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Abstract

There is a great deal of interest in characterizing the complex microbial communities in the
poultry gut, and in understanding the effects of these dynamic communities on poultry per-
formance, disease status, animal welfare, and microbes with human health significance. In-
vestigations characterizing the poultry enteric virome have identified novel poultry viruses,
but the roles these viruses play in disease and performance problems have yet to be fully
characterized. The complex bacterial community present in the poultry gut influences gut
development, immune status, and animal health, each of which can be an indicator of over-
all performance. The present metagenomic investigation was undertaken to provide insight
into the colonization of specific pathogen free chickens by enteric microorganisms under
field conditions and to compare the pre-contact intestinal microbiome with the altered micro-
biome following contact with poultry raised in the field. Analysis of the intestinal virome from
contact birds (“sentinels”) placed on farms revealed colonization by members of the Picor-
naviridae, Picobirnaviridae, Reoviridae, and Astroviridae that were not present in pre-
contact birds or present in proportionally lower numbers. Analysis of the sentinel gut bacteri-
al community revealed an altered community in the post-contact birds, notably by members
of the Lachnospiracea/Clostridium and Lactobacillus families and genera. Members of the
avian enteric Reoviridae and Astroviridae have been well-characterized and have historical-
ly been implicated in poultry enteric disease; members of the Picobirnaviridae and Picorna-
viridae have only relatively recently been described in the poultry and avian gut, and their
roles in the recognized disease syndromes and in poultry performance in general have not
been determined. This metagenomic analysis has provided insight into the colonization of
the poultry gut by enteric microbes circulating in commercial broiler flocks, and has
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identified enteric viruses and virus communities that warrant further study in order to under-
stand their role(s) in avian gut health and disease.

Introduction

Poultry performance is heavily influenced and ultimately dependent on the overall health and
proper functioning of the avian gastrointestinal tract. The poultry gut is the site of nutrient ab-
sorption and can be a site for the introduction and proliferation of myriad microorganisms
that may be pathogenic, beneficial, or benign. Poor gastrointestinal health can affect poultry
performance in general—even in the absence of a recognized disease state—resulting in the
failure of birds to reach well-established genetic potential. Poor performance due to poor gut
health—coupled with non-specific enteric disease or microflora imbalance—results in poultry
production problems such as poor feed conversions (a measure of the efficiency of the utiliza-
tion of the nutrients in feed) and difficult management and animal health decisions such as the
administration of antimicrobials. Poultry enteric problems are ongoing worldwide and result
in significant economic loss to the poultry industry each year [1-5]. The poultry industry will
benefit on many levels—disease prevention, improvements to animal welfare, and the realiza-
tion of maximal performance—if the complex gut microbiome is better characterized

and understood.

Clinically, enteric disease in poultry is marked by diarrhea, wet litter in poultry houses, de-
creased feed intake, dehydration, growth depression, and overall unevenness in the size of
birds (lack of uniformity) [1,6,7]. Affected birds have pale, thin-walled intestines filled with un-
digested feed, and microscopically have blunted absorptive intestinal villi, indicating the inabil-
ity of the intestines to absorb nutrients from feed; the non-specific enteric maladies in poultry
have historically been referred to collectively as malabsorption syndromes, and affect poultry
worldwide [7-10]. The recognized enteric disease syndromes in poultry—which include Runt-
ing-Stunting Syndrome (RSS) in young broiler chickens and Poult Enteritis Complex (PEC) in
young turkeys (poults)—are true multifactorial diseases that have proven very difficult to re-
produce experimentally in birds [8,11,12]. In fact, in order to reproduce the full complement of
enteric signs observed in these syndromes, transmission studies have relied upon the adminis-
tration of crude, uncharacterized intestinal homogenates prepared from affected birds, or by
placing healthy birds on the litter previously used to rear affected flocks [13]. Many investiga-
tions have focused on individual intestinal viruses as possible etiologic agents in PEC and RSS
[14-18], with many RNA viruses such as members of the Astroviridae and Reoviridae being
implicated. To further complicate any investigation, suspect enteric viruses implicated in these
syndromes are also often found in healthy poultry flocks, and pathogenic bacterial and even
protozoal infections may be present in certain cases [1,9]. Much research has been completed
characterizing individual viruses implicated in the poultry enteric disease syndromes, but re-
cent investigations have moved necessarily toward community-based analyses of the gut
microbiome. Recent metagenomic analyses of the poultry intestinal virome have revealed a
number of uncharacterized viruses [19-21]; these viruses are truly novel and the role(s) they
may play in the poultry enteric disease syndromes or in the overall gut health of poultry has
not been determined. An investigation is necessary to determine the core viral constituency
present in the poultry gut, and to identify viruses that warrant further characterization.

The complex bacterial community present in the poultry gut has received increased scrutiny
as well, with 16S-based investigations providing an unprecedented look into the succession of
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poultry gut bacteria and the possible influence of that community on gut development, im-
mune status, and health [22,23]. These prior 16S investigations have also identified specific
bacterial species that show an association with performance deficiencies in poultry [4], or that
may represent potential probiotic application for the poultry industry [5,24-26]. Depending
on the section of the chicken gut examined, the numbers of bacteria in the gut can range from
10° to 10" per gram of gut contents, with many hundreds of distinct taxa typically present
[27,28], and the members of the Lactobacillus genus dominating the ileum/jejunum while the
Clostridiaceae dominate the cecum [5,23].

The present investigation utilized specific pathogen free (SPF) contact chickens (“sentinels”)
placed on farms in order to provide a dynamic sample of bacteria and viruses capable of colo-
nizing the avian intestinal tract through normal routes. This is in contrast to earlier investiga-
tions in which crude homogenates prepared in the laboratory from sampled poultry litter or
intestinal contents are orally inoculated into experimental birds under isolated conditions.
These sentinel birds represent an environmental sample that captures interactions with other
birds in the flock and the environment of the house, farm, or yard in which the birds were
placed. This investigation was undertaken to characterize both the bacterial and RNA virus
communities present in chickens raised under SPF conditions both prior to and after place-
ment on commercial and back yard chicken operations.

Materials and Methods
Placement of sentinels and receipt of intestinal samples

Commercial broiler chicken flocks—and one privately owned “back-yard” flock in the same
geographical area—were selected based upon past problems with respiratory and enteric mala-
dies. Five two-week old healthy contact birds (“sentinels”) were placed on the farms and al-
lowed to remain in contact with the flocks for five days. The birds in the selected broiler flocks
were each five weeks old at the time of contact placement. Contact birds originated from a
commercial specific-pathogen free (SPF) flock; the non-contact, pre-placement SPF birds were
maintained under SPF conditions and samples were labeled internally as “MSPF” to designate
this fact; the contact birds were taken from the SPF flock and each given internal labels to rep-
resent placement on farms and to maintain the anonymity of commercial sources (GT, DM,
TR, CAB, BY, VG, NG). Following the contact period, the contact birds were euthanized and
the entire intestinal tract was removed; intestinal tracts from each set of five contact birds were
pooled, frozen and shipped overnight to the Southeast Poultry Research Laboratory (SEPRL,
ARS-USDA, Athens, GA). Pooled intestines were immediately processed via blending (War-
ing) into ~10% homogenates in sterile phosphate-buffered saline (PBS). Five pooled intestinal
tracts from pre-contact SPF chickens were also received and homogenized separately from the
contact birds’ intestines. No specific permits were required for the collection of the diagnostic
samples by company veterinarians in the field, and care and handling of contact birds was in
accordance with the USDA/ARS Southeast Poultry Research Laboratory (SEPRL) Institutional
Animal Care and Use Committee (IACUC, A4298-01) guidelines and the SEPRL IACUC ap-
proved Animal Use Proposal FY2014-02.

Gut homogenate preparation and viral RNA isolation

Pooled gut homogenates were clarified via centrifugation (2400 x G and 5500 x G; 15 min
each, 4°C, SLA 1500 SuperLite rotor, Sorvall) and clarified supernatant was subjected to step-
wise filtration through 0.8 micron and 0.45 micron cutoff syringe or bottle filters (Nalgene).
The clarified, filtered homogenates were then spun at 41K for 4.5 hours at 4°C (Beckman Type
80 Ti, 113,000 x G). The resulting supernatant was removed and the virus pellet was
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re-suspended in sterile phosphate-buffered saline (PBS) via shaking at 4°C. The re-suspended
pellet was aliquoted into cryogenic tubes and held at -80°C. DNAse and RNAse treatment of
re-suspended viral particles was performed to minimized the amount of unencapsidated nu-
cleic acid in the preparations: 450yl of the re-suspended pellet, 50pl 10X Turbo DNAse buffer
(Ambion), 2.5ul Turbo DNAse (2Units/pl), 0.25ul RNAse A (20mg/ml, Invitrogen), 37°C for
1 hour. Following the nuclease treatment, total RN A was isolated from the viral particle sus-
pension using a hybrid protocol with Trizol reagent and MagMax kit (Life Technologies) as de-
scribed previously [29]. Multiple MagMax extractions were performed in concert using a
KingFisher instrument (Thermo Scientific) to collect 250l of viral RNA. Total viral RNA was
precipitated via sodium acetate/ethanol precipitation, re-suspended in 50ul TE buffer, and
stored at -80°C.

Preparation and amplification of viral cDNA

cDNA first strand and second strand synthesis using random hexamers and oligo dT was per-
formed on the total viral RNA using the SuperScript Choice System cDNA kit (Invitrogen).
cDNA was ligated to the included EcoRI/NotI double-stranded oligonucleotide adapter and
sephacryl-column purified to remove excess adapters to select for cDNA size (>500bp).

Total viral cDNA was then subjected to a PCR amplification step using a single oligonucleotide
(5-CGG CCG CGT CGA C-3’) directed toward the ligated adapter sequence. The PCR reac-
tion (50ul) was aliquoted into five equal reactions and subjected to thermal cycling (94C for
30s, 55C for 30s, 72C for 2 min for 35 cycles; final extension at 72C for 7 min); the aliquots
were pooled following PCR and purified (Qiagen MinElute PCR cleanup kit). PCR amplicons
were checked via agarose gel electrophoresis. Purified, amplified cDNA representing the total
viral RNA was submitted directly for high-throughput sequencing. Prepared cDNA was bar-
coded and sequenced using the Ion Xpress Library Kit (Life Technologies) and the Ion Torrent
Personal Genome Machine (PGM) platform.

Enteric virome analysis

Raw nucleotide sequence for each pooled contact bird metagenome was uploaded to the MG-
RAST metagenomics analysis server [30], and subjected to the stringent MG-RAST quality
pipeline, which consisted of duplicate read inferred sequencing error estimation (DRISEE)—a
method to estimate sequencing error that is independent of the high-throughput sequencing
platform used [31]; a dereplication step to remove artificial duplicate reads (ADRs) [32]; and
the generation of a nucleotide histogram to ensure approximately equal proportions of base-
calls in these shotgun metagenomes. Viral taxon trees and the viral heatmap were generated
using MG-RAST with annotation provided via a GenBank or M5 non-redundant (M5nr) [33]
search with a maximum e-value cutoff of e*, a minimum identity cutoff of 80%, and a mini-
mum alignment overlap of 15nt. Viral metagenomes are publicly available at MG-RAST as
project 2982 with MG-RAST metagenome identification numbers 4509871.3 and 4509873.3-
4509879.3. Viral metagenome data is also available in the NCBI Sequence Read Archive (SRA)
as a study with the accession number SRP033198.

16S rRNA bacteriome generation and analysis

PCR and 454 pyrosequencing of the V1-V3 regions of 16S rRNA genes were performed using
tagged amplicon methods as previously described [34]. Briefly, sequences were de-multiplexed
and preprocessed with the Galaxy toolkit [35] and our own custom tools [36]; additional quali-
ty controls per recent recommendations and standard protocols [37] were completed using
Perl and Bioperl scripts to trim pyrosequencing tag sequences, screen for presence of the
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forward PCR primer sequence, and remove sequences with any ambiguous base calls. Based on
expected amplicon sizes and frequency distributions of sequence lengths in v108 of the Silva
reference database [38], sequences were further limited to a range of 325-425 bp. Putative chi-
meric sequences were identified with usearch [39] and ChimeraSlayer in mothur [40].
Taxonomic classification of sequences was performed with the Ribosomal Database Project
(RDP) naive Bayesian classifier [41] v2.6 and the EMBL taxonomy from v115 of the Silva proj-
ect curated seed database using usearch with the global alignment option [39]. To assess phylo-
type richness and diversity independent of taxonomic classifications, sequences which passed
all the screens described above were grouped into similarity clusters (operational taxonomic
units; OTUs), using similarity cutoffs of 90%, 95%, and 97% with uclust [39]. The output from
usearch provided the inputs for our own customized analysis pipeline to parse the clustering
results and produce graphical and statistical summaries of the data for the desired sampling
units using perl and R [42] as previously described [34,36]. Clustering of communities was per-
formed using the CCA function of the vegan package [43] in R based on OTU and taxonomic
classifications. For comparisons of bacterial genera significantly over- or under-represented in
the contact birds, analysis was performed with the METASTATS package in R using taxonomic
classifications from the RDP naive Bayesian classifier. Differentially abundant taxa between the
MSPF flock and each experimental flock were detected using the chi-square test in META-
STATS [44]. Correlations of viral and bacterial taxa were done with frequency tables at various
levels of taxonomic resolution using the R library corrplot. 16S bacterial metagenomes are pub-
licly available at MG-RAST with metagenome identification numbers 4579001.3-4579008.3.

Results and Discussion

Clustering of 16S rRNA sequence data

Clustering of 16S rRNA sequence data from each flock using CCA as described in the methods
revealed the bacterial communities associated with the MSPF flock to be distinct from each of
the experimental flocks (Fig. 1A). This result likely reflects the higher biosecurity conditions
under which the MSPF flock was maintained compared to the commercial or back yard set-
tings in which the sentinel birds were placed. Comparisons of the taxonomic composition of
the communities showed the MSPF flock had a relatively high proportion of sequences classi-
fied by the RDP as Lachnospiracae incertae sedis and Clostridium XIVa (Fig. 1B). Both of these
groups are members of the Clostridiales which are known to be the dominant taxonomic group
in the ceca but are still somewhat poorly resolved taxonomically; the majority (>70%) of se-
quences classified as Lachnospiracae incertae sedis belonged to the genera Blautia or Ruminoc-
cus according to the Silva taxonomy, while most (2/3) of the Clostridium XIVa sequences were
classified simply in the genus Clostridium by comparison to the Silva database (v115). The sim-
ilarities of the VG, DM, and CAB flocks (Fig. 1A) reflect their similar taxonomic profiles, par-
ticularly for the relative proportions of Lactobacillus and Syntrophococcus (Fig. 1B). Similarly,
the communities of the NG and GT flocks were quite similar to one another (Fig. 1A), reflect-
ing the relatively high proportion of Lactobacillus sequences (Fig. 1B). Compared to the MSPF
pre-contact birds, each of the sentinel bird groups had genera specifically under- or over-
represented in their intestines (Table 1). The GT, BY, and NG flocks each had significant over-
representation by the Blautia genus compared to the pre-contact MSPF birds, while the CAB
flock was the only flock with significantly more Lactobacillus spp. reads. The back yard (BY)
flock was over-represented by members of the Coprobacillus genus, a group of bacteria that
have only recently been detected and initially described in poultry [45]. The VG flock was the
only flock with significant over-representation by members of the Clostridium XIVb cluster,
and members of the Robinsoniella and Lactonifactor genera were under-represented in only
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doi:10.1371/journal.pone.0117210.9001

the CAB and DM flocks, respectively. How these taxonomic differences affect bird health and

nutrition remains unknown, but if the differences in community composition between the

MSPF and experimental flocks do reflect differences in biosecurity measures, this result may
have important implications for husbandry and management practices.

Enteric RNA viral community analysis

The intestinal virome from the pre-contact MSPF birds and from the sentinels was marked by

a number of RNA viruses that have historically been implicated in enteric disease and

Table 1. Comparisons of Genera Significantly Over- or Under-Represented in Each Group of Sentinel Birds.

RDP_genus’ GT DM TR CAB BY VG NG
Acetanaerobacterium 0.95 1.32 0.85 0.99

Blautia 1.28 0.79 1.50 1.42
Butyricicoccus 0.73 1.03 0.76

Clostridium XIVb 2.36

Coprobacillus 1.85

Flavonifractor

Lactobacillus 1.13

Lactonifactor 0.87

Pseudoflavonifractor 0.90 1.18 0.92

Robinsoniella 0.81

1 Proportions shown in bold indicate significant over-representation for a sentinel group relative to the pre-contact MSPF group, while ratios shown in

italics indicate significant under-representation. Numbers indicate relative proportions for sentinel birds:pre-contact MSPF birds.

doi:10.1371/journal.pone.0117210.t001
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performance problems, and by a number of viruses only recently detected and described in
poultry (Fig. 2). Interestingly, although the protocols used for preparation of the viral cDNA
were specifically designed to mitigate the presence of DNA viral reads, homologies to several
members of the Siphoviridae and the Podoviridae (tailed DNA phages, Fig. 3); further homolo-
gies were noted in certain sentinels to members of the T4- and P2-like viruses, which are mem-
bers of the Myoviridae family of phages. The Siphoviridae, Myoviridae, and Podoviridae are
members of the very large Caudovirales order and have been detected previously in a metage-
nomic analysis of the chicken gut microbiota [20,46]. Interestingly, the presence of the phage
Propionibacterium phage PA6 (a member of the Siphoviridae family), correlated strongly with
the presence of members of the Lachnospiraceae family of bacteria (Fig. 4), and with members
of the Clostridium cluster XIVa (data not shown). Homologies to the avian Adenoviridae were
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also noted in the sentinels that were placed with the DM commercial flock, and specifically ap-
pear to be due to the presence of avian leukosis virus (ALV) in that flock. Members of the Levi-
viridae (+ssRNA phages) were also noted in some flocks, including the pre-contact MSPF
birds; the Leviviridae have been noted previously in the enteric RNA viral metagenome from
turkeys [19].

Of note in the pre-contact MSPF birds is that the majority (99.05%) of the viral sequence
hits in the viral metagenome had homology to the members of the family Caliciviridae
(S1 Fig.), with the remainder of viral reads belonging to the families Reoviridae (chicken rotavi-
rus specifically) and Astroviridae (chicken astrovirus specifically). Astrovirus as well as rotavi-
rus was detected in the sentinels placed on each of the commercial farms and the back yard
farm as well (Fig. 2). The avian astroviruses and rotaviruses have been implicated in poultry en-
teric disease for decades, and a great deal of research has been completed on the prevalence
and pathogenicity of these viruses [47-51]. The rotavirus infections correlated with the pres-
ence of several bacterial Families, including members of the Clostridiaceae and the
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Lachnospiraceae

Lactobacillaceae

Eubacteriaceae (Fig. 4), while the avian astroviruses—chicken astrovirus and avian nephritis
virus specifically—correlated weakly with members of the Clostridiaceae and Ruminococcaceae.
This could reflect the fact that the avian astroviruses are an almost ubiquitous constituent of
the poultry gut [49,52]. Interestingly, the apparent Calicivirus infection appeared to have been
completely cleared in the sentinel birds placed on the GT, TR, and NG commercial farms, and
only comprised less than 0.05% of the viral hits from the sentinels placed on the additional
commercial farms; 25.6% of the viral hits in the back yard (BY) flock had homology to the Cali-
civiridae. Members of the Caliciviridae were evident in an earlier metagenomic analysis of the
turkey gut RNA virus community [19], and avian caliciviruses have been described previously
in chickens with RSS and in otherwise healthy chickens and turkeys [53,54]. The majority of
the hits observed in the MSPF and BY flocks showed homology to the calicivirus chicken/
V0021/Bayern/2004. It is important to note that the SPF designation does not imply a chicken
flock that is free of viral or bacterial infection; the designation means that specific (or specified)
pathogens of concern are routinely assayed for and the biosecurity of the flock reflects the need
to exclude these pathogens. SPF flocks have historically been assayed for as many as 31 poten-
tial pathogens [55], and it is likely that this list may have to be reexamined and perhaps up-
dated as metagenomic analyses of poultry flocks becomes more common. Overall, the MSPF
pre-contact birds had fewer viral reads in their viral metagenomes compared to the more com-
plex viromes observed in sentinel birds that had spent five days in contact with flocks under
field conditions (Fig. 5).

Two sets of sentinel birds, placed on flocks NG and BY, had viral reads with homology to
the avian coronaviruses (order Nidovirales), with coronaviral reads comprising 77.2% of the
total viral reads in the NG flock at the Order level (S2 Fig.). The coronaviral reads showed
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homology to avian infectious bronchitis virus (IBV) spike glycoprotein (S1 protein) and non-
structural protein genes, and to the turkey enteric coronavirus polyprotein gene lab. Corona-
viral reads comprised just a small percentage of the viral reads in the BY flock, with all reads
having homology to the turkey enteric coronavirus polyprotein gene lab. It is interesting to
speculate that the turkey enteric coronaviruses may be able to replicate in the chicken intestinal
tract without causing enteric disease. IBV is primarily a respiratory disease in chickens, but it
can affect other tissues and can replicate in the intestines without causing outward disease
signs in birds [56-58].

Three sets of sentinels from flocks DM, TR, and NG had small numbers of viral reads with
homology to the avian picobirnaviruses (PBVs). The PBVs were detected and described in a re-
cent metagenomic analysis of the turkey gut viral metagenome [19], and have been described
in chicken flocks as well [59,60]. As has been noted in all avian PBVs to date, the PBVs in the
present analysis all appear to be members of the PBV genogroup I [59,61,62].

Of particular interest in the present analysis is the observation that while the pre-contact
MSPF birds had no avian picornaviral RNA present in their intestines, each of the sentinel
groups had a significant number of viral reads with homologies to the members of the Picorna-
viridae. The picornaviral reads in the sentinel birds shared homology with multiple genera
within the family Picornaviridae (Fig. 6), with many reads placed into the category “unclassi-
fied” as members of the Picornaviridae, as was noted in an earlier investigation of the turkey
enteric virome [19]. Detailed investigations of the avian enteric picornaviruses suggest they
may be widespread in poultry [21,63-65], and they have been described in wild birds (family
Turdidae: robins and thrushes) from Hong Kong and given the name Turdiviruses as a result
[66]. Turkey enteric picornaviruses have been described in birds in Hungary (Gallivirus A and
Avisivirus A) [21,67]. As is the case with many of the poultry enteric viruses in turkeys and
chickens, the role(s) the enteric avian enteric picornaviruses play in enteric disease and produc-
tion loss is unclear at this time, although the present analysis supports earlier insight into the
diversity of the picornaviruses in the chicken gut and the potential for the chicken to be a reser-
voir for the avian picornaviruses in general [65]. Of note is the general trend of negative corre-
lation between members of the Picornaviridae Family (Aichi virus, Avian sapelovirus,
Kobuvirus, and the avian Turdiviruses) and several bacterial Families, particularly the
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Fig 6. Taxon tree representing the Picornaviridae genera present in the gut viral metagenome for the pre-contact MSPF birds and the sentinel
birds placed with each flock in the field.

doi:10.1371/journal.pone.0117210.9006

Clostridiaceae and the Eubacteriaceae. There was, however, a positive correlation between the
members of the Picornaviridae and the Lactobacillaceae (Fig. 4).

Conclusions

Previous surveys for enteric viruses in poultry have involved the use of multiple primer sets
with specificity to previously described individual viruses, or multiplexed assays targeting
known viruses [49,52,68,69]. The culture-independent approach presented here and in earlier
investigations into the gut microbiome of agriculturally important animals provides a broader
picture of the complex enteric microbial community. This investigation—which presents data
on both the viral and bacterial communities in the poultry gut—has provided insight into the
rapid colonization of the SPF chicken gut by numerous microbes in the commercial broiler
and back yard flock environment. Further, although little is known about the possible causes of
the negative and positive correlations noted among the viral and bacterial datasets analyzed
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here, this is an initial step toward quantifying the potential roles enteric viral infections might
play in the disbacteriosis often noted in poultry with enteric disease and performance problems
[1,4,9,12]. SPF sentinel birds are commonly employed to track the contact transmission of cer-
tain microbes, and in this investigation were used as an alternative sampling method to ensure
that infective microbes were identified from the complex flock microbiota, and serves as proof-
of-concept for collecting these complex samples in the future. In fact, as the protocols for high-
throughput sequencing become more accessible and affordable, this sort of metagenomic/
community-level analysis can be applied to diagnose animal disease through the identification
of disease- or low performance-associated microbes or genes that are not present in the core
microbiome of healthy pre-contact (i.e., SPF) animals.
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