates may be correlated
with the degree of frustration of their respective energy landscapes.
Our simulations indicate that naturally occurring wild-type proteins
have frustrated folding landscapes due to the surface electrostatics.
Optimization of the surface electrostatics seems to remove some of
that frustration, leading to enhanced formation of native-like contacts
in the transition-state ensembles (TSE) and providing a less frustrated
energy landscape between the unfolded and TS ensembles. Macro-
scopically, this results in faster folding rates. Furthermore, analyses of
pairwise distances and radii of gyration suggest that the less frus-
trated energy landscapes for optimized variants are a result of more
compact unfolded and TS ensembles. These findings from our mod-
eling demonstrates that this simple model may be used to: (i) gain
a detailed understanding of charge–charge interactions and their
effects on modulating the energy landscape of protein folding and
(ii) qualitatively predict the kinetic behavior of protein surface elec-
trostatic interactions.

protein folding | protein stability | charge–charge interaction |
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The energy landscape theory provides a conceptual framework
to describe the ensemble nature of the protein folding pro-

cess (1–3). However, a more detailed understanding of con-
tributions from specific types of interactions remains an active
area of research (4, 5). Particularly, the question of how inter-
actions between charged residues modulate the funneled energy
landscape is not well explored. These interactions are long-range
and thus can alter the conformational ensemble at every step of
the folding process. The interactions between charged residues are
also nonspecific and either attractive or repulsive and therefore
their potential effects on the folding energy landscape can be
highly complex (6, 7). Traditionally, the modulation of electro-
static interactions in proteins was done by changing the pH or to
a lesser degree changing the ionic strength of the solution (8, 9).
Such approaches are complicated by the difficulties of predicting
the titration properties of individual amino acid residues in the
context of ensembles of protein conformations that are sampled
during the folding reaction (10). A more attractive approach is to
modulate electrostatic interactions via substitutions that perturb
the thermodynamic and kinetic properties of proteins using simple
and computationally tractable model systems. Previously, we have
shown that the stability of a diverse set of globular proteins can be
modulated by rationally redesigning surface charge–charge inter-
actions (11–26). These redesigned proteins are ideally suited to
probe the role of electrostatic interactions in modulating the

folding energy landscape. The redesigned variants have higher
thermodynamic stability than their wild-type proteins. However,
because the redesigned proteins contain very few substitutions
(less than 5% of total), and because all of the substitutions are on
the protein surface, they do not disrupt the native contacts that are
important for defining funneled energy landscape (13, 27). Finally,
the properties of these proteins can be compared at the same pH,
largely eliminating the need to compute titration profiles. In this
work, we used four of these redesigned proteins to experimentally
probe their folding kinetics and compared them to their corre-
sponding wild-type proteins. The experimental thermodynamic
and kinetic data were further rationalized by molecular dynamics
simulations using a structure-based model that incorporates
the Debye–Hückel formalism to describe interactions between
charges. We found that this model qualitatively predicts experi-
mental thermodynamics and kinetics for all four studied proteins
and provides insights of how charge–charge interactions modulate
the protein folding energy landscape.

Results and Discussion
Experimental Studies of Stability and Folding Kinetics of Charge-
Optimized Variants. For this work we used four different proteins:
human acylphosphatase (ACPh), activation domain of human
procarboxypeptidase A2 (ADA2h), the fibronectin type III domain
of human tenascin (TnfIII), and the N-terminal RNA-binding do-
main of human U1A protein (U1A). These proteins differ in size
(there are 98, 72, 92, and100aminoacid residues in the sequences of
ACPh, ADA2h, TnfIII, and U1A, respectively), secondary struc-
ture, and in tertiary fold topology (Fig. S1). Surface charge–charge
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interactions in ACPh, ADA2h, TnfIII, and U1A were optimized
using a computational design approach described by us previously
and the stability of the variants was experimentally compared with
thecorrespondingwild-type (WT)proteins (17, 21).Briefly, thegoal
of computational design was to optimize the overall energy of
charge–charge interactions on the protein surface (22). The opti-
mization does not explicitly include salt bridges, which appear to be
of a lesser importance (14, 18, 23, 28) than the long-range charge–
charge interactions (Figs. S2–S4). In all cases, experiments showed
that the designed variants (des) were thermodynamically more sta-
ble than the corresponding WT proteins (Fig. 1A). Because the
equilibrium constant is defined by a ratio between the kinetic rate
constants for folding and unfolding, the question is, how do these
rate constants change to cause an increase in thermodynamic sta-
bility? The increase in stability can be achieved by a decrease in the
unfolding rate, increase in the folding rate, ora combinationof these
two. To address this question we experimentally measured and
compared the folding and unfolding rate constants for theWT and
des pair of variants of these four proteins. Fig. 1B shows typical
chevronplots and reveals interesting commonproperties for all four
studied protein pairs. In all cases, the unfolding rates are similar for
theWTand des. In contrast, the folding rates are very different, and
in all four cases the designed variants fold faster than the corre-
sponding WT proteins. Importantly, how does such stabilization
affect the folding energy landscape? Because charge–charge inter-
actions are long-range they can influence the stability of the native
state but also other states, including unfolded-state and transition-
state (TSE) ensembles. Although experimental approaches do exist
to analyze interactions in the TSE [e.g., phi-value (29) or psi-value
(30) analyses], the interactions in the unfolded state are more dif-
ficult to assess. Alternatively, another promising approach is com-
putational modeling based on statistical mechanics, which provides
molecular details of the interactions and direct description of the

folding energy landscape (31, 32). Such an approachwas used in the
present work.

Structure-Based Model with Debye–Hückel Electrostatics Can Qualitatively
Describe Experimental Data. The proteins discussed above are too
large to computationally study folding–unfolding equilibrium
using all-atom physics-based molecular dynamic simulations. To
circumvent this, we used a structure-based model (SBM). The
SBMs, also known as G�o-models, are based on the energy
landscape theory that relies on the principle of minimal frustration
(3, 33–41). There are several computational approaches based on
this theory that allow exhaustive sampling of the funneled energy
landscape. The simplest model, the so-called Cα-SBM model, rep-
resents the protein sequence as a chain of beads, in which each bead
represents one amino acid residue (31, 32, 42). The interaction
potential between the beads is defined in such a way that only short-
range interactions in the native state are favorable, whereas all other
interactions are governed by excluded volume and chain connectiv-
ity. Here we used such a Cα-SBM model (42), but in addition, to
model the changes in the charge–charge interactions between the
WT and des variants, we included the Debye–Hückel (DH) elec-
trostatic potential (see Eq. 5) to describe the interactions between
charged residues (6, 7). These interactions, which can be attractive in
the case of oppositely charged residues, or repulsive in the case of
same-charged residues, are long-range. In essence, the electrostatic
potential introduces additional long-range native and nonnative
interactions on top of the funneled energy landscape. Can such
a simple model (referred to here as Cα-SBM/DH) describe the ex-
perimental data for the four proteins studied here?
Fig. 1C compares temperature dependencies of the heat ca-

pacity functions calculated from the analysis of the simulations
using the Cα-SBM/DH model for each pair of proteins. It is very
clear that in all four cases the des proteins are more stable than

Fig. 1. Comparison between experimental and modeling results of the thermodynamics and kinetics for the four protein pairs shows good qualitative
agreement. (A) Experimentally determined difference in stabilities betweenWT and des proteins (data and experimental details from refs. 17, 21). (B) chevron
plots comparison of the refolding and unfolding kinetics. (C) Comparison of computed heat capacity (Cv) profiles. (D) Comparison of computed folding and
unfolding kinetics. Data for the WT proteins and des variants are shown as black circles–lines and red squares–lines, respectively. See Materials and Methods
for experimental and computational details. Protein identity is indicated in each plot.
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the corresponding WT proteins. This is in striking agreement
with the experimental data (Fig. 1A). Furthermore, the Cα-SBM/
DH model appears to capture the essence of the folding–
unfolding kinetics. Fig. 1D shows chevron plots comparing the
calculated rate constants for the folding and unfolding kinetics
for the same four protein pairs. The rate constants were calcu-
lated from a large number of independent simulations (>1,000)
in which randomly selected structures generated at high–low
temperatures were allowed to fold–unfold at low–high temper-
atures. For each simulation, the minimal passage time, as mea-
sured by the number of simulation steps required to reach the
folded–unfolded state (as measured by the global reaction co-
ordinate the relative fraction of native contacts, Q), was counted
and converted into an apparent rate constant. Comparison of the
calculated chevron plots shown in Fig. 1D with the experimental
plots (Fig. 1B) again reveals striking similarities. Both in the
experiments and simulations the unfolding arms of the chevron
plots are very similar for the des and WT proteins for all four
protein pairs. Also, for all four protein pairs, in both experiments
and simulations, the folding rates for the des proteins are faster.
Taken together, the data shown in Fig. 1 suggest that the Cα-
SBM/DH model captures the essential features of both the
thermodynamic and kinetic behavior of des and WT proteins for
all four proteins. Such a good qualitative agreement with the
experiments has been shown to hold for other systems as well (6,
7, 25). This in turn allows us to analyze the results of the simu-
lations in more detail to obtain insights into possible molecular

mechanisms that govern the difference in the folding of charge-
optimized des variants.

Charge-Optimized Variants Have Higher Extent of Native-Like Inter-
actions in the TSE. We analyzed our simulation data using the
relative fraction of native contacts Q as the global reaction co-
ordinate (31, 33, 43). Analysis of the potential of mean force as
a function of Q, PMF(Q), suggests that in all four cases there are
only two states, native and unfolded, which are separated by
a single energy barrier corresponding to the TSE (Fig. 2 A, C, E,
and G). The folding–unfolding kinetics also appeared to be
monoexponential, again ruling out the presence of stable in-
termediate state(s). The PMF(Q) corresponding to TSE for the
des variants is always lower than for the WT proteins, suggesting
that the folding rates of the des variants are faster (see refs. 25,
44). This is also consistent with the results of direct experimental
estimates of the folding rate constants (Fig. 1B). It is important
to note that the difference in the absolute values of the apparent
folding–unfolding rate constants obtained from direct kinetic sim-
ulations is not identical to the difference obtained from PMF(Q)
vs. Q analysis. This is probably related to the fact that pre-
exponential factors (proportional to internal friction of the chain)
are different in the des and WT proteins as was previously pointed
out by Wang et al. (45).
From a structural point of view, the TSE for des variants con-

tains a larger fraction of native contacts (Fig. 2 B, D, F, and H).
This suggests that the optimization of surface charge–charge

Fig. 2. Characterization of native contacts in the TSE shows that des proteins have higher fraction of native contacts than the corresponding WT proteins. (A,
C, E, and G) The PMF versus global reaction coordinate Q. These plots were used to identify the TSE. Solid black and red lines are for the WT and des, re-
spectively, at their corresponding Tm values, whereas dashed red line is for the des protein at the Tm of the corresponding WT protein. See Materials and
Methods for computational details. (B, D, F, and H) Difference in the fraction of native contacts formed in the transition state for the four studied proteins.
Open symbols show all native contacts, whereas colored represents contacts in the TSE that differ between WT and des variants. Color scheme changes from
blue (more contacts in the WT) to red (more contacts in the des). Protein identity is indicated in each plot.
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interactions in the des variants likely results in an enhanced
probability to form native contacts. Additionally, some native-like
contacts found in the WT proteins become less populated in the
TSE of des variants. This suggests that optimization of charge–
charge interactions result in certain modulations in the shape of
the folding energy funnel.

Optimization of Charge–Charge Interactions Leads to a Less Frustrated
Folding Landscape.To get a better idea on how the folding energy
landscape is modulated in des variants versus corresponding WT
proteins, as a result of optimization of charge–charge inter-
actions, we analyzed the formation of subsets of native contacts
as a function of the global reaction coordinate, Q. For this we
first calculated a local order parameter <Qi> that represents
a fraction of native interactions formed for a particular pair of
structural segments (Fig. 3 B, D, F, and H; see also Materials and
Methods and Fig. S5 for details). Fig. 3 A, C, E, and G plots the
difference of Q − <Qi> versus Q for the four studied proteins. If
Q − <Qi> for an individual subset is close to zero, this means
that this particular set of native contacts is following a perfectly
funneled energy landscape. Deviations from the zero value
suggest some frustration in the folding funnel. Furthermore,
changes in the sign of Q − <Qi> suggest that there is a certain
degree of “backtracking” in which native-like structural elements
need to unfold in order for the overall folding reaction to pro-
ceed (Fig. 3 A, C, E, and G). Close inspection of the Q − <Qi>
versus Q plots reveals two important features. First, there are
indeed instances when Q − <Qi> values change sign, suggesting

that a certain degree of topological frustration or even back-
tracking can occur (see also Fig. S5). Backtracking was first
observed for IL-1β protein and has been shown to be a result of
topological frustration (46). Further studies have shown that
such topological frustration is a consequence of the chain con-
nectivity, and distribution of native contacts along the sequence
that dictates which structural element must be formed first (47,
48). Backtracking in the four proteins studied here is not as
significant as that in IL-1β and yet it is also primarily related to
the topological frustration. This conclusion follows from the
analysis of simulations performed using only interactions corre-
sponding to a pure funnel, i.e., Cα-SBM model without DH term
for charge–charge interactions, where all four proteins show
similar dependence of <Qi> on Q (Fig. S5). Second, on average
the Q − <Qi> values for des variants are much closer to zero
than those for WT proteins (Fig. 3 A, C, E, and G), indicating
a funnel-like landscape in which all contacts form with equal
probability along the reaction coordinate. To put a quantitative
value on this behavior we introduce the quantity Θi, defined as

Θi =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
Q

ðQ−hQiiÞ2WT

s
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
Q

ðQ−hQiiÞ2des
s

: [1]

Positive Θi means the des variant has a less frustrated folding
landscape for a given pair of structural segments, whereas
negative Θi corresponds to a less frustrated folding landscape
for the WT protein for that same structural segment. It appears

Fig. 3. desproteins have less frustratedenergy landscape than the correspondingWTproteins. (A,C, E, andG) Changes in the local orderparameter<Qi> relative to
theglobal reactioncoordinateQ,Q−<Qi>, asa functionofQfor the four studiedproteins.Colorsof the linescorrespondtothecolorsonthecontactplot.Colored lines
are for thedesproteins, black linesare for the correspondingWT.Numbers representparameterΘi (Eq.1). Positivevalues indicate thatparticular localorderparameter
for desproteins tracks closer to the global reaction coordinate Q. The absolute values ofΘi qualitatively describe the differences between des andWT and cannot be
directly compared. (B, D, F, and H) Contact maps with color coding matching the colors in A, C, E, and G. SeeMaterials and Methods for computational details.
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that in the case of ADA2h and U1A, all Θi values are positive
(Fig. 3 A, C, E, and G). A similar distribution of Θi, although to
a lesser degree, is observed for ACPh and TnfIII, where 10 out of
14 Θi values are also positive. Importantly, the major differences in
Q − <Qi> are observed at Q values below ∼0.6, i.e., between
unfolded and TS ensembles. This suggests that optimization of
the charge–charge interactions leads to an overall less frustrated
energy landscape between U and TS, which on the macroscopic
level manifests itself in the form of faster folding rates. The differ-
ences in Q − <Qi> between N and TS are negligible, which will
manifest itself in the unchanged unfolding rates for WT and des
proteins. Next we explore the underlying principles that charge–
charge interactions have on the energy landscape between
U and TS.

Unfolded State and TSE of des Variants Are More Compact. Charge–
charge interactions, as modeled by the DH potential, are present
throughout the folding–unfolding trajectories. We thus asked
a question: what is the effect of these long-range interactions of
the folding energy landscape? A useful reaction coordinate to
analyze in this case is a matrix, Δi,j (6), of relative changes in all
pairwise distances Rij:

Δi;j =

D
RWT
ij

E
−
D
Rdes
ij

E
D
RWT
ij

E : [2]

Fig. 4 A, C, E, and G shows the heat map representation of Δij
for the four studied proteins in the TSE (Q ∼ 0.35–0.45). Cyan

color corresponds to the pairs that are closer in the des variant,
whereas the magenta-colored area corresponds to the pairs that
are closer in the WT proteins. As expected, there is significant
overlap of Δij with areas that map onto native contacts in TSE
(compare with Fig. 2). Interestingly, there are significant changes
in the Δij that show up between residues that are not involved in
the native contacts. Does this exist only in the TSE or are they
also present throughout the main reaction coordinate, Q, includ-
ing the unfolded state? To assess this we analyzed parameter
hΔreli=

P
i;jΔi;j =

P
i;jð<RWT

ij >−<Rdes
ij >Þ=<RWT

ij > corresponding
to the regions that show no overlap with native contacts (shown
as black rectangles in Fig. 4 A, C, E, andG). Fig. 4 B, D, F, and H
shows the dependence of changes in nonnative distances as
a function of Q. The dependence is clearly bell-shaped and re-
markably the average <Δrel> corresponding to nonnative pairs
reaches a maximum at Q values corresponding to the TSE and
not to the unfolded or folded states.
The unfolded state ensemble (Q ∼ 0–0.25) also shows changes

in Δij (Fig. 5 A, C, E, and G). These changes partially overlap
with the changes in Δij for the TSE. Importantly, the majority of
Δij in the unfolded state ensemble exhibit negative values in-
dicating the decrease in pairwise distances in the des protein
relative to the corresponding WT. Moreover, for the residue
pairs that are not involved in forming native contacts, the ma-
jority of the Rij that show a difference between WT and des
proteins are on average ∼25–30 Å. This excludes involvement of
any specific interactions and suggests that changes in charge–
charge interactions modulate overall compactness of unfolded
state ensemble and of the TSE. Comparison of the radii of

Fig. 4. Comparison of all pairwise distances in the TSE identifies significant changes for residues that are not involved in the native contacts. (A, C, E, and G)
Difference in all pairwise distances formed in the TSE for the four studied proteins. Gray symbols show all native contacts, whereas colored shows values Δij

that represent the difference in distances in the TSE between WT and des variants (Eq. 2). Color scheme changes from cyan (shorter distances in the WT) to
magenta (shorter distances in the des). Black rectangles show areas that have significant changes but lack native contacts. (B, D, F, and H) The <Δrel> for the
regions outlined by rectangles in A, C, E, and G as a function of global reaction coordinate Q.

Tzul et al. PNAS | Published online January 6, 2015 | E263

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

PN
A
S
PL

U
S



gyration as a function of the global folding coordinate Q shows
that indeed des proteins have lower Rg for Q values ranging from
0 to ∼0.4 (Fig. S6). This overall change of compactness can be
even better visualized by comparing the distribution of distances
of WT and des protein pairs at Q values corresponding to the
unfolded (Q < ∼0.25) ensemble (Fig. 5 B, D, F, and H). Thus,
one can conclude that the increase in the folding rate of the des
variants is also facilitated by a small but statistically significant
increase in net compactness of the des proteins in the unfolded
state due to long-range nonspecific charge–charge interactions.

Concluding Remarks
We used a combination of experimental and computational
approaches to characterize the effects of optimization of charge–
charge interactions on the stability and folding energy landscape
of four different proteins. Experimentally we observed that de-
signed proteins are more stable and this increase in stability is
mainly due to the increase in the folding rate. We showed that
the coarse-grain structure-based simulation model that incor-
porates charge–charge interactions via the DH potential is able
to capture the important details observed experimentally, namely
increase in thermodynamic stability, increase in the folding rates,
and unchanged unfolding rates for the designed variant relative
to their corresponding WT proteins. The simulations reveal
three important molecular details that rationalize the increase
in the folding rates. First, the TSE of the des proteins is more
native-like than that of the WT proteins. To use an analogy with
experimental data using ϕ-value analysis, this suggests that sur-
face charge–charge interactions have a high ϕ-value. This con-
clusion resonates well with the results of ionic strength effects on
the folding kinetics from other laboratories. Detailed studies of

model proteins, fyn SH3 domain (8) and NTL9 (9), have shown
that an increase in salt concentration leads to a large increase in
the folding rate and only moderate changes in the unfolding
rates. Second, optimization of charge–charge interactions leads
to a less frustrated energy landscape from the unfolded state to
the TSE. This in turn leads to an increase in the folding rate. The
energy landscape between the native state and TSE remains
largely unperturbed, which results in similar unfolding rates for
the WT and des proteins. Third, optimization of charge–charge
interactions leads to a more balanced net charge of the proteins
that in turn leads to an increase in overall compactness of the
unfolded state ensembles (see also ref. 49). Such effects in the
unfolded state were previously observed by Azia and Levy (6) for
single amino acid substitutions in NTL9. The increase in com-
pactness in the unfolded state would lead to a decrease in the
search time for relevant native-like interactions and thus in-
crease probability of TSE formation. This in turn will lead to an
increase in the folding rate and will not significantly affect the
unfolding rate. Overall, this work shows the utility of the SBMs
for understanding general principles of protein folding and, in
particular, the role of charge–charge interactions in modulating
energy landscape. Finally, the Cα-SBM/DH model may be used
as a predictive tool for the kinetic behavior of electrostatics-
based mutations in proteins.

Materials and Methods
Protein Expression, Purification, and Characterization. All proteins used in this
work were overexpressed in Escherichia coli BL21 (DE3) or BL21 (DE3)pLys
strains at 37 °C, and purified to homogeneity under denaturing conditions
(8 M urea) using column chromatography according to previously pub-
lished protocols (17, 20, 21). ACPh was additionally run across an HPLC C-18
reverse phase column using a shallow linear gradient from 20% ACN:80%

Fig. 5. Comparison of all pairwise distances in the unfolded state shows a decrease in net compactness of the des proteins relative to the corresponding WT
proteins. (A, C, E, and G) Difference in all pairwise distances formed in the unfolded state for the four studied proteins. Gray symbols show all native contacts,
whereas colored shows values Δij that represent the difference in distances in the TSE between WT and des variants (Eq. 2). Color scheme changes from yellow
(shorter distances in the WT) to green (shorter distances in the des). (B, D, F, and H) Probability distribution of pairwise distances P(Rij) as a function of Rij. Data
for the WT proteins and des variants are shown as black and red lines, respectively.
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H2O:0.05%TFA to 60% ACN:40%H2O:0.05%TFA over a 30-min period to
remove a slightly higher molecular weight contaminant as judged from
SDS/PAGE gels and MALDI-TOF (Voyager DE-PRO, PerSeptive Biosystems)
characterization.

Purities and identities of the recombinant proteins were confirmed by SDS
gels and MALDI-TOF mass spectroscopy. In all cases, a single major peak was
observed with a mass within 2–5 Da of that expected on the basis of the
amino acid sequence of the parental and designed proteins. Protein con-
centrations were determined spectrophotometrically using the following
molar extinction coefficients at 280 nm: 6,971 for ADA2h variants, 9,530 for
TnfIII variants, 5,120 for U1A variants, and 13,980 for ACPh variants (17, 21).

Kinetic Stopped-Flow Experiments. Buffers used for the various proteins in this
study were 5 mM sodium acetate pH 5.5 (U1A), 50 mM sodium phosphate pH
7.0 (TnfIII and ADA2h), or 50 mM sodium cacodylate pH 5.5 (ACPh––known to
bind orthophosphate). Folding and unfolding reactions were initiated by
diluting protein buffered stock solutions (22 μM), to varying concentrations
of urea in a 1:11 mixing ratio. The ACPh variants required overnight equil-
ibration in urea before refolding experiments could be successfully initiated.

Data for chevron plots for ACPh, ADA2h, and TnfIII proteins were collected
by standard stopped-flow methods on a JASCO J-815 spectropolarimeter
operating in fluorescence mode equipped with an SFM 300 mixing module
(BioLogic Science Instruments) containing an HDS mixer and a 30-μL FC-15
observation cuvette. The reagent syringes, mixing chamber, and observation
cuvette were thermostated using a circulating water bath. Fluorescence
emission intensity from an N-WG 320-nm cutoff filter (BioLogic Science
Instruments) was collected after excitation at 295 nm through a 10-nm slit
from a mercury lamp source. Voltages applied to the photomultiplier tube
were set constant based on the fluorescence signal intensity at maximum
amplitude. The U1A protein pair relaxation data were collected on a model
400 circular dichroism spectrometer (AVIV Biomedical, Inc.). Excitation was
done at 290 nm using a Xenon lamp source and fluorescence emission was
collected from an N-WG 305-nm sharp cutoff filter (Oriel Instruments). Due
to issues with insufficient signal the final protein concentration was in-
creased from 2 to 4 μM. To maximize efficiency of data collection, kinetic
traces were collected at different temperatures for different protein pairs in
accordance with their observed kinetic rates. Optimal temperatures were
20 °C (U1A), 25 °C (ADA2h), 30 °C (ACPh), or 37 °C (TnfIII), controlled by
a circulating water bath. TnfIII had very slow unfolding kinetics; therefore,
kinetic traces via manual mixing were collected on an SPEX FluoroMax4
spectrofluorometer (Horiba Scientific) in 1-cm cuvettes by following the
change in fluorescence emission at 350 nm after excitation at 295 nm.

Rate constants, kobs for each data point on the chevron plot were obtained
by fitting the raw average of five kinetic traces to exponentials with a correc-
tion for sloping baselines commonly associated with the photobleaching effect:

IðtÞ=pb · t + yo +A ·expð±kobs · tÞ, [3]

where I(t) is fluorescence intensity as a function of time, yo is the initial
fluorescence intensity, A is the amplitude of the change between initial and
final fluorescence intensity, kobs is the observed kinetic rate constant asso-
ciated with the fluorescence intensity relaxation, and pb is the sloping
baseline correction for the photobleaching effect used in the Bio-Kine32
software. Curve fitting was done using either the Bio-Kine32 curve-fitting
software that came with the SFM 300 mixing module or SigmaPlot v6
graphing software package. Traces fit appropriately to single exponentials
as judged by residuals of the fits to Eq. 3. Errors are taken as the SEs of the
fits. The natural logarithms of the fluorescence relaxation times associated
with these exponential phases were plotted as a function of urea concen-
tration in the form of chevron plots. Instrumental dead-time measurement
was assessed using N-acetyltryptophanamide and N-bromosuccinimide
according to the procedure of Peterman (50). All buffers were extensively
degassed and dead-time assessment was done immediately and within an
hour of degassing. Under our current instrumental and experimental con-
ditions a dead time of 6.3 ms was estimated, which is in very good agree-
ment with BioLogic’s Bio-Kine32 software reported value of 6.0 ms. All data
collected under these conditions were adjusted accordingly before fitting
procedures were used, although in most cases the rates were sufficiently

slow that correction was not needed. Extrapolated kf(H2O) and ku(H2O)
values were obtained by fitting each chevron to Eq. 4 below (51) using either
the Nonlinear Regression Analysis (NLREG) v6.3 software fitting program or
the SigmaPlot v6 software fitting package.

lnðkobsÞ= ln
�
exp

�
lnðkf ðH2OÞÞ+mf · ½urea�

RT

�

+ exp
�
lnðkuðH2OÞÞ+mu · ½urea�

RT

��
,

[4]

where kf(H2O) and ku(H2O) are the folding and unfolding rates in the ab-
sence of denaturant, respectively, and mf and mu are the kinetic folding and
unfoldingm values (measured in kJ/mol per M), respectively (51). This equation
appropriately reduces errors in kf(H2O) and ku(H2O) estimation due to heavy
influence of the more rapid and less accurately measured kobs rates (51).

Molecular Dynamics Simulations Using SBM. Cα structure-based potentials
were generated using the SMOG web server (42) and default parameters. The
following Protein Data Bank (PDB) entries were used: ACPh––common-type
human acylphosphatase [PDB ID code: 2ACY (52)], ADA2h––the active
domain of human procarboxypeptidase A2 [PDB ID code: 1AYE (53)], TnfIII––
the fibronectin type III domain of human tenascin [PDB ID code: 1TEN (54)],
and U1A––the N-terminal RNA-binding domain of human U1A protein [PDB
ID code: 1URN (55)]. The SBM potentials were supplemented with inter-
actions between charges via the DH potential, Velectro:
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X
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X
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X
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�
λD

	
«rij
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[5]

where λD is the Debye length, taken to be 0.941, « is the dielectric constant,
taken to be 80, rij is the distance between charges, B(λD) is the Debye co-
efficient of the solution, taken to be ∼1 for dilute solutions (6), and kelec is
the Debye constant. Charges qi and qj were placed on Cα atoms corre-
sponding to the Asp, Glu, Arg, and Lys residues.

Molecular dynamics simulations were performed under GROMACS 4.0.7
environment without modifications (56). For each protein, 50–100 in-
dependent molecular dynamics simulations were performed at 20 different
temperatures. Each independent simulation ran for 108 steps with each time
step having τ = 0.0005 ps. The weighted histogram analysis method (WHAM)
was used to combine simulation data from different temperatures into
single free-energy profiles (57). This also allowed calculations of the en-
thalpy and entropy for individual states (Fig. S7) using the approach de-
scribed by Azia and Levy (6). In the present study, we use the fraction of
native contacts Q as the global reaction coordinate. Q is defined as the
fraction of natively interacting residues that are in contact, i.e., Q = 0 for the
fully unfolded state and Q = 1 for the folded state. To account for structural
dynamics for calculation of Q, the native distance was scaled by a factor of
1.2. The local contact order parameter <Qi> was defined based on the
Cα-SBM contact maps generated by the SMOG web server (42). <Qi> rep-
resents the number of native contacts between nonlocal sequences, i.e.,
between two β-strands, two α-helices, or an α-helix and a β-strand.
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